Articles | Volume 9, issue 8
https://doi.org/10.5194/amt-9-4051-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-9-4051-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 2: Ozone DIAL uncertainty budget
Thierry Leblanc
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology,
Wrightwood, CA 92397, USA
Robert J. Sica
Department of Physics and Astronomy, The University of Western
Ontario, London, Canada
Joanna A. E. van Gijsel
Royal Netherlands Meteorological Institute (KNMI), Bilthoven, the Netherlands
Sophie Godin-Beekmann
LATMOS-IPSL, CNRS-INSU, Paris, France
Alexander Haefele
Meteoswiss, Payerne, Switzerland
Thomas Trickl
Karlsruher Institut für Technologie, IMK-IFU,
Garmisch-Partenkirchen, Germany
Guillaume Payen
Observatoire des Sciences de l'Univers de La Réunion, CNRS and
Université de la Réunion (UMS3365), Saint Denis de la Réunion,
France
Gianluigi Liberti
ISAC-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
Related authors
Fernando Chouza, Thierry Leblanc, Patrick Wang, Steven S. Brown, Kristen Zuraski, Wyndom Chace, Caroline C. Womack, Jeff Peischl, John Hair, Taylor Shingler, and John Sullivan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-154, https://doi.org/10.5194/amt-2024-154, 2024
Revised manuscript under review for AMT
Short summary
Short summary
The JPL lidar group developed the SMOL (Small Mobile Ozone Lidar), an affordable ozone differential absorption lidar (DIAL) system covering all altitudes from 200 m to 10 km. a.g.l. The comparison with airborne in-situ and lidar measurements shows very good agreement. An additional comparison with nearby surface ozone measuring instruments indicates unbiased measurements by the SMOL lidars down to 200 m above ground level.
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Arno Keppens, Serena Di Pede, Daan Hubert, Jean-Christopher Lambert, Pepijn Veefkind, Maarten Sneep, Johan De Haan, Mark ter Linden, Thierry Leblanc, Steven Compernolle, Tijl Verhoelst, José Granville, Oindrila Nath, Ann Mari Fjæraa, Ian Boyd, Sander Niemeijer, Roeland Van Malderen, Herman G. J. Smit, Valentin Duflot, Sophie Godin-Beekmann, Bryan J. Johnson, Wolfgang Steinbrecht, David W. Tarasick, Debra E. Kollonige, Ryan M. Stauffer, Anne M. Thompson, Angelika Dehn, and Claus Zehner
Atmos. Meas. Tech., 17, 3969–3993, https://doi.org/10.5194/amt-17-3969-2024, https://doi.org/10.5194/amt-17-3969-2024, 2024
Short summary
Short summary
The Sentinel-5P satellite operated by the European Space Agency has carried the TROPOspheric Monitoring Instrument (TROPOMI) around the Earth since October 2017. This mission also produces atmospheric ozone profile data which are described in detail for May 2018 to April 2023. Independent validation using ground-based reference measurements demonstrates that the operational ozone profile product mostly fully and at least partially complies with all mission requirements.
Matthew S. Johnson, Alexei Rozanov, Mark Weber, Nora Mettig, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, Fernando Chouza, Timothy A. Berkoff, Guillaume Gronoff, Kevin B. Strawbridge, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Brandi McCarty, and Larry Twigg
Atmos. Meas. Tech., 17, 2559–2582, https://doi.org/10.5194/amt-17-2559-2024, https://doi.org/10.5194/amt-17-2559-2024, 2024
Short summary
Short summary
Monitoring tropospheric ozone (O3), a harmful pollutant negatively impacting human health, is primarily done using ground-based measurements and ozonesondes. However, these observation types lack the coverage to fully understand tropospheric O3. Satellites can retrieve tropospheric ozone with near-daily global coverage; however, they are known to have biases and errors. This study uses ground-based lidars to validate multiple satellites' ability to observe tropospheric O3.
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023, https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geophysically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022, https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
Short summary
An updated evaluation up to 2020 of stratospheric ozone profile long-term trends at extrapolar latitudes based on satellite and ground-based records is presented. Ozone increase in the upper stratosphere is confirmed, with significant trends at most latitudes. In this altitude region, a very good agreement is found with trends derived from chemistry–climate model simulations. Observed and modelled trends diverge in the lower stratosphere, but the differences are non-significant.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Giovanni Martucci, Alexander Haefele, Hélène Vérèmes, Valentin Duflot, Guillaume Payen, and Philippe Keckhut
Atmos. Meas. Tech., 15, 4241–4256, https://doi.org/10.5194/amt-15-4241-2022, https://doi.org/10.5194/amt-15-4241-2022, 2022
Short summary
Short summary
The comparison of water vapor lidar measurements with co-located radiosondes and aerosol backscatter profiles indicates that laser-induced aerosol fluorescence in smoke layers injected into the stratosphere can introduce very large and chronic wet biases above 15 km, thus impacting the ability of these systems to accurately estimate long-term water vapor trends. The proposed correction method presented in this work is able to reduce this fluorescence-induced bias from 75 % to under 5 %.
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Gerard Ancellet, Michael J. Newchurch, Shi Kuang, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, https://doi.org/10.5194/amt-15-2955-2022, 2022
Short summary
Short summary
Vertical ozone profiles from combined spectral measurements in the UV and IR spectral ranges were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP. The vertical resolution and accuracy of the ozone profiles are improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The advancement of our TOPAS algorithm for combined measurements is required because in the UV-only retrieval the vertical resolution in the troposphere is very limited.
Nora Mettig, Mark Weber, Alexei Rozanov, Carlo Arosio, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Richard Querel, Thierry Leblanc, Sophie Godin-Beekmann, Rigel Kivi, and Matthew B. Tully
Atmos. Meas. Tech., 14, 6057–6082, https://doi.org/10.5194/amt-14-6057-2021, https://doi.org/10.5194/amt-14-6057-2021, 2021
Short summary
Short summary
TROPOMI is a nadir-viewing satellite that has observed global atmospheric trace gases at unprecedented spatial resolution since 2017. The retrieval of ozone profiles with high accuracy has been demonstrated using the TOPAS (Tikhonov regularised Ozone Profile retrievAl with SCIATRAN) algorithm and applying appropriate spectral corrections to TROPOMI UV data. Ozone profiles from TROPOMI were compared to ozonesonde and lidar profiles, showing an agreement to within 5 % in the stratosphere.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Sabino Piazzolla, Gabriele Pfister, Rajesh Kumar, Carl Drews, Simone Tilmes, Louisa Emmons, and Matthew Johnson
Atmos. Chem. Phys., 21, 6129–6153, https://doi.org/10.5194/acp-21-6129-2021, https://doi.org/10.5194/acp-21-6129-2021, 2021
Short summary
Short summary
The tropospheric ozone lidar at the JPL Table Mountain Facility (TMF) was used to investigate the impact of Los Angeles (LA) Basin pollution transport and stratospheric intrusions in the planetary boundary layer on the San Gabriel Mountains. The results of this study indicate a dominant role of the LA Basin pollution on days when high ozone levels were observed at TMF (March–October period).
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020, https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary
Short summary
Ozone lidar is a state-of-the-art remote-sensing instrument to measure atmospheric ozone concentrations with high spatiotemporal resolution. In this study, we show that an ozone lidar can also provide reliable aerosol measurements through intercomparison with colocated aerosol lidar observations.
Ruud J. Dirksen, Greg E. Bodeker, Peter W. Thorne, Andrea Merlone, Tony Reale, Junhong Wang, Dale F. Hurst, Belay B. Demoz, Tom D. Gardiner, Bruce Ingleby, Michael Sommer, Christoph von Rohden, and Thierry Leblanc
Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020, https://doi.org/10.5194/gi-9-337-2020, 2020
Short summary
Short summary
This paper describes GRUAN's strategy for a network-wide change of the operational radiosonde from Vaisala RS92 to RS41. GRUAN's main goal is to provide long-term data records that are free of inhomogeneities due to instrumental effects, which requires proper change management. The approach is to fully characterize differences between the two radiosonde types using laboratory tests, twin soundings, and ancillary data, as well as by drawing from the various fields of expertise available in GRUAN.
Travis N. Knepp, Larry Thomason, Marilee Roell, Robert Damadeo, Kevin Leavor, Thierry Leblanc, Fernando Chouza, Sergey Khaykin, Sophie Godin-Beekmann, and David Flittner
Atmos. Meas. Tech., 13, 4261–4276, https://doi.org/10.5194/amt-13-4261-2020, https://doi.org/10.5194/amt-13-4261-2020, 2020
Short summary
Short summary
Two common measurements that represent atmospheric aerosol loading are the backscatter and extinction coefficients. Measuring backscatter and extinction coefficients requires different viewing geometries and fundamentally different instrument systems. Further, these coefficients are not directly comparable. We present an algorithm to convert SAGE-observed extinction coefficients to backscatter coefficients for intercomparison with lidar backscatter products, followed by evaluation of the method.
Fernando Chouza, Thierry Leblanc, John Barnes, Mark Brewer, Patrick Wang, and Darryl Koon
Atmos. Chem. Phys., 20, 6821–6839, https://doi.org/10.5194/acp-20-6821-2020, https://doi.org/10.5194/acp-20-6821-2020, 2020
Fernando Chouza, Thierry Leblanc, Mark Brewer, and Patrick Wang
Atmos. Meas. Tech., 12, 569–583, https://doi.org/10.5194/amt-12-569-2019, https://doi.org/10.5194/amt-12-569-2019, 2019
Kevin B. Strawbridge, Michael S. Travis, Bernard J. Firanski, Jeffrey R. Brook, Ralf Staebler, and Thierry Leblanc
Atmos. Meas. Tech., 11, 6735–6759, https://doi.org/10.5194/amt-11-6735-2018, https://doi.org/10.5194/amt-11-6735-2018, 2018
Short summary
Short summary
Environment and Climate Change Canada has recently developed a fully autonomous, mobile lidar system to simultaneously measure the vertical profile of tropospheric ozone, aerosol and water vapor from near the ground to altitudes reaching 10–15 km. These atmospheric constituents play an important role in climate, air quality, and human and ecosystem health. Using an autonomous multi-lidar approach provides a continuous dataset rich in information for atmospheric process studies.
Thierry Leblanc, Mark A. Brewer, Patrick S. Wang, Maria Jose Granados-Muñoz, Kevin B. Strawbridge, Michael Travis, Bernard Firanski, John T. Sullivan, Thomas J. McGee, Grant K. Sumnicht, Laurence W. Twigg, Timothy A. Berkoff, William Carrion, Guillaume Gronoff, Ali Aknan, Gao Chen, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Matthew S. Johnson, Shi Kuang, and Michael J. Newchurch
Atmos. Meas. Tech., 11, 6137–6162, https://doi.org/10.5194/amt-11-6137-2018, https://doi.org/10.5194/amt-11-6137-2018, 2018
Short summary
Short summary
This article reviews the capability of five ozone lidars from the North American TOLNet lidar network. These ground-based laser remote-sensing instruments typically measure ozone in the troposphere with a precision of 5 % and vertical and time resolutions of 100 m and 10 min, respectively. Understanding ozone variability at high spatiotemporal scales is essential for monitoring air quality, human health, and climate. The article shows that the TOLNet lidars are very well suited for this purpose.
Matthew S. Johnson, Xiong Liu, Peter Zoogman, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, and Thomas McGee
Atmos. Meas. Tech., 11, 3457–3477, https://doi.org/10.5194/amt-11-3457-2018, https://doi.org/10.5194/amt-11-3457-2018, 2018
Short summary
Short summary
This research was conducted to determine the impact of multiple a priori ozone (O3) profile products on Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite retrievals. It was determined that non-climatological model predictions, in particular those from a chemical transport model, when applied as the a priori profile improved the accuracy of TEMPO tropospheric O3 retrievals in comparison to the TB-Clim product that is currently suggested for use in the TEMPO retrieval algorithm.
Martine De Mazière, Anne M. Thompson, Michael J. Kurylo, Jeannette D. Wild, Germar Bernhard, Thomas Blumenstock, Geir O. Braathen, James W. Hannigan, Jean-Christopher Lambert, Thierry Leblanc, Thomas J. McGee, Gerald Nedoluha, Irina Petropavlovskikh, Gunther Seckmeyer, Paul C. Simon, Wolfgang Steinbrecht, and Susan E. Strahan
Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018, https://doi.org/10.5194/acp-18-4935-2018, 2018
Short summary
Short summary
This paper serves as an introduction to the special issue "Twenty-five years of operations of the Network for the Detection of Atmospheric Composition Change (NDACC)". It describes the origins of the network, its actual status, and some perspectives for its future evolution in the context of atmospheric sciences.
Nelson Bègue, Nkanyiso Mbatha, Hassan Bencherif, René Tato Loua, Venkataraman Sivakumar, and Thierry Leblanc
Ann. Geophys., 35, 1177–1194, https://doi.org/10.5194/angeo-35-1177-2017, https://doi.org/10.5194/angeo-35-1177-2017, 2017
Short summary
Short summary
In this investigation a statistical analysis of the characteristics of mesospheric inversion layers (MILs) over tropical regions is presented. This study involves the analysis of 16 years of lidar observations recorded at Reunion (20.8° S, 55.5° E) and 21 years of lidar observations recorded at Mauna Loa (19.5° N, 155.6° W) together with SABER observations at these two locations. Results presented in this study confirm that SAO contributes to the formation of MILs over the tropical region.
Lihua Wang, Michael J. Newchurch, Raul J. Alvarez II, Timothy A. Berkoff, Steven S. Brown, William Carrion, Russell J. De Young, Bryan J. Johnson, Rene Ganoe, Guillaume Gronoff, Guillaume Kirgis, Shi Kuang, Andrew O. Langford, Thierry Leblanc, Erin E. McDuffie, Thomas J. McGee, Denis Pliutau, Christoph J. Senff, John T. Sullivan, Grant Sumnicht, Laurence W. Twigg, and Andrew J. Weinheimer
Atmos. Meas. Tech., 10, 3865–3876, https://doi.org/10.5194/amt-10-3865-2017, https://doi.org/10.5194/amt-10-3865-2017, 2017
Short summary
Short summary
Intercomparisons have been made between three TOLNet ozone lidars and between the lidars and other ozone instruments during the 2014 DISCOVER-AQ and FRAPPÉ campaigns in Colorado. Overall, the TOLNet lidars are capable of measuring 5 min tropospheric ozone variations with accuracy better than ±15 % in terms of their vertical resolving capability and better than ±5 % in terms of their column average measurement. These results indicate very good measurement accuracy for the three TOLNet lidars.
