Articles | Volume 9, issue 7
https://doi.org/10.5194/amt-9-3293-2016
https://doi.org/10.5194/amt-9-3293-2016
Research article
 | 
26 Jul 2016
Research article |  | 26 Jul 2016

A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm

Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, and Leigh A. Munchak

Related authors

Parameterizing spectral surface reflectance relationships for the Dark Target aerosol algorithm applied to a geostationary imager
Mijin Kim, Robert C. Levy, Lorraine A. Remer, Shana Mattoo, and Pawan Gupta
Atmos. Meas. Tech., 17, 1913–1939, https://doi.org/10.5194/amt-17-1913-2024,https://doi.org/10.5194/amt-17-1913-2024, 2024
Short summary
Increasing Aerosol Optical Depth Spatial And Temporal Availability By Merging Datasets from Geostationary And Sun-Synchronous Satellites
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine Remer, Zhaohui Zhang, Virginia Sawyer, Jennifer Wei, Sally Zhao, Min Oo, V. Praju Kiliyanpilakkil, and Xiaohua Pan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-259,https://doi.org/10.5194/amt-2023-259, 2024
Revised manuscript accepted for AMT
Short summary
Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations
Jing Wei, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, and Maureen Cribb
Atmos. Chem. Phys., 23, 1511–1532, https://doi.org/10.5194/acp-23-1511-2023,https://doi.org/10.5194/acp-23-1511-2023, 2023
Short summary
Low-Cost Air Quality Sensor Evaluation and Calibration in Contrasting Aerosol Environments
Pawan Gupta, Prakash Doraiswamy, Jashwanth Reddy, Palak Balyan, Sagnik Dey, Ryan Chartier, Adeel Khan, Karmann Riter, Brandon Feenstra, Robert C. Levy, Nhu Nguyen Minh Tran, Olga Pikelnaya, Kurinji Selvaraj, Tanushree Ganguly, and Karthik Ganesan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-140,https://doi.org/10.5194/amt-2022-140, 2022
Revised manuscript not accepted
Short summary
Satellite-based estimation of the impacts of summertime wildfires on PM2.5 concentration in the United States
Zhixin Xue, Pawan Gupta, and Sundar Christopher
Atmos. Chem. Phys., 21, 11243–11256, https://doi.org/10.5194/acp-21-11243-2021,https://doi.org/10.5194/acp-21-11243-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
First atmospheric aerosol-monitoring results from the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia
Yeseul Cho, Jhoon Kim, Sujung Go, Mijin Kim, Seoyoung Lee, Minseok Kim, Heesung Chong, Won-Jin Lee, Dong-Won Lee, Omar Torres, and Sang Seo Park
Atmos. Meas. Tech., 17, 4369–4390, https://doi.org/10.5194/amt-17-4369-2024,https://doi.org/10.5194/amt-17-4369-2024, 2024
Short summary
Aerosol optical depth data fusion with Geostationary Korea Multi-Purpose Satellite (GEO-KOMPSAT-2) instruments GEMS, AMI, and GOCI-II: statistical and deep neural network methods
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, Yeseul Cho, Yun-Gon Lee, Sujung Go, and Kyunghwa Lee
Atmos. Meas. Tech., 17, 4317–4335, https://doi.org/10.5194/amt-17-4317-2024,https://doi.org/10.5194/amt-17-4317-2024, 2024
Short summary
Stratospheric aerosol characteristics from SCIAMACHY limb observations: two-parameter retrieval
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024,https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary
Retrieval and analysis of the composition of an aerosol mixture through Mie–Raman–fluorescence lidar observations
Igor Veselovskii, Boris Barchunov, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Mikhail Korenskii, Gaël Dubois, William Boissiere, and Nikita Kasianik
Atmos. Meas. Tech., 17, 4137–4152, https://doi.org/10.5194/amt-17-4137-2024,https://doi.org/10.5194/amt-17-4137-2024, 2024
Short summary
Transport of the Hunga volcanic aerosols inferred from Himawari-8/9 limb measurements
Fred Prata
Atmos. Meas. Tech., 17, 3751–3764, https://doi.org/10.5194/amt-17-3751-2024,https://doi.org/10.5194/amt-17-3751-2024, 2024
Short summary

Cited articles

Cooper, M., Martin, R. V., van Donkelaar, A., Lamsal, L., Brauer, M., and Brook, J.: A satellite-based multi-pollutant index of global air quality, Env. Sci. and Tech., 46, 8523–8524, 2012.
de Almeida Castanho, A. D., Prinn, R., Martins, V., Herold, M., Ichoku, C., and Molina, L. T.: Analysis of Visible/SWIR surface reflectance ratios for aerosol retrievals from satellite in Mexico City urban area, Atmos. Chem. Phys., 7, 5467–5477, https://doi.org/10.5194/acp-7-5467-2007, 2007.
de Almeida Castanho, A. D., Vanderlei Martins, J., and Artaxo, P.: MODIS Aerosol Optical Depth Retrievals with high spatial resolution over an Urban Area using the Critical Reflectance, J. Geophys. Res., 113, D02201, https://doi.org/10.1029/2007JD008751, 2008.
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., et al.: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res.-Atmos., 104, 31333–31349, 1999.
Escribano, J., Gallardo, L., Rondanelli, R., and Choi, Y.-S.: Satellite retrievals of aerosol optical 10 depth over a subtropical urban area: the role of stratification and surface reflectance, Aerosol Air Qual. Res., 14, 596–U568, https://doi.org/10.4209/aaqr.2013.03.0082, 2014.
Download
Short summary
A new surface scheme inside MODIS dark target aerosol retrieval algorithm has been developed to improve the accuracy of aerosol optical depth data over cities. The new scheme integrates the MODIS land surface reflectance and land cover type information into the surface parameterization for urban areas, much of the issues associated with the standard algorithm have been mitigated for our test region. The improved aerosols data sets will be useful for air quality applications over cities.