Articles | Volume 9, issue 8
https://doi.org/10.5194/amt-9-3641-2016
https://doi.org/10.5194/amt-9-3641-2016
Research article
 | 
09 Aug 2016
Research article |  | 09 Aug 2016

Toward autonomous surface-based infrared remote sensing of polar clouds: cloud-height retrievals

Penny M. Rowe, Christopher J. Cox, and Von P. Walden

Related authors

A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Earth Syst. Sci. Data, 14, 2767–2784, https://doi.org/10.5194/essd-14-2767-2022,https://doi.org/10.5194/essd-14-2767-2022, 2022
Short summary
Retrieval of microphysical cloud parameters from EM-FTIR spectra measured in Arctic summer 2017
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-266,https://doi.org/10.5194/amt-2020-266, 2020
Preprint withdrawn
Short summary
Toward autonomous surface-based infrared remote sensing of polar clouds: retrievals of cloud optical and microphysical properties
Penny M. Rowe, Christopher J. Cox, Steven Neshyba, and Von P. Walden
Atmos. Meas. Tech., 12, 5071–5086, https://doi.org/10.5194/amt-12-5071-2019,https://doi.org/10.5194/amt-12-5071-2019, 2019
Short summary
Pan-Arctic measurements of wintertime water vapour column using a satellite-borne microwave radiometer
Christopher Perro, Thomas J. Duck, Glen Lesins, Kimberly Strong, Penny M. Rowe, James R. Drummond, and Robert J. Sica
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-381,https://doi.org/10.5194/amt-2018-381, 2019
Publication in AMT not foreseen
Short summary
Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site
Dan Weaver, Kimberly Strong, Matthias Schneider, Penny M. Rowe, Chris Sioris, Kaley A. Walker, Zen Mariani, Taneil Uttal, C. Thomas McElroy, Holger Vömel, Alessio Spassiani, and James R. Drummond
Atmos. Meas. Tech., 10, 2851–2880, https://doi.org/10.5194/amt-10-2851-2017,https://doi.org/10.5194/amt-10-2851-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
The generation of EarthCARE L1 test data sets using atmospheric model data sets
David P. Donovan, Pavlos Kollias, Almudena Velázquez Blázquez, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5327–5356, https://doi.org/10.5194/amt-16-5327-2023,https://doi.org/10.5194/amt-16-5327-2023, 2023
Short summary
The EarthCARE mission – science and system overview
Tobias Wehr, Takuji Kubota, Georgios Tzeremes, Kotska Wallace, Hirotaka Nakatsuka, Yuichi Ohno, Rob Koopman, Stephanie Rusli, Maki Kikuchi, Michael Eisinger, Toshiyuki Tanaka, Masatoshi Taga, Patrick Deghaye, Eichi Tomita, and Dirk Bernaerts
Atmos. Meas. Tech., 16, 3581–3608, https://doi.org/10.5194/amt-16-3581-2023,https://doi.org/10.5194/amt-16-3581-2023, 2023
Short summary
Processing reflectivity and Doppler velocity from EarthCARE's cloud-profiling radar: the C-FMR, C-CD and C-APC products
Pavlos Kollias, Bernat Puidgomènech Treserras, Alessandro Battaglia, Paloma C. Borque, and Aleksandra Tatarevic
Atmos. Meas. Tech., 16, 1901–1914, https://doi.org/10.5194/amt-16-1901-2023,https://doi.org/10.5194/amt-16-1901-2023, 2023
Short summary
The S/Z Relationship of Rimed Snow Particles
Shelby Fuller, Samuel Marlow, Samuel Haimov, Matthew Burkhart, Kevin Shaffer, Austin Morgan, and Jefferson Snider
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-317,https://doi.org/10.5194/amt-2022-317, 2023
Revised manuscript accepted for AMT
Short summary
3D cloud envelope and cloud development velocity from simulated CLOUD (C3IEL) stereo images
Paolo Dandini, Céline Cornet, Renaud Binet, Laetitia Fenouil, Vadim Holodovsky, Yoav Y. Schechner, Didier Ricard, and Daniel Rosenfeld
Atmos. Meas. Tech., 15, 6221–6242, https://doi.org/10.5194/amt-15-6221-2022,https://doi.org/10.5194/amt-15-6221-2022, 2022
Short summary

Cited articles

Alkhaled, A. A., Michalak, A. M., Kawa, S. R., Olsen, S. C., and Wang, J.-W.: A global evaluation of the regional spatial variability of column integrated CO2 distributions, J. Geophys. Res., 113, 303–317, https://doi.org/10.1029/2007JD009693, 2008.
Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and de Boer, G.: Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP, Geophys. Res. Lett., 39, L20804, https://doi.org/10.1029/2012GL053385, 2012.
Christensen, P. R., Jakosky, B. M., Mehall, G. L., Kieffer, H. H., Ferry, S., Malin, M. C., McSween Jr., H. Y., Nealson, K., Silverman, S. H., Ferry, S., Caplinger, M., and Ravine, M.: The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev., 110, 85–130, https://doi.org/10.1023/B:SPAC.0000021008.16305.94, 2004.
Clough, S., Iacono, M. J., and Moncet, J. L.: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res. Atmos., 97, 15761–15785, 1992.
Download
Short summary
Clouds play an important role in the rapid climate change occurring in polar regions, yet cloud measurements are challenging in such harsh, remote environments. Here we explore how well a proposed low-power infrared spectrometer, which would be highly portable, could be used to determine cloud height. Using simulated data, we estimate retrieval accuracy, finding that such an instrument would be able to constrain cloud height, particular for low, thick clouds, which are common in polar region.