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Thierry Leblanc, Robert J. Sica, Joanna A. E. van Gijsel, Sophie Godin-Beekmann, Alexander Haefele, Thomas Trickl, Guillaume Payen, and Frank Gabarrot
Atmos. Meas. Tech., 9, 4029–4049, https://doi.org/10.5194/amt-9-4029-2016, https://doi.org/10.5194/amt-9-4029-2016, 2016
Short summary
Short summary
This article prescribes two standardized formulations for the reporting of vertical resolution of lidar ozone and temperature profiles across an entire atmospheric observation network. Thanks to these standardized definitions, profiles from various instruments and techniques can be compared without ambiguity when interpreting their ability to resolve vertically fine geophysical structures.
Thierry Leblanc, Robert J. Sica, Joanna A. E. van Gijsel, Alexander Haefele, Guillaume Payen, and Gianluigi Liberti
Atmos. Meas. Tech., 9, 4079–4101, https://doi.org/10.5194/amt-9-4079-2016, https://doi.org/10.5194/amt-9-4079-2016, 2016
Short summary
Short summary
This article prescribes a standardized approach for the treatment of uncertainty in the backscatter temperature lidar data processing algorithms. The recommendations are designed to be used homogeneously across large atmospheric observation networks such as NDACC, and allow a clear understanding of the uncertainty budget of multiple lidar datasets for a large spectrum of middle atmospheric science applications (e.g., climatology, long-term trends, mesospheric tides, satellite validation).
Maria Jose Granados-Muñoz and Thierry Leblanc
Atmos. Chem. Phys., 16, 9299–9319, https://doi.org/10.5194/acp-16-9299-2016, https://doi.org/10.5194/acp-16-9299-2016, 2016
Short summary
Short summary
Tropospheric ozone DIAL measurements between 2000 and 2015 and surface ozone data from 2013 to 2015 measured at JPL Table Mountain Facility are presented for the first time. Tropospheric ozone variability and trends in the southwestern USA are analyzed observing an increasing ozone trend in the upper troposphere. The influence of the origin of air masses arriving at JPL-TMF and tropopause folds above the site on ozone vertical structure and variability are also observed.
Daan Hubert, Jean-Christopher Lambert, Tijl Verhoelst, José Granville, Arno Keppens, Jean-Luc Baray, Adam E. Bourassa, Ugo Cortesi, Doug A. Degenstein, Lucien Froidevaux, Sophie Godin-Beekmann, Karl W. Hoppel, Bryan J. Johnson, Erkki Kyrölä, Thierry Leblanc, Günter Lichtenberg, Marion Marchand, C. Thomas McElroy, Donal Murtagh, Hideaki Nakane, Thierry Portafaix, Richard Querel, James M. Russell III, Jacobo Salvador, Herman G. J. Smit, Kerstin Stebel, Wolfgang Steinbrecht, Kevin B. Strawbridge, René Stübi, Daan P. J. Swart, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Joachim Urban, Joanna A. E. van Gijsel, Roeland Van Malderen, Peter von der Gathen, Kaley A. Walker, Elian Wolfram, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 2497–2534, https://doi.org/10.5194/amt-9-2497-2016, https://doi.org/10.5194/amt-9-2497-2016, 2016
Short summary
Short summary
A more detailed understanding of satellite O3 profile data records is vital for further progress in O3 research. To this end, we made a comprehensive assessment of 14 limb/occultation profilers using ground-based reference data. The mutual consistency of satellite O3 in terms of bias, short-term variability and decadal stability is generally good over most of the stratosphere. However, we identified some exceptions that impact the quality of recently merged data sets and ozone trend assessments.
J. T. Sullivan, T. J. McGee, T. Leblanc, G. K. Sumnicht, and L. W. Twigg
Atmos. Meas. Tech., 8, 4133–4143, https://doi.org/10.5194/amt-8-4133-2015, https://doi.org/10.5194/amt-8-4133-2015, 2015
Short summary
Short summary
This paper addresses the validation procedures for the GSFC TROPOZ DIAL retrieval algorithm and develops a primary standard for retrieval consistency and optimization within the Tropospheric Ozone Lidar Network (TOLNet). The methodology presented may be extended to most DIAL instruments, even if the atmospheric product of interest is not tropospheric ozone. The TROPOZ retrieval has been effective in retrieving ozone nearly 200m lower to the surface and has reduced the mean profile bias by 3.5%.
N. R. P. Harris, B. Hassler, F. Tummon, G. E. Bodeker, D. Hubert, I. Petropavlovskikh, W. Steinbrecht, J. Anderson, P. K. Bhartia, C. D. Boone, A. Bourassa, S. M. Davis, D. Degenstein, A. Delcloo, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, N. Jones, M. J. Kurylo, E. Kyrölä, M. Laine, S. T. Leblanc, J.-C. Lambert, B. Liley, E. Mahieu, A. Maycock, M. de Mazière, A. Parrish, R. Querel, K. H. Rosenlof, C. Roth, C. Sioris, J. Staehelin, R. S. Stolarski, R. Stübi, J. Tamminen, C. Vigouroux, K. A. Walker, H. J. Wang, J. Wild, and J. M. Zawodny
Atmos. Chem. Phys., 15, 9965–9982, https://doi.org/10.5194/acp-15-9965-2015, https://doi.org/10.5194/acp-15-9965-2015, 2015
Short summary
Short summary
Trends in the vertical distribution of ozone are reported for new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere peaked in the second half of the 1990s. We examine the trends before and after that peak to see if any change in trend is discernible. The previously reported decreases are confirmed. Furthermore, the downward trend in upper stratospheric ozone has not continued. The possible significance of any increase is discussed in detail.
J. A. E. van Gijsel, R. Zurita-Milla, P. Stammes, S. Godin-Beekmann, T. Leblanc, M. Marchand, I. S. McDermid, K. Stebel, W. Steinbrecht, and D. P. J. Swart
Atmos. Meas. Tech., 8, 1951–1963, https://doi.org/10.5194/amt-8-1951-2015, https://doi.org/10.5194/amt-8-1951-2015, 2015
M. García-Comas, B. Funke, A. Gardini, M. López-Puertas, A. Jurado-Navarro, T. von Clarmann, G. Stiller, M. Kiefer, C. D. Boone, T. Leblanc, B. T. Marshall, M. J. Schwartz, and P. E. Sheese
Atmos. Meas. Tech., 7, 3633–3651, https://doi.org/10.5194/amt-7-3633-2014, https://doi.org/10.5194/amt-7-3633-2014, 2014
Short summary
Short summary
We present the new vM21 MIPAS temperatures from 20 to 102km for all of its 2005-2012 MA, UA and NLC measurements. The main upgrades are the update of ESA L1b spectra, spectroscopic database and O and CO2 climatologies, and improvement in Tk-gradient and offset regularizations and apodization accuracy. The vM21 Tk's correct the main systematic errors of previous versions and lead to remarkable improvement in their comparisons with ACE-FTS, MLS, OSIRIS, SABER and SOFIE and the MLO and TMF lidars.
E. Eckert, T. von Clarmann, M. Kiefer, G. P. Stiller, S. Lossow, N. Glatthor, D. A. Degenstein, L. Froidevaux, S. Godin-Beekmann, T. Leblanc, S. McDermid, M. Pastel, W. Steinbrecht, D. P. J. Swart, K. A. Walker, and P. F. Bernath
Atmos. Chem. Phys., 14, 2571–2589, https://doi.org/10.5194/acp-14-2571-2014, https://doi.org/10.5194/acp-14-2571-2014, 2014
G. Kirgis, T. Leblanc, I. S. McDermid, and T. D. Walsh
Atmos. Chem. Phys., 13, 5033–5047, https://doi.org/10.5194/acp-13-5033-2013, https://doi.org/10.5194/acp-13-5033-2013, 2013
Fernando Chouza, Thierry Leblanc, Patrick Wang, Steven S. Brown, Kristen Zuraski, Wyndom Chace, Caroline C. Womack, Jeff Peischl, John Hair, Taylor Shingler, and John Sullivan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-154, https://doi.org/10.5194/amt-2024-154, 2024
Revised manuscript under review for AMT
Short summary
Short summary
The JPL lidar group developed the SMOL (Small Mobile Ozone Lidar), an affordable ozone differential absorption lidar (DIAL) system covering all altitudes from 200 m to 10 km. a.g.l. The comparison with airborne in-situ and lidar measurements shows very good agreement. An additional comparison with nearby surface ozone measuring instruments indicates unbiased measurements by the SMOL lidars down to 200 m above ground level.
Dominique Gantois, Guillaume Payen, Michaël Sicard, Valentin Duflot, Nelson Bègue, Nicolas Marquestaut, Thierry Portafaix, Sophie Godin-Beekmann, Patrick Hernandez, and Eric Golubic
Earth Syst. Sci. Data, 16, 4137–4159, https://doi.org/10.5194/essd-16-4137-2024, https://doi.org/10.5194/essd-16-4137-2024, 2024
Short summary
Short summary
We describe three instruments that have been measuring interactions between aerosols (particles of various origin) and light over Réunion Island since 2012. Aerosols directly or indirectly influence the temperature in the atmosphere and can interact with clouds. Details are given on how we derived aerosol properties from our measurements and how we assessed the quality of our data before sharing them with the scientific community. A good correlation was found between the three instruments.
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurélie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Léa Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Mérédith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data, 16, 3821–3849, https://doi.org/10.5194/essd-16-3821-2024, https://doi.org/10.5194/essd-16-3821-2024, 2024
Short summary
Short summary
The MAP-IO program aims to compensate for the lack of atmospheric and oceanographic observations in the Southern Ocean by equipping the ship Marion Dufresne with a set of 17 scientific instruments. This program collected 700 d of measurements under different latitudes, seasons, sea states, and weather conditions. These new data will support the calibration and validation of numerical models and the understanding of the atmospheric composition of this region of Earth.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Cathy Clerbaux, Pierre-François Coheur, Andrea Pazmino, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2350, https://doi.org/10.5194/egusphere-2024-2350, 2024
Short summary
Short summary
On 15 January 2022, the Hunga volcano erupted, releasing aerosols, sulfur dioxide, and water vapor into the stratosphere, impacting ozone levels over the Indian Ocean. MLS and IASI data show that the volcanic plume decreased ozone levels within the stratospheric ozone layer, shaping a structure similar to an ozone mini-hole. A stable stratosphere, free of dynamical barriers, enabled the volcanic plume's transport over the Indian Ocean.
Nelson Bègue, Alexandre Baron, Gisèle Krysztofiak, Gwenaël Berthet, Corinna Kloss, Fabrice Jégou, Sergey Khaykin, Marion Ranaivombola, Tristan Millet, Thierry Portafaix, Valentin Duflot, Philippe Keckhut, Hélène Vérèmes, Guillaume Payen, Mahesh Kumar Sha, Pierre-François Coheur, Cathy Clerbaux, Michaël Sicard, Tetsu Sakai, Richard Querel, Ben Liley, Dan Smale, Isamu Morino, Osamu Uchino, Tomohiro Nagai, Penny Smale, John Robinson, and Hassan Bencherif
Atmos. Chem. Phys., 24, 8031–8048, https://doi.org/10.5194/acp-24-8031-2024, https://doi.org/10.5194/acp-24-8031-2024, 2024
Short summary
Short summary
During the 2020 austral summer, the pristine atmosphere of the southwest Indian Ocean basin experienced significant perturbations. Numerical models indicated that the lower-stratospheric aerosol content was influenced by the intense and persistent stratospheric aerosol layer generated during the 2019–2020 extreme Australian bushfire events. Ground-based observations at Réunion confirmed the simultaneous presence of African and Australian aerosol layers.
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Irina Petropavlovskikh, Jeannette D. Wild, Kari Abromitis, Peter Effertz, Koji Miyagawa, Lawrence E. Flynn, Eliane Maillard-Barra, Robert Damadeo, Glen McConville, Bryan Johnson, Patrick Cullis, Sophie Godin-Beekmann, Gerald Ancellet, Richard Querel, Roeland Van Malderen, and Daniel Zawada
EGUsphere, https://doi.org/10.5194/egusphere-2024-1821, https://doi.org/10.5194/egusphere-2024-1821, 2024
Short summary
Short summary
Observational records show that stratospheric ozone is recovering in accordance with the implementation of the Montreal protocol and its amendments. The natural ozone variability complicates detection of small trends. This study optimizes statistical model fit in the observational records by adding parameters that interpret seasonal and long-term changes in atmospheric circulation and airmass mixing which reduces uncertainties in detection of the stratospheric ozone recovery.
Arno Keppens, Serena Di Pede, Daan Hubert, Jean-Christopher Lambert, Pepijn Veefkind, Maarten Sneep, Johan De Haan, Mark ter Linden, Thierry Leblanc, Steven Compernolle, Tijl Verhoelst, José Granville, Oindrila Nath, Ann Mari Fjæraa, Ian Boyd, Sander Niemeijer, Roeland Van Malderen, Herman G. J. Smit, Valentin Duflot, Sophie Godin-Beekmann, Bryan J. Johnson, Wolfgang Steinbrecht, David W. Tarasick, Debra E. Kollonige, Ryan M. Stauffer, Anne M. Thompson, Angelika Dehn, and Claus Zehner
Atmos. Meas. Tech., 17, 3969–3993, https://doi.org/10.5194/amt-17-3969-2024, https://doi.org/10.5194/amt-17-3969-2024, 2024
Short summary
Short summary
The Sentinel-5P satellite operated by the European Space Agency has carried the TROPOspheric Monitoring Instrument (TROPOMI) around the Earth since October 2017. This mission also produces atmospheric ozone profile data which are described in detail for May 2018 to April 2023. Independent validation using ground-based reference measurements demonstrates that the operational ozone profile product mostly fully and at least partially complies with all mission requirements.
Michael Sicard, Alexandre Baron, Marion Ranaivombola, Dominique Gantois, Tristan Millet, Pasquale Sellitto, Nelson Bègue, Hassan Bencherif, Guillaume Payen, Nicolas Marquestaut, and Valentin Duflot
EGUsphere, https://doi.org/10.22541/essoar.170231679.99186200/v1, https://doi.org/10.22541/essoar.170231679.99186200/v1, 2024
Short summary
Short summary
This study quantifies the radiative impact over Reunion Island (21° S, 55° E) of the aerosols and water vapor injected in the stratosphere by the Hunga Tonga-Hunga Ha'apai volcano in the South Pacific. The overall aerosol and water vapor impact on the Earth’s radiation budget for the whole period is negative (cooling, -0.54 ± 0.29 W m-2) and dominated by the aerosols. At the Earth’s surface, aerosols are the main driver and produce a negative (cooling, -1.19 ± 0.40 W m-2) radiative impact.
