Articles | Volume 9, issue 8
https://doi.org/10.5194/amt-9-3641-2016
https://doi.org/10.5194/amt-9-3641-2016
Research article
 | 
09 Aug 2016
Research article |  | 09 Aug 2016

Toward autonomous surface-based infrared remote sensing of polar clouds: cloud-height retrievals

Penny M. Rowe, Christopher J. Cox, and Von P. Walden

Related authors

A Novel Model Hierarchy Isolates the Effect of Temperature-dependent Cloud Optics on Infrared Radiation
Ash Gilbert, Jennifer E. Kay, and Penny Rowe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2043,https://doi.org/10.5194/egusphere-2024-2043, 2024
Short summary
Extending the CW3E Atmospheric River Scale to the Polar Regions
Zhenhai Zhang, F. Martin Ralph, Xun Zou, Brian Kawzenuk, Minghua Zheng, Irina V. Gorodetskaya, Penny M. Rowe, and David H. Bromwich
EGUsphere, https://doi.org/10.5194/egusphere-2024-254,https://doi.org/10.5194/egusphere-2024-254, 2024
Short summary
A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Earth Syst. Sci. Data, 14, 2767–2784, https://doi.org/10.5194/essd-14-2767-2022,https://doi.org/10.5194/essd-14-2767-2022, 2022
Short summary
Retrieval of microphysical cloud parameters from EM-FTIR spectra measured in Arctic summer 2017
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-266,https://doi.org/10.5194/amt-2020-266, 2020
Preprint withdrawn
Short summary
Toward autonomous surface-based infrared remote sensing of polar clouds: retrievals of cloud optical and microphysical properties
Penny M. Rowe, Christopher J. Cox, Steven Neshyba, and Von P. Walden
Atmos. Meas. Tech., 12, 5071–5086, https://doi.org/10.5194/amt-12-5071-2019,https://doi.org/10.5194/amt-12-5071-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
The first microwave and submillimetre closure study using particle models of oriented ice hydrometeors to simulate polarimetric measurements of ice clouds
Karina McCusker, Anthony J. Baran, Chris Westbrook, Stuart Fox, Patrick Eriksson, Richard Cotton, Julien Delanoë, and Florian Ewald
Atmos. Meas. Tech., 17, 3533–3552, https://doi.org/10.5194/amt-17-3533-2024,https://doi.org/10.5194/amt-17-3533-2024, 2024
Short summary
Polarization upgrade of specMACS: calibration and characterization of the 2D RGB polarization-resolving cameras
Anna Weber, Tobias Kölling, Veronika Pörtge, Andreas Baumgartner, Clemens Rammeloo, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 1419–1439, https://doi.org/10.5194/amt-17-1419-2024,https://doi.org/10.5194/amt-17-1419-2024, 2024
Short summary
Detection of small drizzle droplets in a large cloud chamber using ultrahigh-resolution radar
Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alex B. Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, and Mariko Oue
Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024,https://doi.org/10.5194/amt-17-1133-2024, 2024
Short summary
W-band SZ relationships for rimed snow particles: observational evidence from combined airborne and ground-based observations
Shelby Fuller, Samuel A. Marlow, Samuel Haimov, Matthew Burkhart, Kevin Shaffer, Austin Morgan, and Jefferson R. Snider
Atmos. Meas. Tech., 16, 6123–6142, https://doi.org/10.5194/amt-16-6123-2023,https://doi.org/10.5194/amt-16-6123-2023, 2023
Short summary
The generation of EarthCARE L1 test data sets using atmospheric model data sets
David P. Donovan, Pavlos Kollias, Almudena Velázquez Blázquez, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5327–5356, https://doi.org/10.5194/amt-16-5327-2023,https://doi.org/10.5194/amt-16-5327-2023, 2023
Short summary

Cited articles

Alkhaled, A. A., Michalak, A. M., Kawa, S. R., Olsen, S. C., and Wang, J.-W.: A global evaluation of the regional spatial variability of column integrated CO2 distributions, J. Geophys. Res., 113, 303–317, https://doi.org/10.1029/2007JD009693, 2008.
Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and de Boer, G.: Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP, Geophys. Res. Lett., 39, L20804, https://doi.org/10.1029/2012GL053385, 2012.
Christensen, P. R., Jakosky, B. M., Mehall, G. L., Kieffer, H. H., Ferry, S., Malin, M. C., McSween Jr., H. Y., Nealson, K., Silverman, S. H., Ferry, S., Caplinger, M., and Ravine, M.: The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev., 110, 85–130, https://doi.org/10.1023/B:SPAC.0000021008.16305.94, 2004.
Clough, S., Iacono, M. J., and Moncet, J. L.: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res. Atmos., 97, 15761–15785, 1992.
Download
Short summary
Clouds play an important role in the rapid climate change occurring in polar regions, yet cloud measurements are challenging in such harsh, remote environments. Here we explore how well a proposed low-power infrared spectrometer, which would be highly portable, could be used to determine cloud height. Using simulated data, we estimate retrieval accuracy, finding that such an instrument would be able to constrain cloud height, particular for low, thick clouds, which are common in polar region.