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024, https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Short summary
The current understanding and observational evidence do not provide any support for the possibility of an ozone hole occurring outside Antarctica today with respect to the present-day stratospheric halogen levels.
Vasura Jayaweera, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
EGUsphere, https://doi.org/10.5194/egusphere-2024-1081, https://doi.org/10.5194/egusphere-2024-1081, 2024
Short summary
Short summary
Our study presents a new method, the solar background calibration method, which improves temperature determinations in rotational Raman lidar systems. By utilizing backgrounds solar radiation, this technique offers more continuous and reliable temperatures independent of external measuring instruments. This new method enhances our ability to monitor and understand atmospheric trends and their association to climate change with greater accuracy.
Matthew S. Johnson, Alexei Rozanov, Mark Weber, Nora Mettig, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, Fernando Chouza, Timothy A. Berkoff, Guillaume Gronoff, Kevin B. Strawbridge, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Brandi McCarty, and Larry Twigg
Atmos. Meas. Tech., 17, 2559–2582, https://doi.org/10.5194/amt-17-2559-2024, https://doi.org/10.5194/amt-17-2559-2024, 2024
Short summary
Short summary
Monitoring tropospheric ozone (O3), a harmful pollutant negatively impacting human health, is primarily done using ground-based measurements and ozonesondes. However, these observation types lack the coverage to fully understand tropospheric O3. Satellites can retrieve tropospheric ozone with near-daily global coverage; however, they are known to have biases and errors. This study uses ground-based lidars to validate multiple satellites' ability to observe tropospheric O3.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Thomas Trickl, Hannes Vogelmann, Michael D. Fromm, Horst Jäger, Matthias Perfahl, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 24, 1997–2021, https://doi.org/10.5194/acp-24-1997-2024, https://doi.org/10.5194/acp-24-1997-2024, 2024
Short summary
Short summary
In 2023, the lidar team at Garmisch-Partenkirchen (Germany) celebrated its 50th year of aerosol profiling. The highlight of these activities has been the lidar measurements of stratospheric aerosol carried out since 1976. The observations since 2017 are characterized by severe smoke from several big fires in North America and Siberia and three volcanic eruptions. The sudden increase in the frequency of such strong fire events is difficult to understand.
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023, https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from the SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trends since 2000. The study confirms the ozone recovery in the Antarctic and shows a potential sign of quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
Tristan Millet, Hassan Bencherif, Thierry Portafaix, Nelson Bègue, Alexandre Baron, Valentin Duflot, Michaël Sicard, Jean-Marc Metzger, Guillaume Payen, Nicolas Marquestaut, and Sophie Godin-Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2645, https://doi.org/10.5194/egusphere-2023-2645, 2023
Preprint withdrawn
Short summary
Short summary
The eruption of the Hunga Tonga volcano in January 2022 released substantial amounts of aerosols, sulfur dioxide, and water vapor into the stratosphere. Satellite and ground instruments followed the displacement of the volcanic aerosol plume and its impact on ozone levels over the Indian Ocean. Ozone data reveal the presence of a persistent ozone mini-hole structure from 17 January to 22 January, with most ozone depletion occurring within the ozone layer at the location of the aerosol plume.
Thomas Trickl, Martin Adelwart, Dina Khordakova, Ludwig Ries, Christian Rolf, Michael Sprenger, Wolfgang Steinbrecht, and Hannes Vogelmann
Atmos. Meas. Tech., 16, 5145–5165, https://doi.org/10.5194/amt-16-5145-2023, https://doi.org/10.5194/amt-16-5145-2023, 2023
Short summary
Short summary
Tropospheric ozone have been measured for more than a century. Highly quantitative ozone measurements have been made at monitoring stations. However, deficits have been reported for vertical sounding systems. Here, we report a thorough intercomparison effort between a differential-absorption lidar system and two types of balloon-borne ozone sondes, also using ozone sensors at nearby mountain sites as references. The sondes agree very well with the lidar after offset corrections.
Thomas Trickl, Cédric Couret, Ludwig Ries, and Hannes Vogelmann
Atmos. Chem. Phys., 23, 8403–8427, https://doi.org/10.5194/acp-23-8403-2023, https://doi.org/10.5194/acp-23-8403-2023, 2023
Short summary
Short summary
Downward atmospheric transport from the stratosphere (STT) is the most important natural source of tropospheric ozone. We analyse the stratospheric influence on the long-term series of ozone and carbon monoxide measured on the Zugspitze in the Bavarian Alps (2962 m a.s.l.). Since the 1970s, there has been a pronounced ozone rise that has been ascribed to an increase in STT. We determine the stratospheric influence from the observational data alone (humidity and 7Be).
Eric Sauvageat, Klemens Hocke, Eliane Maillard Barras, Shengyi Hou, Quentin Errera, Alexander Haefele, and Axel Murk
Atmos. Chem. Phys., 23, 7321–7345, https://doi.org/10.5194/acp-23-7321-2023, https://doi.org/10.5194/acp-23-7321-2023, 2023
Short summary
Short summary
In Switzerland, two microwave radiometers can measure continuous ozone profiles in the middle atmosphere. From these instruments, we can study the diurnal variation of ozone, which is difficult to observe otherwise. It is valuable to validate the model simulations of diurnal variations in this region. We present results obtained during the last decade and compare them against various models. For the first time, we also show that the winter diurnal variations have some short-term fluctuations.
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023, https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geophysically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023, https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
Eliane Maillard Barras, Alexander Haefele, René Stübi, Achille Jouberton, Herbert Schill, Irina Petropavlovskikh, Koji Miyagawa, Martin Stanek, and Lucien Froidevaux
Atmos. Chem. Phys., 22, 14283–14302, https://doi.org/10.5194/acp-22-14283-2022, https://doi.org/10.5194/acp-22-14283-2022, 2022
Short summary
Short summary
Intercomparisons of three Dobson and three Brewer spectrophotometers at Arosa/Davos, Switzerland, are used for the homogenization of the longest Umkehr ozone profiles time series worldwide. Dynamic linear modeling (DLM) reveals a significant positive trend after 2004 in the upper stratosphere, a persistent negative trend between 25 and 30 km in the middle stratosphere, and a negative trend at 20 km in the lower stratosphere, with different levels of significance depending on the dataset.
Eric Sauvageat, Eliane Maillard Barras, Klemens Hocke, Alexander Haefele, and Axel Murk
Atmos. Meas. Tech., 15, 6395–6417, https://doi.org/10.5194/amt-15-6395-2022, https://doi.org/10.5194/amt-15-6395-2022, 2022
Short summary
Short summary
We present new harmonized ozone time series from two ground-based microwave radiometers in Switzerland. The new series consist of hourly ozone profiles in the middle atmosphere (~ 20–70 km) from 2009 until 2021. Cross-validation of the new data series shows the benefit of the harmonization process compared to the previous versions. Comparisons with collocated satellite observations is used to further validate these time series for long-term ozone monitoring over central Europe.
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022, https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
Short summary
An updated evaluation up to 2020 of stratospheric ozone profile long-term trends at extrapolar latitudes based on satellite and ground-based records is presented. Ozone increase in the upper stratosphere is confirmed, with significant trends at most latitudes. In this altitude region, a very good agreement is found with trends derived from chemistry–climate model simulations. Observed and modelled trends diverge in the lower stratosphere, but the differences are non-significant.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Giovanni Martucci, Alexander Haefele, Hélène Vérèmes, Valentin Duflot, Guillaume Payen, and Philippe Keckhut
Atmos. Meas. Tech., 15, 4241–4256, https://doi.org/10.5194/amt-15-4241-2022, https://doi.org/10.5194/amt-15-4241-2022, 2022
Short summary
Short summary
The comparison of water vapor lidar measurements with co-located radiosondes and aerosol backscatter profiles indicates that laser-induced aerosol fluorescence in smoke layers injected into the stratosphere can introduce very large and chronic wet biases above 15 km, thus impacting the ability of these systems to accurately estimate long-term water vapor trends. The proposed correction method presented in this work is able to reduce this fluorescence-induced bias from 75 % to under 5 %.
Gérard Ancellet, Sophie Godin-Beekmann, Herman G. J. Smit, Ryan M. Stauffer, Roeland Van Malderen, Renaud Bodichon, and Andrea Pazmiño
Atmos. Meas. Tech., 15, 3105–3120, https://doi.org/10.5194/amt-15-3105-2022, https://doi.org/10.5194/amt-15-3105-2022, 2022
Short summary
Short summary
The 1991–2021 Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data have been homogenized according to the recommendations of the Ozonesonde Data Quality Assessment panel. Comparisons with ground-based instruments also measuring ozone at the same station (lidar, surface measurements) and with colocated satellite observations show the benefits of this homogenization. Remaining differences between ECC and other observations in the stratosphere are also discussed.
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Gerard Ancellet, Michael J. Newchurch, Shi Kuang, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, https://doi.org/10.5194/amt-15-2955-2022, 2022
Short summary
Short summary
Vertical ozone profiles from combined spectral measurements in the UV and IR spectral ranges were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP. The vertical resolution and accuracy of the ozone profiles are improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The advancement of our TOPAS algorithm for combined measurements is required because in the UV-only retrieval the vertical resolution in the troposphere is very limited.
Audrey Lecouffe, Sophie Godin-Beekmann, Andrea Pazmiño, and Alain Hauchecorne
Atmos. Chem. Phys., 22, 4187–4200, https://doi.org/10.5194/acp-22-4187-2022, https://doi.org/10.5194/acp-22-4187-2022, 2022
Short summary
Short summary
This study uses a model developped at LATMOS (France) to analyze the behavior of the Antarctic polar vortex from 1979 to 2020 at 675 K, 550 K, and 475 K isentropic levels. We found that the vortex edge intensity is stronger during the September–October–November period, while its edge position is less extended during this period. The polar vortex is stronger and lasts longer during solar minimum years. Breakup dates of the polar vortex are linked to the ozone hole and maximum wind speed.
Irina Petropavlovskikh, Koji Miyagawa, Audra McClure-Beegle, Bryan Johnson, Jeannette Wild, Susan Strahan, Krzysztof Wargan, Richard Querel, Lawrence Flynn, Eric Beach, Gerard Ancellet, and Sophie Godin-Beekmann
Atmos. Meas. Tech., 15, 1849–1870, https://doi.org/10.5194/amt-15-1849-2022, https://doi.org/10.5194/amt-15-1849-2022, 2022
Short summary
Short summary
The Montreal Protocol and its amendments assure the recovery of the stratospheric ozone layer that protects the Earth from harmful ultraviolet radiation. To monitor ozone recovery, multiple satellites and ground-based observational platforms collect ozone data. The changes in instruments can influence the continuation of the ozone data. We discuss a method to remove instrumental artifacts from ozone records to improve the internal consistency among multiple observational records.
Andrea Pazmiño, Matthias Beekmann, Florence Goutail, Dmitry Ionov, Ariane Bazureau, Manuel Nunes-Pinharanda, Alain Hauchecorne, and Sophie Godin-Beekmann
Atmos. Chem. Phys., 21, 18303–18317, https://doi.org/10.5194/acp-21-18303-2021, https://doi.org/10.5194/acp-21-18303-2021, 2021
Short summary
Short summary
UV-Visible Système d'Analyse par Observations Zénithales (SAOZ) NO2 tropospheric columns were evaluated to quantify the impact of the lockdown in limiting the COVID-19 propagation. Meteorological conditions and NO2 trends were considered. The negative anomaly in tropospheric columns in 2020, attributed to the lockdown (17 March–10 May and related emissions reductions), was 56 % at Paris and 46 % at a suburban site. A similar anomaly was found in the Airparif data of surface concentrations.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Nora Mettig, Mark Weber, Alexei Rozanov, Carlo Arosio, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Richard Querel, Thierry Leblanc, Sophie Godin-Beekmann, Rigel Kivi, and Matthew B. Tully
Atmos. Meas. Tech., 14, 6057–6082, https://doi.org/10.5194/amt-14-6057-2021, https://doi.org/10.5194/amt-14-6057-2021, 2021
Short summary
Short summary
TROPOMI is a nadir-viewing satellite that has observed global atmospheric trace gases at unprecedented spatial resolution since 2017. The retrieval of ozone profiles with high accuracy has been demonstrated using the TOPAS (Tikhonov regularised Ozone Profile retrievAl with SCIATRAN) algorithm and applying appropriate spectral corrections to TROPOMI UV data. Ozone profiles from TROPOMI were compared to ozonesonde and lidar profiles, showing an agreement to within 5 % in the stratosphere.
René Stübi, Herbert Schill, Jörg Klausen, Eliane Maillard Barras, and Alexander Haefele
Atmos. Meas. Tech., 14, 5757–5769, https://doi.org/10.5194/amt-14-5757-2021, https://doi.org/10.5194/amt-14-5757-2021, 2021
Short summary
Short summary
In the first half of the 20th century, Prof. Dobson developed an instrument to measure the ozone column. Around 50 of these Dobson instruments, manufactured in the second half of the 20th century, are still used today to monitor the state of the ozone layer. Started in 1926, the Arosa series was, until recently, based on manually operated Dobsons. To ensure its future operation, a fully automated version of the Dobson has been developed. This well-working automated system is described here.
René Stübi, Herbert Schill, Eliane Maillard Barras, Jörg Klausen, and Alexander Haefele
Atmos. Meas. Tech., 14, 4203–4217, https://doi.org/10.5194/amt-14-4203-2021, https://doi.org/10.5194/amt-14-4203-2021, 2021
Short summary
Short summary
Total ozone column has been measured since 1926 in the Swiss Alps station Arosa. These worldwide series are based on Dobson sun spectrophotometers. To assure the continuity of these series, a two-stage project was realized at MeteoSwiss: first, Dobson instruments were automated, and then parallel measurements between Arosa and a nearby site in Davos were carried out. The analysis of the data of the manual-to-automated transition and coincident data between the two sites are presented here.
Robin Wing, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Thomas J. McGee, John T. Sullivan, Sergey Khaykin, Grant Sumnicht, and Laurence Twigg
Atmos. Meas. Tech., 14, 3773–3794, https://doi.org/10.5194/amt-14-3773-2021, https://doi.org/10.5194/amt-14-3773-2021, 2021
Short summary
Short summary
This paper is a validation study of the newly installed ozone and temperature lidar at Hohenpeißenberg, Germany. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), lidar stations are routinely compared against a travelling reference lidar operated by NASA. We have also attempted to assess potential biases in the reference lidar by comparing the results of this validation campaign with a previous campaign at the Observatoire de Haute-Provence, France.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Sabino Piazzolla, Gabriele Pfister, Rajesh Kumar, Carl Drews, Simone Tilmes, Louisa Emmons, and Matthew Johnson
Atmos. Chem. Phys., 21, 6129–6153, https://doi.org/10.5194/acp-21-6129-2021, https://doi.org/10.5194/acp-21-6129-2021, 2021
Short summary
Short summary
The tropospheric ozone lidar at the JPL Table Mountain Facility (TMF) was used to investigate the impact of Los Angeles (LA) Basin pollution transport and stratospheric intrusions in the planetary boundary layer on the San Gabriel Mountains. The results of this study indicate a dominant role of the LA Basin pollution on days when high ozone levels were observed at TMF (March–October period).
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Giovanni Martucci, Francisco Navas-Guzmán, Ludovic Renaud, Gonzague Romanens, S. Mahagammulla Gamage, Maxime Hervo, Pierre Jeannet, and Alexander Haefele
Atmos. Meas. Tech., 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021, https://doi.org/10.5194/amt-14-1333-2021, 2021
Short summary
Short summary
This article presents a validation of 1.5 years of pure rotational temperature data measured by the Raman lidar RALMO installed at the MeteoSwiss station of Payerne. The statistical results are in terms of bias and standard deviation with respect to two well-established radiosounding systems. The statistics are divided into daytime (bias = 0.28 K, SD = 0.62±0.03 K) and nighttime (bias = 0.29 K, SD = 0.66±0.06 K). The lidar temperature profiles are applied to cloud supersaturation studies.
Simone Brunamonti, Giovanni Martucci, Gonzague Romanens, Yann Poltera, Frank G. Wienhold, Maxime Hervo, Alexander Haefele, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 21, 2267–2285, https://doi.org/10.5194/acp-21-2267-2021, https://doi.org/10.5194/acp-21-2267-2021, 2021
Short summary
Short summary
Lidar (light detection and ranging) is a class of remote-sensing instruments that are widely used for the monitoring of aerosol properties in the lower levels of the atmosphere, yet their measurements are affected by several sources of uncertainty. Here we present the first comparison of two lidar systems against a fully independent instrument carried by meteorological balloons. We show that both lidars achieve a good agreement with the high-precision balloon measurements up to 6 km altitude.
Lisa Klanner, Katharina Höveler, Dina Khordakova, Matthias Perfahl, Christian Rolf, Thomas Trickl, and Hannes Vogelmann
Atmos. Meas. Tech., 14, 531–555, https://doi.org/10.5194/amt-14-531-2021, https://doi.org/10.5194/amt-14-531-2021, 2021
Short summary
Short summary
The importance of water vapour as the most influential greenhouse gas and for air composition calls for detailed investigations. The details of the highly inhomogeneous distribution of water vapour can be determined with lidar, the very low concentrations at high altitudes imposing a major challenge. An existing water-vapour lidar in the Bavarian Alps was recently complemented by a powerful Raman lidar that provides water vapour up to 20 km and temperature up to 90 km within just 1 h.
Ghazal Farhani, Robert J. Sica, and Mark Joseph Daley
Atmos. Meas. Tech., 14, 391–402, https://doi.org/10.5194/amt-14-391-2021, https://doi.org/10.5194/amt-14-391-2021, 2021
Short summary
Short summary
While it is relatively straightforward to automate the processing of lidar signals, it is difficult to automatically preprocess the measurements to distinguish between
goodand
badscans. It is easy to train humans to perform the task; however, considering the growing number of measurements, it is a time-consuming, on-going process. We have tested some machine learning algorithms for lidar signal classification and had success with both supervised and unsupervised methods.
Thomas Trickl, Helmuth Giehl, Frank Neidl, Matthias Perfahl, and Hannes Vogelmann
Atmos. Meas. Tech., 13, 6357–6390, https://doi.org/10.5194/amt-13-6357-2020, https://doi.org/10.5194/amt-13-6357-2020, 2020
Short summary
Short summary
Lidar sounding of ozone and other atmospheric constituents has proved to be an invaluable tool for atmospheric studies. The ozone lidar systems developed at Garmisch-Partenkirchen have reached an accuracy level almost matching that of in situ sensors. Since the late 1990s numerous important scientific discoveries have been made, such as the first observation of intercontinental transport of ozone and the very high occurrence of intrusions of stratospheric air into the troposphere.
Robin Wing, Wolfgang Steinbrecht, Sophie Godin-Beekmann, Thomas J. McGee, John T. Sullivan, Grant Sumnicht, Gérard Ancellet, Alain Hauchecorne, Sergey Khaykin, and Philippe Keckhut
Atmos. Meas. Tech., 13, 5621–5642, https://doi.org/10.5194/amt-13-5621-2020, https://doi.org/10.5194/amt-13-5621-2020, 2020
Short summary
Short summary
A lidar intercomparison campaign was conducted over a period of 28 nights at Observatoire de Haute-Provence (OHP) in 2017 and 2018. The objective is to validate the ozone and temperature profiles at OHP to ensure the quality of data submitted to the NDACC database remains high. A mobile reference lidar operated by NASA was transported to OHP and operated concurrently with the French lidars. Agreement for ozone was better than 5 % between 20 and 40 km, and temperatures were equal within 3 K.
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020, https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary
Short summary
Ozone lidar is a state-of-the-art remote-sensing instrument to measure atmospheric ozone concentrations with high spatiotemporal resolution. In this study, we show that an ozone lidar can also provide reliable aerosol measurements through intercomparison with colocated aerosol lidar observations.
Stephanie Evan, Jerome Brioude, Karen Rosenlof, Sean M. Davis, Holger Vömel, Damien Héron, Françoise Posny, Jean-Marc Metzger, Valentin Duflot, Guillaume Payen, Hélène Vérèmes, Philippe Keckhut, and Jean-Pierre Cammas
Atmos. Chem. Phys., 20, 10565–10586, https://doi.org/10.5194/acp-20-10565-2020, https://doi.org/10.5194/acp-20-10565-2020, 2020
Short summary
Short summary
The role of deep convection in the southwest Indian Ocean (the 3rd most active tropical cyclone basin) on the composition of the tropical tropopause layer (TTL) and the climate system is less understood due to scarce observations. Balloon-borne lidar and satellite measurements in the southwest Indian Ocean were used to study tropical cyclones' influence on TTL composition. This study compares the impact of a tropical storm and cyclone on the humidification of the TTL over the SW Indian Ocean.
Ruud J. Dirksen, Greg E. Bodeker, Peter W. Thorne, Andrea Merlone, Tony Reale, Junhong Wang, Dale F. Hurst, Belay B. Demoz, Tom D. Gardiner, Bruce Ingleby, Michael Sommer, Christoph von Rohden, and Thierry Leblanc
Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020, https://doi.org/10.5194/gi-9-337-2020, 2020
Short summary
Short summary
This paper describes GRUAN's strategy for a network-wide change of the operational radiosonde from Vaisala RS92 to RS41. GRUAN's main goal is to provide long-term data records that are free of inhomogeneities due to instrumental effects, which requires proper change management. The approach is to fully characterize differences between the two radiosonde types using laboratory tests, twin soundings, and ancillary data, as well as by drawing from the various fields of expertise available in GRUAN.
Shannon Hicks-Jalali, Robert J. Sica, Giovanni Martucci, Eliane Maillard Barras, Jordan Voirin, and Alexander Haefele
Atmos. Chem. Phys., 20, 9619–9640, https://doi.org/10.5194/acp-20-9619-2020, https://doi.org/10.5194/acp-20-9619-2020, 2020
Short summary
Short summary
We have calculated an 11.5-year water vapour climatology using the Raman Lidar for Meteorological Observations (RALMO), located in Payerne, Switzerland. The climatology shows that the highest water vapour concentrations are in the summer months and the lowest in the winter months. We present for the first time height-resolved water vapour trends, which show that water vapour increases specific humidity by between 5 % and 15 % per decade depending on the altitude.
Travis N. Knepp, Larry Thomason, Marilee Roell, Robert Damadeo, Kevin Leavor, Thierry Leblanc, Fernando Chouza, Sergey Khaykin, Sophie Godin-Beekmann, and David Flittner
Atmos. Meas. Tech., 13, 4261–4276, https://doi.org/10.5194/amt-13-4261-2020, https://doi.org/10.5194/amt-13-4261-2020, 2020
Short summary
Short summary
Two common measurements that represent atmospheric aerosol loading are the backscatter and extinction coefficients. Measuring backscatter and extinction coefficients requires different viewing geometries and fundamentally different instrument systems. Further, these coefficients are not directly comparable. We present an algorithm to convert SAGE-observed extinction coefficients to backscatter coefficients for intercomparison with lidar backscatter products, followed by evaluation of the method.
Eliane Maillard Barras, Alexander Haefele, Liliane Nguyen, Fiona Tummon, William T. Ball, Eugene V. Rozanov, Rolf Rüfenacht, Klemens Hocke, Leonie Bernet, Niklaus Kämpfer, Gerald Nedoluha, and Ian Boyd
Atmos. Chem. Phys., 20, 8453–8471, https://doi.org/10.5194/acp-20-8453-2020, https://doi.org/10.5194/acp-20-8453-2020, 2020
Short summary
Short summary
To determine the part of the variability of the long-term ozone profile trends coming from measurement timing, we estimate microwave radiometer trends for each hour of the day with a multiple linear regression model. The variation in the trend with local solar time is not significant at the 95 % confidence level either in the stratosphere or in the low mesosphere. We conclude that systematic sampling differences between instruments cannot explain significant differences in trend estimates.
Fernando Chouza, Thierry Leblanc, John Barnes, Mark Brewer, Patrick Wang, and Darryl Koon
Atmos. Chem. Phys., 20, 6821–6839, https://doi.org/10.5194/acp-20-6821-2020, https://doi.org/10.5194/acp-20-6821-2020, 2020
Sergey M. Khaykin, Alain Hauchecorne, Robin Wing, Philippe Keckhut, Sophie Godin-Beekmann, Jacques Porteneuve, Jean-Francois Mariscal, and Jerome Schmitt
Atmos. Meas. Tech., 13, 1501–1516, https://doi.org/10.5194/amt-13-1501-2020, https://doi.org/10.5194/amt-13-1501-2020, 2020
Short summary
Short summary
The article presents a powerful atmospheric instrument based on a laser radar (lidar), capable of measuring horizontal wind velocity at a wide range of altitudes. In this study, we evaluate the performance of the wind lidar at Observatoire de Haute-Provence and demonstrate the application of its measurements for studies of atmospheric dynamical processes. Finally, we present an example of early validation of the ESA Aeolus space-borne wind lidar using its ground-based predecessor.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, and Michael Sprenger
Atmos. Chem. Phys., 20, 243–266, https://doi.org/10.5194/acp-20-243-2020, https://doi.org/10.5194/acp-20-243-2020, 2020
Short summary
Short summary
Ozone transfer from the stratosphere to the troposphere seems to to have grown over the past decade, parallel to global warming. Lidar measurements, carried out in Garmisch-Partenkirchen, Germany, between 2007 and 2016 show a considerable stratospheric influence in the free troposphere over these sites, with observations of stratospheric layers in the troposphere on 84 % of the measurement days. This high fraction is almost reached also in North America, but frequently not throughout the year.
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, https://doi.org/10.5194/acp-19-15183-2019, 2019
Shayamila Mahagammulla Gamage, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 12, 5801–5816, https://doi.org/10.5194/amt-12-5801-2019, https://doi.org/10.5194/amt-12-5801-2019, 2019
Short summary
Short summary
We present a new method for retrieving temperature from pure rotational Raman (PRR) lidar measurements using an optimal estimation method. We show that the error due to calibration can be reduced significantly using our method. The new method is tested on PRR temperature measurements from the MeteoSwiss Raman Lidar for Meteorological Observations system in different sky conditions. The next step is to assimilate the temperature profiles into models to help improve weather forecasts.
Francisco Navas-Guzmán, Giovanni Martucci, Martine Collaud Coen, María José Granados-Muñoz, Maxime Hervo, Michael Sicard, and Alexander Haefele
Atmos. Chem. Phys., 19, 11651–11668, https://doi.org/10.5194/acp-19-11651-2019, https://doi.org/10.5194/acp-19-11651-2019, 2019
Short summary
Short summary
The present study demonstrates the capability of a Raman lidar to monitor aerosol hygroscopic processes. The results showed a higher hygroscopicity and wavelength dependency for smoke particles than for mineral dust. The higher sensitivity of the shortest wavelength to hygroscopic growth found for smoke particles was qualitatively reproduced using Mie simulations. The impact of aerosol hygroscopicity on the Earth's radiative balance has been evaluated using a radiative transfer model.
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
Pablo Facundo Orte, Elian Wolfram, Jacobo Salvador, Akira Mizuno, Nelson Bègue, Hassan Bencherif, Juan Lucas Bali, Raúl D'Elia, Andrea Pazmiño, Sophie Godin-Beekmann, Hirofumi Ohyama, and Jonathan Quiroga
Ann. Geophys., 37, 613–629, https://doi.org/10.5194/angeo-37-613-2019, https://doi.org/10.5194/angeo-37-613-2019, 2019
Short summary
Short summary
We analysed an event of short-term ozone variability due to the passage of the polar vortex over Río Gallegos (southern Argentina) with the aim of highlighting the capability of a millimetre-wave radiometer to observe ozone in the stratosphere and the low mesosphere with a high temporal resolution. It is particularly important in this subpolar region due to the high variation that this gas can suffer as a consequence of the passage of the polar vortex and the ozone hole during spring.
Ali Jalali, Shannon Hicks-Jalali, Robert J. Sica, Alexander Haefele, and Thomas von Clarmann
Atmos. Meas. Tech., 12, 3943–3961, https://doi.org/10.5194/amt-12-3943-2019, https://doi.org/10.5194/amt-12-3943-2019, 2019
Short summary
Short summary
This paper builds upon the work in von Clarmann and Grabowski (2007) concerning the a priori profile influence in the optimal estimation method applied to active remote sensing measurements, with examples given for lidar retrievals of temperature and water vapor mixing ratio. The optimal estimation method is a new technique for many active remote sensing researchers. This study gives insight into understanding the effect on retrievals of the a priori information.
Shannon Hicks-Jalali, Robert J. Sica, Alexander Haefele, and Giovanni Martucci
Atmos. Meas. Tech., 12, 3699–3716, https://doi.org/10.5194/amt-12-3699-2019, https://doi.org/10.5194/amt-12-3699-2019, 2019
Short summary
Short summary
Water vapour trend calculations with lidars require rigorous calibrations. Here, we improve water vapour lidar calibrations using GCOS Reference Upper Air Network (GRUAN) radiosondes and a new trajectory method. The trajectory method improved the lidar calibration and more consistently agreed with the radiosonde measurement compared to the traditional method. Using GRUAN radiosondes enabled the calculation, for the first time, of a complete uncertainty budget of the calibration constant.
Ghazal Farhani, Robert J. Sica, Sophie Godin-Beekmann, and Alexander Haefele
Atmos. Meas. Tech., 12, 2097–2111, https://doi.org/10.5194/amt-12-2097-2019, https://doi.org/10.5194/amt-12-2097-2019, 2019
Short summary
Short summary
This paper presents a new application of the optimal estimation method (OEM) for the retrieval of ozone density profiles from DIAL measurements. The OEM results show excellent agreement with coincident ozonesonde measurements, with improved resolution over the traditional technique. The method also provides averaging kernels (facilitating comparison with other instruments), the vertical resolution of the retrieval, and a complete random and systematic uncertainty budget.
Leonie Bernet, Thomas von Clarmann, Sophie Godin-Beekmann, Gérard Ancellet, Eliane Maillard Barras, René Stübi, Wolfgang Steinbrecht, Niklaus Kämpfer, and Klemens Hocke
Atmos. Chem. Phys., 19, 4289–4309, https://doi.org/10.5194/acp-19-4289-2019, https://doi.org/10.5194/acp-19-4289-2019, 2019
Short summary
Short summary
After severe ozone depletion, upper stratospheric ozone has started to recover in recent years. However, stratospheric ozone trends from various data sets still show differences. To partly explain such differences, we investigate how the trends are affected by different factors, for example, anomalies in the data. We show how trend estimates can be improved by considering such anomalies and present updated stratospheric ozone trends from ground data measured in central Europe.
Christopher Perro, Thomas J. Duck, Glen Lesins, Kimberly Strong, Penny M. Rowe, James R. Drummond, and Robert J. Sica
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-381, https://doi.org/10.5194/amt-2018-381, 2019
Publication in AMT not foreseen
Short summary
Short summary
A satellite retrieval for water vapour column was adapted for use over different surfaces in the wintertime Arctic. The retrieval was validated at multiple locations where there was excellent agreement. Reanalyses were found to be 10–15 % drier compared to our water vapour retrieval. Reanalyses represent the present day understanding of the atmosphere so this discrepancy between reanalyses and our retrieval could have implications for the current understanding of the climate.
Fernando Chouza, Thierry Leblanc, Mark Brewer, and Patrick Wang
Atmos. Meas. Tech., 12, 569–583, https://doi.org/10.5194/amt-12-569-2019, https://doi.org/10.5194/amt-12-569-2019, 2019
Ye Yuan, Ludwig Ries, Hannes Petermeier, Thomas Trickl, Michael Leuchner, Cédric Couret, Ralf Sohmer, Frank Meinhardt, and Annette Menzel
Atmos. Chem. Phys., 19, 999–1012, https://doi.org/10.5194/acp-19-999-2019, https://doi.org/10.5194/acp-19-999-2019, 2019
Short summary
Short summary
In this study, we presented a time series analysis of a 36-year composite CO2 measurement record at Mount Zugspitze in Germany. Compared with other GAW observatories, Zugspitze proves to be a highly suitable site for monitoring the background levels of air components using proper data selection procedures. Detailed analyses of long-term trends and seasonality, as well as a thorough study of combined weekly periodicity and diurnal cycles, were conducted.
Matthias Wiegner, Ina Mattis, Margit Pattantyús-Ábrahám, Juan Antonio Bravo-Aranda, Yann Poltera, Alexander Haefele, Maxime Hervo, Ulrich Görsdorf, Ronny Leinweber, Josef Gasteiger, Martial Haeffelin, Frank Wagner, Jan Cermak, Katerina Komínková, Mike Brettle, Christoph Münkel, and Kornelia Pönitz
Atmos. Meas. Tech., 12, 471–490, https://doi.org/10.5194/amt-12-471-2019, https://doi.org/10.5194/amt-12-471-2019, 2019
Short summary
Short summary
Many ceilometers are influenced by water vapor absorption in the spectral range around 910 nm. Thus, a correction is required to retrieve aerosol optical properties. Validation of this correction scheme was performed in the framework of CeiLinEx2015 for several ceilometers with good agreement for Vaisala's CL51 ceilometer. For future applications we recommend monitoring the emitted wavelength and providing
darkmeasurements on a regular basis to be able to correct for signal artifacts.
Kevin B. Strawbridge, Michael S. Travis, Bernard J. Firanski, Jeffrey R. Brook, Ralf Staebler, and Thierry Leblanc
Atmos. Meas. Tech., 11, 6735–6759, https://doi.org/10.5194/amt-11-6735-2018, https://doi.org/10.5194/amt-11-6735-2018, 2018
Short summary
Short summary
Environment and Climate Change Canada has recently developed a fully autonomous, mobile lidar system to simultaneously measure the vertical profile of tropospheric ozone, aerosol and water vapor from near the ground to altitudes reaching 10–15 km. These atmospheric constituents play an important role in climate, air quality, and human and ecosystem health. Using an autonomous multi-lidar approach provides a continuous dataset rich in information for atmospheric process studies.
Robin Wing, Alain Hauchecorne, Philippe Keckhut, Sophie Godin-Beekmann, Sergey Khaykin, and Emily M. McCullough
Atmos. Meas. Tech., 11, 6703–6717, https://doi.org/10.5194/amt-11-6703-2018, https://doi.org/10.5194/amt-11-6703-2018, 2018
Short summary
Short summary
We have compared 2433 nights of OHP lidar temperatures (2002–2018) to temperatures derived from the satellites SABER and MLS. We have found a winter stratopause cold bias in the satellite measurements with respect to the lidar (−6 K for SABER and −17 K for MLS), a summer mesospheric warm bias for SABER (6 K near 60 km), and a vertically structured bias for MLS (−4 to 4 K). We have corrected the satellite data based on the lidar-determined stratopause height and found a significant improvement.
Thierry Leblanc, Mark A. Brewer, Patrick S. Wang, Maria Jose Granados-Muñoz, Kevin B. Strawbridge, Michael Travis, Bernard Firanski, John T. Sullivan, Thomas J. McGee, Grant K. Sumnicht, Laurence W. Twigg, Timothy A. Berkoff, William Carrion, Guillaume Gronoff, Ali Aknan, Gao Chen, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Matthew S. Johnson, Shi Kuang, and Michael J. Newchurch
Atmos. Meas. Tech., 11, 6137–6162, https://doi.org/10.5194/amt-11-6137-2018, https://doi.org/10.5194/amt-11-6137-2018, 2018
Short summary
Short summary
This article reviews the capability of five ozone lidars from the North American TOLNet lidar network. These ground-based laser remote-sensing instruments typically measure ozone in the troposphere with a precision of 5 % and vertical and time resolutions of 100 m and 10 min, respectively. Understanding ozone variability at high spatiotemporal scales is essential for monitoring air quality, human health, and climate. The article shows that the TOLNet lidars are very well suited for this purpose.
Ali Jalali, Robert J. Sica, and Alexander Haefele
Atmos. Meas. Tech., 11, 6043–6058, https://doi.org/10.5194/amt-11-6043-2018, https://doi.org/10.5194/amt-11-6043-2018, 2018
Short summary
Short summary
We use 16 years of lidar (laser radar) temperature measurements of the middle atmosphere to form a climatology for use in studying atmospheric temperature change using an optimal estimation method (OEM). Using OEM allows us to calculate a complete systematic and random uncertainty budget and allows for an additional 10–15 km in altitude for the measurement to be used, improving our ability to detect atmospheric temperature change up to 100 km of altitude.
Robin Wing, Alain Hauchecorne, Philippe Keckhut, Sophie Godin-Beekmann, Sergey Khaykin, Emily M. McCullough, Jean-François Mariscal, and Éric d'Almeida
Atmos. Meas. Tech., 11, 5531–5547, https://doi.org/10.5194/amt-11-5531-2018, https://doi.org/10.5194/amt-11-5531-2018, 2018
Short summary
Short summary
The objective of this work is to minimize the errors at the highest altitudes of a lidar temperature profile which arise due to background estimation and a priori choice. The systematic method in this paper has the effect of cooling the temperatures at the top of a lidar profile by up to 20 K – bringing them into better agreement with satellite temperatures. Following the description of the algorithm is a 20-year cross-validation of two lidars which establishes the stability of the technique.
Arno Keppens, Jean-Christopher Lambert, José Granville, Daan Hubert, Tijl Verhoelst, Steven Compernolle, Barry Latter, Brian Kerridge, Richard Siddans, Anne Boynard, Juliette Hadji-Lazaro, Cathy Clerbaux, Catherine Wespes, Daniel R. Hurtmans, Pierre-François Coheur, Jacob C. A. van Peet, Ronald J van der A, Katerina Garane, Maria Elissavet Koukouli, Dimitris S. Balis, Andy Delcloo, Rigel Kivi, Réné Stübi, Sophie Godin-Beekmann, Michel Van Roozendael, and Claus Zehner
Atmos. Meas. Tech., 11, 3769–3800, https://doi.org/10.5194/amt-11-3769-2018, https://doi.org/10.5194/amt-11-3769-2018, 2018
Short summary
Short summary
This work, performed at the Royal Belgian Institute for Space Aeronomy and the second in a series of four Ozone_cci papers, reports for the first time on data content studies, information content studies, and comparisons with co-located ground-based reference observations for all 13 nadir ozone profile data products that are part of the Climate Research Data Package (CRDP) on atmospheric ozone of the European Space Agency's Climate Change Initiative.
Matthew S. Johnson, Xiong Liu, Peter Zoogman, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, and Thomas McGee
Atmos. Meas. Tech., 11, 3457–3477, https://doi.org/10.5194/amt-11-3457-2018, https://doi.org/10.5194/amt-11-3457-2018, 2018
Short summary
Short summary
This research was conducted to determine the impact of multiple a priori ozone (O3) profile products on Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite retrievals. It was determined that non-climatological model predictions, in particular those from a chemical transport model, when applied as the a priori profile improved the accuracy of TEMPO tropospheric O3 retrievals in comparison to the TB-Clim product that is currently suggested for use in the TEMPO retrieval algorithm.
Andrea Pazmiño, Sophie Godin-Beekmann, Alain Hauchecorne, Chantal Claud, Sergey Khaykin, Florence Goutail, Elian Wolfram, Jacobo Salvador, and Eduardo Quel
Atmos. Chem. Phys., 18, 7557–7572, https://doi.org/10.5194/acp-18-7557-2018, https://doi.org/10.5194/acp-18-7557-2018, 2018
Short summary
Short summary
The article mentions several symptoms of recovery. Multilinear regression analysis provides significant increase since 2001 of total ozone in Sept and during the period of maximum ozone destruction (15 Sept–15 Oct). There is significant decrease of ozone mass deficit for the same periods, decrease of relative area of total ozone values lower than 175 DU within the vortex (1 Sept–15 Oct since 2010) and a delay in the occurrence of ozone levels below 125 DU since 2005 for the 1 Sept–15 Oct period.
Christos Zerefos, John Kapsomenakis, Kostas Eleftheratos, Kleareti Tourpali, Irina Petropavlovskikh, Daan Hubert, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Stacey Frith, Viktoria Sofieva, and Birgit Hassler
Atmos. Chem. Phys., 18, 6427–6440, https://doi.org/10.5194/acp-18-6427-2018, https://doi.org/10.5194/acp-18-6427-2018, 2018
Short summary
Short summary
We point out the representativeness of single lidar stations for zonally averaged ozone profile variations in the middle/upper stratosphere. We examine the contribution of chemistry and natural proxies to ozone profile trends. Above 10 hPa an “inflection point” between 1997–99 marks the end of significant negative ozone trends, followed by a recent period of positive ozone change in 1998–2015. Below 15 hPa the pre-1998 negative ozone trends tend to become insignificant as we move to 2015.
Martine De Mazière, Anne M. Thompson, Michael J. Kurylo, Jeannette D. Wild, Germar Bernhard, Thomas Blumenstock, Geir O. Braathen, James W. Hannigan, Jean-Christopher Lambert, Thierry Leblanc, Thomas J. McGee, Gerald Nedoluha, Irina Petropavlovskikh, Gunther Seckmeyer, Paul C. Simon, Wolfgang Steinbrecht, and Susan E. Strahan
Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018, https://doi.org/10.5194/acp-18-4935-2018, 2018
Short summary
Short summary
This paper serves as an introduction to the special issue "Twenty-five years of operations of the Network for the Detection of Atmospheric Composition Change (NDACC)". It describes the origins of the network, its actual status, and some perspectives for its future evolution in the context of atmospheric sciences.
Ye Yuan, Ludwig Ries, Hannes Petermeier, Martin Steinbacher, Angel J. Gómez-Peláez, Markus C. Leuenberger, Marcus Schumacher, Thomas Trickl, Cedric Couret, Frank Meinhardt, and Annette Menzel
Atmos. Meas. Tech., 11, 1501–1514, https://doi.org/10.5194/amt-11-1501-2018, https://doi.org/10.5194/amt-11-1501-2018, 2018
Short summary
Short summary
This paper presents a novel statistical method, ADVS, for baseline selection of representative CO2 data at elevated mountain measurement stations. It provides insights on how data processing techniques are critical for measurements and data analyses. Compared with other statistical methods, our method appears to be a good option as a generalized approach with improved comparability, which is important for research on measurement site characteristics and comparisons between stations.
Marcelo de Paula Corrêa, Sophie Godin-Beekmann, Fabrina Bolzan Martins, Kátia Mendes, Martial Haeffelin, Miguel Rivas, and Elisa Rojas
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-466, https://doi.org/10.5194/amt-2017-466, 2018
Revised manuscript has not been submitted
Short summary
Short summary
This paper provides a very simple method for UV index estimation from PAR measurements. These latter are generally performed by cheaper instruments and commonly found in any ordinary meteorological station. A large dataset collected in South America and Europe was used to test this method and thes results are comparable to the instrumental errors. For this reason, the method is a useful tool for UV index evaluations in regions lacking adequate instrumentation.
Emily M. McCullough, Robert J. Sica, James R. Drummond, Graeme J. Nott, Christopher Perro, and Thomas J. Duck
Atmos. Meas. Tech., 11, 861–879, https://doi.org/10.5194/amt-11-861-2018, https://doi.org/10.5194/amt-11-861-2018, 2018
Short summary
Short summary
Measuring the phase (liquid and ice) of Arctic clouds is essential for understanding the changing global climate. Using a lidar, two polarized signals are usually needed. At CRL lidar, one of these signals is small, so phase measurements have low resolution. Another method can use a large unpolarized signal in place of the small polarized signal. We show how to use the original low-resolution measurement to calibrate the new high-resolution method. At CRL, this gives 20 times higher resolution.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, Hans-Eckhart Scheel, and Michael Sprenger
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1192, https://doi.org/10.5194/acp-2017-1192, 2018
Revised manuscript not accepted
Kévin Lamy, Thierry Portafaix, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Béatrice Morel, Andrea Pazmino, Jean Marc Metzger, Frédérique Auriol, Christine Deroo, Valentin Duflot, Philippe Goloub, and Charles N. Long
Atmos. Chem. Phys., 18, 227–246, https://doi.org/10.5194/acp-18-227-2018, https://doi.org/10.5194/acp-18-227-2018, 2018
Short summary
Short summary
This work focuses on solar radiation in the tropics, more specifically on ultraviolet radiation. From ground-based and satellite observations of the chemical state of the atmosphere, we were able to model the ultraviolet measurements measured in the southern tropics with a very small error. This is a first step to modelling and predicting future ultraviolet levels in the tropics from chemistry-climate projections.
Nelson Bègue, Damien Vignelles, Gwenaël Berthet, Thierry Portafaix, Guillaume Payen, Fabrice Jégou, Hassan Benchérif, Julien Jumelet, Jean-Paul Vernier, Thibaut Lurton, Jean-Baptiste Renard, Lieven Clarisse, Vincent Duverger, Françoise Posny, Jean-Marc Metzger, and Sophie Godin-Beekmann
Atmos. Chem. Phys., 17, 15019–15036, https://doi.org/10.5194/acp-17-15019-2017, https://doi.org/10.5194/acp-17-15019-2017, 2017
Short summary
Short summary
The space–time evolutions of the Calbuco plume are investigated by combining satellite, in situ aerosol counting and lidar observations, and a numerical model. All the data at Reunion Island reveal a twofold increase in the amount of aerosol with respect to the values observed before the eruption. The dynamic context has favored the spread of the plume exclusively in the Southern Hemisphere. This study highlights the role played by dynamical barriers in the transport of atmospheric species.
Francisco Navas-Guzmán, Niklaus Kämpfer, Franziska Schranz, Wolfgang Steinbrecht, and Alexander Haefele
Atmos. Chem. Phys., 17, 14085–14104, https://doi.org/10.5194/acp-17-14085-2017, https://doi.org/10.5194/acp-17-14085-2017, 2017
Short summary
Short summary
The paper presents assessment of the stratospheric measurements of a relatively new temperature radiometer (TEMPERA) at 60 GHz. The temperature profiles from TEMPERA have been compared with measurements from different techniques such as radiosondes, MLS satellite and Rayleigh lidar and with the temperature outputs from the SD-WACCM model. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes and comparisons, proving the good performance of TEMPERA.
Emily M. McCullough, Robert J. Sica, James R. Drummond, Graeme Nott, Christopher Perro, Colin P. Thackray, Jason Hopper, Jonathan Doyle, Thomas J. Duck, and Kaley A. Walker
Atmos. Meas. Tech., 10, 4253–4277, https://doi.org/10.5194/amt-10-4253-2017, https://doi.org/10.5194/amt-10-4253-2017, 2017
Short summary
Short summary
CRL lidar in the Canadian High Arctic uses lasers and a telescope to study polar clouds, essential for understanding the changing global climate. Hardware added to CRL allows it to measure the polarization of returned laser light, indicating whether cloud particles are liquid or frozen. Calibrations show that traditional analysis methods work well, although CRL was not originally set up to make this type of measurement. CRL can now measure cloud particle phase every 5 min, every 37.5 m, 24h/day.
Nelson Bègue, Nkanyiso Mbatha, Hassan Bencherif, René Tato Loua, Venkataraman Sivakumar, and Thierry Leblanc
Ann. Geophys., 35, 1177–1194, https://doi.org/10.5194/angeo-35-1177-2017, https://doi.org/10.5194/angeo-35-1177-2017, 2017
Short summary
Short summary
In this investigation a statistical analysis of the characteristics of mesospheric inversion layers (MILs) over tropical regions is presented. This study involves the analysis of 16 years of lidar observations recorded at Reunion (20.8° S, 55.5° E) and 21 years of lidar observations recorded at Mauna Loa (19.5° N, 155.6° W) together with SABER observations at these two locations. Results presented in this study confirm that SAO contributes to the formation of MILs over the tropical region.
Francesco De Angelis, Domenico Cimini, Ulrich Löhnert, Olivier Caumont, Alexander Haefele, Bernhard Pospichal, Pauline Martinet, Francisco Navas-Guzmán, Henk Klein-Baltink, Jean-Charles Dupont, and James Hocking
Atmos. Meas. Tech., 10, 3947–3961, https://doi.org/10.5194/amt-10-3947-2017, https://doi.org/10.5194/amt-10-3947-2017, 2017
Short summary
Short summary
Modern data assimilation systems require knowledge of the typical differences between observations and model background (O–B). This work illustrates a 1-year O–B analysis for ground-based microwave radiometer (MWR) observations in clear-sky conditions for a prototype network of six MWRs in Europe. Observations are MWR brightness temperatures (TB). Background profiles extracted from the output of a convective-scale model are used to simulate TB through the radiative transfer model RTTOV-gb.
Lihua Wang, Michael J. Newchurch, Raul J. Alvarez II, Timothy A. Berkoff, Steven S. Brown, William Carrion, Russell J. De Young, Bryan J. Johnson, Rene Ganoe, Guillaume Gronoff, Guillaume Kirgis, Shi Kuang, Andrew O. Langford, Thierry Leblanc, Erin E. McDuffie, Thomas J. McGee, Denis Pliutau, Christoph J. Senff, John T. Sullivan, Grant Sumnicht, Laurence W. Twigg, and Andrew J. Weinheimer
Atmos. Meas. Tech., 10, 3865–3876, https://doi.org/10.5194/amt-10-3865-2017, https://doi.org/10.5194/amt-10-3865-2017, 2017
Short summary
Short summary
Intercomparisons have been made between three TOLNet ozone lidars and between the lidars and other ozone instruments during the 2014 DISCOVER-AQ and FRAPPÉ campaigns in Colorado. Overall, the TOLNet lidars are capable of measuring 5 min tropospheric ozone variations with accuracy better than ±15 % in terms of their vertical resolving capability and better than ±5 % in terms of their column average measurement. These results indicate very good measurement accuracy for the three TOLNet lidars.
Valentin Duflot, Jean-Luc Baray, Guillaume Payen, Nicolas Marquestaut, Francoise Posny, Jean-Marc Metzger, Bavo Langerock, Corinne Vigouroux, Juliette Hadji-Lazaro, Thierry Portafaix, Martine De Mazière, Pierre-Francois Coheur, Cathy Clerbaux, and Jean-Pierre Cammas
Atmos. Meas. Tech., 10, 3359–3373, https://doi.org/10.5194/amt-10-3359-2017, https://doi.org/10.5194/amt-10-3359-2017, 2017
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Yann Poltera, Giovanni Martucci, Martine Collaud Coen, Maxime Hervo, Lukas Emmenegger, Stephan Henne, Dominik Brunner, and Alexander Haefele
Atmos. Chem. Phys., 17, 10051–10070, https://doi.org/10.5194/acp-17-10051-2017, https://doi.org/10.5194/acp-17-10051-2017, 2017
Short summary
Short summary
We present the PathfinderTURB algorithm for the analysis of ceilometer backscatter data and the real-time detection of the vertical structure of the planetary boundary layer. PathfinderTURB has been applied to 1 year of data measured by two ceilometers operated at two Swiss stations: the Aerological Observatory of Payerne on the Swiss plateau, and the Alpine Jungfraujoch observatory. The study shows that aerosols from the boundary layer significantly influence the air measured at Jungfraujoch.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Petra Hausmann, Ralf Sussmann, Thomas Trickl, and Matthias Schneider
Atmos. Chem. Phys., 17, 7635–7651, https://doi.org/10.5194/acp-17-7635-2017, https://doi.org/10.5194/acp-17-7635-2017, 2017
Short summary
Short summary
We present FTIR soundings (2005–15) of water vapor (H2O) and its isotope ratio (δD) at Zugspitze. Significant {H2O, δD} signatures are found for intercontinental transport events and stratospheric air intrusions to central Europe using backward trajectories and validation by lidar and in situ data. Our results show that {H2O, δD} observations at Zugspitze can serve as indicators for moisture pathways and long-range-transport events, potentially impacting central European climate and air quality.
Hélène Vérèmes, Guillaume Payen, Philippe Keckhut, Valentin Duflot, Jean-Luc Baray, Jean-Pierre Cammas, Jimmy Leclair De Bellevue, Stéphanie Evan, Françoise Posny, Franck Gabarrot, Jean-Marc Metzger, Nicolas Marquestaut, Susanne Meier, Holger Vömel, and Ruud Dirksen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-32, https://doi.org/10.5194/amt-2017-32, 2017
Preprint withdrawn
Sergey M. Khaykin, Sophie Godin-Beekmann, Philippe Keckhut, Alain Hauchecorne, Julien Jumelet, Jean-Paul Vernier, Adam Bourassa, Doug A. Degenstein, Landon A. Rieger, Christine Bingen, Filip Vanhellemont, Charles Robert, Matthew DeLand, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 1829–1845, https://doi.org/10.5194/acp-17-1829-2017, https://doi.org/10.5194/acp-17-1829-2017, 2017
Short summary
Short summary
The article is devoted to the long-term evolution and variability of stratospheric aerosol, which plays an important role in climate change and the ozone layer. We use 22-year long continuous observations using laser radar soundings in southern France and satellite-based observations to distinguish between natural aerosol variability (caused by volcanic eruptions) and human-induced change in aerosol concentration. An influence of growing pollution above Asia on stratospheric aerosol is found.
Francisco Navas-Guzmán, Niklaus Kämpfer, and Alexander Haefele
Atmos. Meas. Tech., 9, 4587–4600, https://doi.org/10.5194/amt-9-4587-2016, https://doi.org/10.5194/amt-9-4587-2016, 2016
Short summary
Short summary
The paper presents the assessment of the tropospheric measurements of a new temperature radiometer (TEMPERA) at 60 GHz. The temperature profiles from TEMPERA are compared with independent in situ radiosonde measurements. The TEMPERA performance is also compared with that of a commercial microwave radiometer (HATPRO). In addition, the brightness temperatures from both microwave radiometers are compared with the ones simulated using a radiative transfer model, ARTS.
Thierry Leblanc, Robert J. Sica, Joanna A. E. van Gijsel, Sophie Godin-Beekmann, Alexander Haefele, Thomas Trickl, Guillaume Payen, and Frank Gabarrot
Atmos. Meas. Tech., 9, 4029–4049, https://doi.org/10.5194/amt-9-4029-2016, https://doi.org/10.5194/amt-9-4029-2016, 2016
Short summary
Short summary
This article prescribes two standardized formulations for the reporting of vertical resolution of lidar ozone and temperature profiles across an entire atmospheric observation network. Thanks to these standardized definitions, profiles from various instruments and techniques can be compared without ambiguity when interpreting their ability to resolve vertically fine geophysical structures.
Thierry Leblanc, Robert J. Sica, Joanna A. E. van Gijsel, Alexander Haefele, Guillaume Payen, and Gianluigi Liberti
Atmos. Meas. Tech., 9, 4079–4101, https://doi.org/10.5194/amt-9-4079-2016, https://doi.org/10.5194/amt-9-4079-2016, 2016
Short summary
Short summary
This article prescribes a standardized approach for the treatment of uncertainty in the backscatter temperature lidar data processing algorithms. The recommendations are designed to be used homogeneously across large atmospheric observation networks such as NDACC, and allow a clear understanding of the uncertainty budget of multiple lidar datasets for a large spectrum of middle atmospheric science applications (e.g., climatology, long-term trends, mesospheric tides, satellite validation).
Maria Jose Granados-Muñoz and Thierry Leblanc
Atmos. Chem. Phys., 16, 9299–9319, https://doi.org/10.5194/acp-16-9299-2016, https://doi.org/10.5194/acp-16-9299-2016, 2016
Short summary
Short summary
Tropospheric ozone DIAL measurements between 2000 and 2015 and surface ozone data from 2013 to 2015 measured at JPL Table Mountain Facility are presented for the first time. Tropospheric ozone variability and trends in the southwestern USA are analyzed observing an increasing ozone trend in the upper troposphere. The influence of the origin of air masses arriving at JPL-TMF and tropopause folds above the site on ozone vertical structure and variability are also observed.
Thomas Trickl, Hannes Vogelmann, Andreas Fix, Andreas Schäfler, Martin Wirth, Bertrand Calpini, Gilbert Levrat, Gonzague Romanens, Arnoud Apituley, Keith M. Wilson, Robert Begbie, Jens Reichardt, Holger Vömel, and Michael Sprenger
Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016, https://doi.org/10.5194/acp-16-8791-2016, 2016
Short summary
Short summary
A rather homogeneous deep stratospheric intrusion event was mapped by vertical sounding over central Europe and by model calculations along the transport path. The very low minimum H2O mixing ratios demonstrate almost negligible mixing with tropospheric air during the downward transport. The vertical distributions of O3 and aerosol were transferred from the source region to Europe without major change. A rather shallow outflow from the stratosphere was found.
Maxime Hervo, Yann Poltera, and Alexander Haefele
Atmos. Meas. Tech., 9, 2947–2959, https://doi.org/10.5194/amt-9-2947-2016, https://doi.org/10.5194/amt-9-2947-2016, 2016
Short summary
Short summary
Imperfections in a lidar's overlap function lead to artefacts in the lidar (Light Detection and Ranging) signals. These artefacts can erroneously be interpreted as an aerosol gradient or, in extreme cases, as a cloud base leading to false cloud detection. In this study an algorithm is presented to correct such artefacts.
The algorithm is completely automatic and does not require any intervention on site. It is therefore suited for use in large automatic lidar networks.
Susana Fernandez, Rolf Rüfenacht, Niklaus Kämpfer, Thierry Portafaix, Françoise Posny, and Guillaume Payen
Atmos. Chem. Phys., 16, 7531–7543, https://doi.org/10.5194/acp-16-7531-2016, https://doi.org/10.5194/acp-16-7531-2016, 2016
Short summary
Short summary
We present a new ground based microwave radiometer for campaigns, GROMOS-C. It measures the vertical distribution of ozone in the middle atmosphere by observing spectra at 110.836 GHz. The paper presents a validation campaign that took place on La Réunion Island. The ozone retrieved profiles are validated against ozone profiles from the Microwave Limb Sounder, the ozone lidar located in the observatory, ozone profiles from weekly radiosondes and with ECMWF model data.
Daan Hubert, Jean-Christopher Lambert, Tijl Verhoelst, José Granville, Arno Keppens, Jean-Luc Baray, Adam E. Bourassa, Ugo Cortesi, Doug A. Degenstein, Lucien Froidevaux, Sophie Godin-Beekmann, Karl W. Hoppel, Bryan J. Johnson, Erkki Kyrölä, Thierry Leblanc, Günter Lichtenberg, Marion Marchand, C. Thomas McElroy, Donal Murtagh, Hideaki Nakane, Thierry Portafaix, Richard Querel, James M. Russell III, Jacobo Salvador, Herman G. J. Smit, Kerstin Stebel, Wolfgang Steinbrecht, Kevin B. Strawbridge, René Stübi, Daan P. J. Swart, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Joachim Urban, Joanna A. E. van Gijsel, Roeland Van Malderen, Peter von der Gathen, Kaley A. Walker, Elian Wolfram, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 2497–2534, https://doi.org/10.5194/amt-9-2497-2016, https://doi.org/10.5194/amt-9-2497-2016, 2016
Short summary
Short summary
A more detailed understanding of satellite O3 profile data records is vital for further progress in O3 research. To this end, we made a comprehensive assessment of 14 limb/occultation profilers using ground-based reference data. The mutual consistency of satellite O3 in terms of bias, short-term variability and decadal stability is generally good over most of the stratosphere. However, we identified some exceptions that impact the quality of recently merged data sets and ozone trend assessments.
Ulla Wandinger, Volker Freudenthaler, Holger Baars, Aldo Amodeo, Ronny Engelmann, Ina Mattis, Silke Groß, Gelsomina Pappalardo, Aldo Giunta, Giuseppe D'Amico, Anatoli Chaikovsky, Fiodor Osipenko, Alexander Slesar, Doina Nicolae, Livio Belegante, Camelia Talianu, Ilya Serikov, Holger Linné, Friedhelm Jansen, Arnoud Apituley, Keith M. Wilson, Martin de Graaf, Thomas Trickl, Helmut Giehl, Mariana Adam, Adolfo Comerón, Constantino Muñoz-Porcar, Francesc Rocadenbosch, Michaël Sicard, Sergio Tomás, Diego Lange, Dhiraj Kumar, Manuel Pujadas, Francisco Molero, Alfonso J. Fernández, Lucas Alados-Arboledas, Juan Antonio Bravo-Aranda, Francisco Navas-Guzmán, Juan Luis Guerrero-Rascado, María José Granados-Muñoz, Jana Preißler, Frank Wagner, Michael Gausa, Ivan Grigorov, Dimitar Stoyanov, Marco Iarlori, Vincenco Rizi, Nicola Spinelli, Antonella Boselli, Xuan Wang, Teresa Lo Feudo, Maria Rita Perrone, Ferdinando De Tomasi, and Pasquale Burlizzi
Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, https://doi.org/10.5194/amt-9-1001-2016, 2016
Short summary
Short summary
We introduce the quality-assurance efforts of the European Aerosol Research Lidar Network (EARLINET) at instrument level. Within several campaigns, 21 EARLINET systems from 18 EARLINET stations were intercompared. A comprehensive strategy for campaign setup and data evaluation was established. The intercomparisons have reinforced our confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements and to identify major challenges for our future work.
M. Iarlori, F. Madonna, V. Rizi, T. Trickl, and A. Amodeo
Atmos. Meas. Tech., 8, 5157–5176, https://doi.org/10.5194/amt-8-5157-2015, https://doi.org/10.5194/amt-8-5157-2015, 2015
Short summary
Short summary
Smoothing filters applied on lidar profiles reduce the resolution to a value indicated as the effective resolution (ERes). Several approaches to ERes estimation are investigated. The key result is an operative ERes calculation by ready-to-use equations. The presented procedures to assess the ERes are of general validity. The ERes equations are deemed to be used in automatic tools like the Single Calculus Chain. Several filters already employed in the lidar community are also critically analyzed.
M. Sicard, G. D'Amico, A. Comerón, L. Mona, L. Alados-Arboledas, A. Amodeo, H. Baars, J. M. Baldasano, L. Belegante, I. Binietoglou, J. A. Bravo-Aranda, A. J. Fernández, P. Fréville, D. García-Vizcaíno, A. Giunta, M. J. Granados-Muñoz, J. L. Guerrero-Rascado, D. Hadjimitsis, A. Haefele, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, R. E. Mamouri, I. Mattis, F. Molero, N. Montoux, A. Muñoz, C. Muñoz Porcar, F. Navas-Guzmán, D. Nicolae, A. Nisantzi, N. Papagiannopoulos, A. Papayannis, S. Pereira, J. Preißler, M. Pujadas, V. Rizi, F. Rocadenbosch, K. Sellegri, V. Simeonov, G. Tsaknakis, F. Wagner, and G. Pappalardo
Atmos. Meas. Tech., 8, 4587–4613, https://doi.org/10.5194/amt-8-4587-2015, https://doi.org/10.5194/amt-8-4587-2015, 2015
Short summary
Short summary
In the framework of the ACTRIS summer 2012 measurement campaign (8 June–17 July 2012), EARLINET organized and performed a controlled exercise of feasibility to demonstrate its potential to perform operational, coordinated measurements and deliver products in near-real time. The paper describes the measurement protocol and discusses the delivery of real-time and near-real-time lidar-derived products.
J. T. Sullivan, T. J. McGee, T. Leblanc, G. K. Sumnicht, and L. W. Twigg
Atmos. Meas. Tech., 8, 4133–4143, https://doi.org/10.5194/amt-8-4133-2015, https://doi.org/10.5194/amt-8-4133-2015, 2015
Short summary
Short summary
This paper addresses the validation procedures for the GSFC TROPOZ DIAL retrieval algorithm and develops a primary standard for retrieval consistency and optimization within the Tropospheric Ozone Lidar Network (TOLNet). The methodology presented may be extended to most DIAL instruments, even if the atmospheric product of interest is not tropospheric ozone. The TROPOZ retrieval has been effective in retrieving ozone nearly 200m lower to the surface and has reduced the mean profile bias by 3.5%.
J. Kuttippurath, S. Godin-Beekmann, F. Lefèvre, M. L. Santee, L. Froidevaux, and A. Hauchecorne
Atmos. Chem. Phys., 15, 10385–10397, https://doi.org/10.5194/acp-15-10385-2015, https://doi.org/10.5194/acp-15-10385-2015, 2015
Short summary
Short summary
Our study finds large interannual variability in Antarctic ozone loss in the recent decade, with a number of winters showing shallow ozone holes but also with the year of the largest ozone hole in the last decades. These smaller ozone holes or ozone losses are mainly related to the year-to-year changes in dynamical processes rather than the variations in anthropogenic ozone-depleting substances (ODSs), as the change in ODS levels during the study period was very small.
N. R. P. Harris, B. Hassler, F. Tummon, G. E. Bodeker, D. Hubert, I. Petropavlovskikh, W. Steinbrecht, J. Anderson, P. K. Bhartia, C. D. Boone, A. Bourassa, S. M. Davis, D. Degenstein, A. Delcloo, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, N. Jones, M. J. Kurylo, E. Kyrölä, M. Laine, S. T. Leblanc, J.-C. Lambert, B. Liley, E. Mahieu, A. Maycock, M. de Mazière, A. Parrish, R. Querel, K. H. Rosenlof, C. Roth, C. Sioris, J. Staehelin, R. S. Stolarski, R. Stübi, J. Tamminen, C. Vigouroux, K. A. Walker, H. J. Wang, J. Wild, and J. M. Zawodny
Atmos. Chem. Phys., 15, 9965–9982, https://doi.org/10.5194/acp-15-9965-2015, https://doi.org/10.5194/acp-15-9965-2015, 2015
Short summary
Short summary
Trends in the vertical distribution of ozone are reported for new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere peaked in the second half of the 1990s. We examine the trends before and after that peak to see if any change in trend is discernible. The previously reported decreases are confirmed. Furthermore, the downward trend in upper stratospheric ozone has not continued. The possible significance of any increase is discussed in detail.
T. Trickl, H. Vogelmann, H. Flentje, and L. Ries
Atmos. Chem. Phys., 15, 9631–9649, https://doi.org/10.5194/acp-15-9631-2015, https://doi.org/10.5194/acp-15-9631-2015, 2015
A. Keppens, J.-C. Lambert, J. Granville, G. Miles, R. Siddans, J. C. A. van Peet, R. J. van der A, D. Hubert, T. Verhoelst, A. Delcloo, S. Godin-Beekmann, R. Kivi, R. Stübi, and C. Zehner
Atmos. Meas. Tech., 8, 2093–2120, https://doi.org/10.5194/amt-8-2093-2015, https://doi.org/10.5194/amt-8-2093-2015, 2015
Short summary
Short summary
This work thoroughly discusses a methodology, as summarized in a flowchart, for the round-robin evaluation and geophysical validation of nadir ozone profile retrievals and applies the proposed best practice to a pair of optimal-estimation algorithms run on exactly the same level-1 radiance measurements. The quality assessment combines data set content studies, information content studies, and comparisons with ground-based reference measurements.
J. A. E. van Gijsel, R. Zurita-Milla, P. Stammes, S. Godin-Beekmann, T. Leblanc, M. Marchand, I. S. McDermid, K. Stebel, W. Steinbrecht, and D. P. J. Swart
Atmos. Meas. Tech., 8, 1951–1963, https://doi.org/10.5194/amt-8-1951-2015, https://doi.org/10.5194/amt-8-1951-2015, 2015
E. Maillard Barras, A. Haefele, R. Stübi, and D. Ruffieux
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-3399-2015, https://doi.org/10.5194/amtd-8-3399-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We report on a method to combine simultaneous radiosonde and microwave radiometer measurements in order to obtain the SASBE of the vertical ozone distribution above Payerne, Switzerland. The two measurements are combined by using the radiosonde ozone profile as a priori information in the optimal estimation retrieval of the microwave radiometer. A comparison of the SASBE ozone profiles with AURA/MLS ozone profiles is presented.
H. Vogelmann, R. Sussmann, T. Trickl, and A. Reichert
Atmos. Chem. Phys., 15, 3135–3148, https://doi.org/10.5194/acp-15-3135-2015, https://doi.org/10.5194/acp-15-3135-2015, 2015
Short summary
Short summary
We quantitatively analyzed the spatiotemporal variability (minutes to hours, 500m to 10km) of water vapor (IWV and profiles) in the free troposphere recorded at the Zugspitze (Germany) with lidar and solar FTIR. We found that long-range transport of heterogeneous air masses may cause relative short-term variations of the water-vapor density which exceed the impact of local convection by 1 order of magnitude. Our results could be useful for issues of model parametrization and co-location.
M. Collaud Coen, C. Praz, A. Haefele, D. Ruffieux, P. Kaufmann, and B. Calpini
Atmos. Chem. Phys., 14, 13205–13221, https://doi.org/10.5194/acp-14-13205-2014, https://doi.org/10.5194/acp-14-13205-2014, 2014
Short summary
Short summary
An operational planetary boundary layer height detection method with several remote sensing instruments (wind profiler, Raman lidar, microwave radiometer) and algorithms (Parcel and bulk Richardson number methods, surface-based temperature inversion, aerosol and humidity gradient analysis) was validated against radio sounding. A comparison with the numerical weather prediction model COSMO-2 and the seasonal cycles of the day- and nighttime PBL for two stations on the Swiss plateau are presented.
F. Madonna, M. Rosoldi, J. Güldner, A. Haefele, R. Kivi, M. P. Cadeddu, D. Sisterson, and G. Pappalardo
Atmos. Meas. Tech., 7, 3813–3823, https://doi.org/10.5194/amt-7-3813-2014, https://doi.org/10.5194/amt-7-3813-2014, 2014
Short summary
Short summary
The paper provides the community with criteria to quantify the value of complementary climate measurements and to assess how the uncertainty in a measurement of an ECV is reduced by measurement complementarity. The study demonstrates the potential of entropy and mutual correlation, defined in information theory as metrics for quantifying synergies, and shows that the random uncertainties of a single instrument time series of TCWV can be strongly reduced by including complementary measurements.
M. García-Comas, B. Funke, A. Gardini, M. López-Puertas, A. Jurado-Navarro, T. von Clarmann, G. Stiller, M. Kiefer, C. D. Boone, T. Leblanc, B. T. Marshall, M. J. Schwartz, and P. E. Sheese
Atmos. Meas. Tech., 7, 3633–3651, https://doi.org/10.5194/amt-7-3633-2014, https://doi.org/10.5194/amt-7-3633-2014, 2014
Short summary
Short summary
We present the new vM21 MIPAS temperatures from 20 to 102km for all of its 2005-2012 MA, UA and NLC measurements. The main upgrades are the update of ESA L1b spectra, spectroscopic database and O and CO2 climatologies, and improvement in Tk-gradient and offset regularizations and apodization accuracy. The vM21 Tk's correct the main systematic errors of previous versions and lead to remarkable improvement in their comparisons with ACE-FTS, MLS, OSIRIS, SABER and SOFIE and the MLO and TMF lidars.
T. Trickl, H. Vogelmann, H. Giehl, H.-E. Scheel, M. Sprenger, and A. Stohl
Atmos. Chem. Phys., 14, 9941–9961, https://doi.org/10.5194/acp-14-9941-2014, https://doi.org/10.5194/acp-14-9941-2014, 2014
B. Hassler, I. Petropavlovskikh, J. Staehelin, T. August, P. K. Bhartia, C. Clerbaux, D. Degenstein, M. De Mazière, B. M. Dinelli, A. Dudhia, G. Dufour, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, J. Granville, N. R. P. Harris, K. Hoppel, D. Hubert, Y. Kasai, M. J. Kurylo, E. Kyrölä, J.-C. Lambert, P. F. Levelt, C. T. McElroy, R. D. McPeters, R. Munro, H. Nakajima, A. Parrish, P. Raspollini, E. E. Remsberg, K. H. Rosenlof, A. Rozanov, T. Sano, Y. Sasano, M. Shiotani, H. G. J. Smit, G. Stiller, J. Tamminen, D. W. Tarasick, J. Urban, R. J. van der A, J. P. Veefkind, C. Vigouroux, T. von Clarmann, C. von Savigny, K. A. Walker, M. Weber, J. Wild, and J. M. Zawodny
Atmos. Meas. Tech., 7, 1395–1427, https://doi.org/10.5194/amt-7-1395-2014, https://doi.org/10.5194/amt-7-1395-2014, 2014
E. Eckert, T. von Clarmann, M. Kiefer, G. P. Stiller, S. Lossow, N. Glatthor, D. A. Degenstein, L. Froidevaux, S. Godin-Beekmann, T. Leblanc, S. McDermid, M. Pastel, W. Steinbrecht, D. P. J. Swart, K. A. Walker, and P. F. Bernath
Atmos. Chem. Phys., 14, 2571–2589, https://doi.org/10.5194/acp-14-2571-2014, https://doi.org/10.5194/acp-14-2571-2014, 2014
D. Dionisi, P. Keckhut, G. L. Liberti, F. Cardillo, and F. Congeduti
Atmos. Chem. Phys., 13, 11853–11868, https://doi.org/10.5194/acp-13-11853-2013, https://doi.org/10.5194/acp-13-11853-2013, 2013
J.-L. Baray, Y. Courcoux, P. Keckhut, T. Portafaix, P. Tulet, J.-P. Cammas, A. Hauchecorne, S. Godin Beekmann, M. De Mazière, C. Hermans, F. Desmet, K. Sellegri, A. Colomb, M. Ramonet, J. Sciare, C. Vuillemin, C. Hoareau, D. Dionisi, V. Duflot, H. Vérèmes, J. Porteneuve, F. Gabarrot, T. Gaudo, J.-M. Metzger, G. Payen, J. Leclair de Bellevue, C. Barthe, F. Posny, P. Ricaud, A. Abchiche, and R. Delmas
Atmos. Meas. Tech., 6, 2865–2877, https://doi.org/10.5194/amt-6-2865-2013, https://doi.org/10.5194/amt-6-2865-2013, 2013
P. J. Nair, S. Godin-Beekmann, J. Kuttippurath, G. Ancellet, F. Goutail, A. Pazmiño, L. Froidevaux, J. M. Zawodny, R. D. Evans, H. J. Wang, J. Anderson, and M. Pastel
Atmos. Chem. Phys., 13, 10373–10384, https://doi.org/10.5194/acp-13-10373-2013, https://doi.org/10.5194/acp-13-10373-2013, 2013
F. Jégou, G. Berthet, C. Brogniez, J.-B. Renard, P. François, J. M. Haywood, A. Jones, Q. Bourgeois, T. Lurton, F. Auriol, S. Godin-Beekmann, C. Guimbaud, G. Krysztofiak, B. Gaubicher, M. Chartier, L. Clarisse, C. Clerbaux, J. Y. Balois, C. Verwaerde, and D. Daugeron
Atmos. Chem. Phys., 13, 6533–6552, https://doi.org/10.5194/acp-13-6533-2013, https://doi.org/10.5194/acp-13-6533-2013, 2013
S. Studer, K. Hocke, M. Pastel, S. Godin-Beekmann, and N. Kämpfer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-6097-2013, https://doi.org/10.5194/amtd-6-6097-2013, 2013
Revised manuscript has not been submitted
T. Trickl, H. Giehl, H. Jäger, and H. Vogelmann
Atmos. Chem. Phys., 13, 5205–5225, https://doi.org/10.5194/acp-13-5205-2013, https://doi.org/10.5194/acp-13-5205-2013, 2013
E. Brocard, R. Philipona, A. Haefele, G. Romanens, A. Mueller, D. Ruffieux, V. Simeonov, and B. Calpini
Atmos. Meas. Tech., 6, 1347–1358, https://doi.org/10.5194/amt-6-1347-2013, https://doi.org/10.5194/amt-6-1347-2013, 2013
G. Kirgis, T. Leblanc, I. S. McDermid, and T. D. Walsh
Atmos. Chem. Phys., 13, 5033–5047, https://doi.org/10.5194/acp-13-5033-2013, https://doi.org/10.5194/acp-13-5033-2013, 2013
G. Pappalardo, L. Mona, G. D'Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson
Atmos. Chem. Phys., 13, 4429–4450, https://doi.org/10.5194/acp-13-4429-2013, https://doi.org/10.5194/acp-13-4429-2013, 2013
A. Moss, R. J. Sica, E. McCullough, K. Strawbridge, K. Walker, and J. Drummond
Atmos. Meas. Tech., 6, 741–749, https://doi.org/10.5194/amt-6-741-2013, https://doi.org/10.5194/amt-6-741-2013, 2013
P. E. Sheese, K. Strong, E. J. Llewellyn, R. L. Gattinger, J. M. Russell III, C. D. Boone, M. E. Hervig, R. J. Sica, and J. Bandoro
Atmos. Meas. Tech., 5, 2993–3006, https://doi.org/10.5194/amt-5-2993-2012, https://doi.org/10.5194/amt-5-2993-2012, 2012
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Can the remote sensing of combustion phase improve estimates of landscape fire smoke emission rate and composition?
Tropospheric NO2 retrieval algorithm for geostationary satellite instruments: applications to GEMS
Troposphere–stratosphere-integrated bromine monoxide (BrO) profile retrieval over the central Pacific Ocean
Local and regional enhancements of CH4, CO, and CO2 inferred from TCCON column measurements
Merging TEMPEST microwave and GOES-16 geostationary IR soundings for improved water vapor profiles
Methane retrieval from MethaneAIR using the CO2 proxy approach: a demonstration for the upcoming MethaneSAT mission
Mapping the CO2 total column retrieval performance from shortwave infrared measurements: synthetic impacts of the spectral resolution, signal-to-noise ratio, and spectral band selection
Assessment of the contribution of the Meteosat Third Generation Infrared Sounder (MTG-IRS) for the characterisation of ozone over Europe
Assessing the potential of free-tropospheric water vapour isotopologue satellite observations for improving the analyses of convective events
Current potential of CH4 emission estimates using TROPOMI in the Middle East
A bias-corrected GEMS geostationary satellite product for nitrogen dioxide using machine learning to enforce consistency with the TROPOMI satellite instrument
Developments on a 22GHz Microwave Radiometer and Reprocessing of 13-Year Time Series for Water Vapour Studies
Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks
Estimation of biogenic volatile organic compound (BVOC) emissions in forest ecosystems using drone-based lidar, photogrammetry, and image recognition technologies
Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements
A new method for estimating megacity NOx emissions and lifetimes from satellite observations
Accounting for the effect of aerosols in GHGSat methane retrieval
A survey of methane point source emissions from coal mines in Shanxi province of China using AHSI on board Gaofen-5B
Global retrieval of stratospheric and tropospheric BrO columns from the Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) on board the Suomi-NPP satellite
IMK–IAA MIPAS retrieval version 8: CH4 and N2O
Report on Landsat 8 and Sentinel-2B observations of the Nord Stream 2 pipeline methane leak
U-Plume: automated algorithm for plume detection and source quantification by satellite point-source imagers
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
Greenhouse gas retrievals for the CO2M mission using the FOCAL method: first performance estimates
Quantitative imaging of carbon dioxide plumes using a ground-based shortwave infrared spectral camera
The transition to new ozone absorption cross sections for Dobson and Brewer total ozone measurements
Advantages of assimilating multispectral satellite retrievals of atmospheric composition: a demonstration using MOPITT carbon monoxide products
An improved OMI ozone profile research product version 2.0 with collection 4 L1b data and algorithm updates
Tropospheric ozone column dataset from OMPS-LP/OMPS-NM limb–nadir matching
Version 8 IMK/IAA MIPAS measurements of CFC-11, CFC-12, and HCFC-22
The importance of digital elevation model accuracy in XCO2 retrievals: improving the Orbiting Carbon Observatory 2 Atmospheric Carbon Observations from Space version 11 retrieval product
Level0 to Level1B processor for MethaneAIR
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
The differences between remote sensing and in situ air pollutants measurements over the Canadian Oil Sands
A method for estimating localized CO2 emissions from co-located satellite XCO2 and NO2 images
The GeoCarb greenhouse gas retrieval algorithm: simulations and sensitivity to sources of uncertainty
Airborne lidar measurements of atmospheric CO2 column concentrations to cloud tops made during the 2017 ASCENDS/ABoVE campaign
Airborne observation with a low-cost hyperspectral instrument: retrieval of NO2 vertical column densities (VCDs) and the satellite sub-grid variability over industrial point sources
A nonlinear data-driven approach to bias correction of XCO2 for NASA's OCO-2 ACOS version 10
MIPAS ozone retrieval version 8: middle-atmosphere measurements
Atmospheric N2O and CH4 total columns retrieved from low-resolution Fourier transform infrared (FTIR) spectra (Bruker VERTEX 70) in the mid-infrared region
A new accurate retrieval algorithm of bromine monoxide columns inside minor volcanic plumes from Sentinel-5P TROPOMI observations
Estimation of anthropogenic and volcanic SO2 emissions from satellite data in the presence of snow/ice on the ground
The IASI NH3 version 4 product: averaging kernels and improved consistency
A physically based correction for stray light in Brewer spectrophotometer data analysis
Optimal selection of satellite XCO2 images over cities for urban CO2 emission monitoring using a global adaptive-mesh model
A research product for tropospheric NO2 columns from Geostationary Environment Monitoring Spectrometer based on Peking University OMI NO2 algorithm
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024, https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Short summary
This paper presents a new machine learning model that allows us to compute NO2 concentration profiles from satellite observations. A neural network was trained on synthetic data from the regional chemistry and transport model WRF-Chem. This is the first model of its kind. We present a thorough model validation study, covering various seasons and regions of the world.
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024, https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Short summary
CHORA, an advanced cloud convective differential technique, enhances the accuracy of tropospheric-ozone retrievals. Unlike the traditional Pacific cloud reference sector scheme, CHORA introduces a local-cloud reference sector and an alternative approach (CLCT) for precision. Analysing monthly averaged TROPOMI data from 2018 to 2022 and validating with SHADOZ ozonesonde data, CLCT outperforms other methods and so is the preferred choice, especially in future geostationary satellite missions.
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024, https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary
Short summary
Solar absorption spectra near 2967 cm−1 recorded by a ground-based FTIR with a high spectral resolution of 0.0035 cm-1 are applied to retrieve C3H8 columns for the first time in Xianghe, China, within the NDACC-IRWG. The mean and standard deviation of the C3H8 columns are 1.80 ± 0.81 (1σ) × 1015 molec. cm-2. Good correlations are found between C3H8 and other non-methane hydrocarbons, such as C2H6 (R = 0.84) and C2H2 (R = 0.79), as well as between C3H8 and CO (R = 0.72).
Farrer Owsley-Brown, Martin J. Wooster, Mark J. Grosvenor, and Yanan Liu
Atmos. Meas. Tech., 17, 6247–6264, https://doi.org/10.5194/amt-17-6247-2024, https://doi.org/10.5194/amt-17-6247-2024, 2024
Short summary
Short summary
Landscape fires produce vast amounts of smoke, affecting the atmosphere locally and globally. Whether a fire is flaming or smouldering strongly impacts the rate at which smoke is produced as well as its composition. This study tested two methods to determine these combustion phases in laboratory fires and compared them to the smoke emitted. One of these methods improved estimates of smoke emission significantly. This suggests potential for improvement in global emission estimates.
Sora Seo, Pieter Valks, Ronny Lutz, Klaus-Peter Heue, Pascal Hedelt, Víctor Molina García, Diego Loyola, Hanlim Lee, and Jhoon Kim
Atmos. Meas. Tech., 17, 6163–6191, https://doi.org/10.5194/amt-17-6163-2024, https://doi.org/10.5194/amt-17-6163-2024, 2024
Short summary
Short summary
In this study, we developed an advanced retrieval algorithm for tropospheric NO2 columns from geostationary satellite spectrometers and applied it to GEMS measurements. The DLR GEMS NO2 retrieval algorithm follows the heritage from previous and existing algorithms, but improved approaches are applied to reflect the specific features of geostationary satellites. The DLR GEMS NO2 retrievals demonstrate a good capability for monitoring diurnal variability with a high spatial resolution.
Theodore K. Koenig, François Hendrick, Douglas Kinnison, Christopher F. Lee, Michel Van Roozendael, and Rainer Volkamer
Atmos. Meas. Tech., 17, 5911–5934, https://doi.org/10.5194/amt-17-5911-2024, https://doi.org/10.5194/amt-17-5911-2024, 2024
Short summary
Short summary
Atmospheric bromine destroys ozone, impacts oxidation capacity, and oxidizes mercury into its toxic form. We constrain bromine by remote sensing of BrO from a mountaintop. Previous measurements retrieved two to three pieces of information vertically; we apply new methods to get five and a half vertically and two more in time. We compare with aircraft measurements to validate the methods and look at variations in BrO over the Pacific.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Chia-Pang Kuo and Christian Kummerow
Atmos. Meas. Tech., 17, 5637–5653, https://doi.org/10.5194/amt-17-5637-2024, https://doi.org/10.5194/amt-17-5637-2024, 2024
Short summary
Short summary
A small satellite about the size of a shoe box, named TEMPEST, carries only a microwave sensor and is designed to measure the water cycle of the Earth from space in an economical way compared with traditional satellites, which have additional infrared sensors. To overcome the limitation, extra infrared signals from GOES-R ABI are combined with TEMPEST microwave measurements. Compared with ground observations, improved humidity information is extracted from the merged TEMPEST and ABI signals.
Christopher Chan Miller, Sébastien Roche, Jonas S. Wilzewski, Xiong Liu, Kelly Chance, Amir H. Souri, Eamon Conway, Bingkun Luo, Jenna Samra, Jacob Hawthorne, Kang Sun, Carly Staebell, Apisada Chulakadabba, Maryann Sargent, Joshua S. Benmergui, Jonathan E. Franklin, Bruce C. Daube, Yang Li, Joshua L. Laughner, Bianca C. Baier, Ritesh Gautam, Mark Omara, and Steven C. Wofsy
Atmos. Meas. Tech., 17, 5429–5454, https://doi.org/10.5194/amt-17-5429-2024, https://doi.org/10.5194/amt-17-5429-2024, 2024
Short summary
Short summary
MethaneSAT is an upcoming satellite mission designed to monitor methane emissions from the oil and gas (O&G) industry globally. Here, we present observations from the first flight campaign of MethaneAIR, a MethaneSAT-like instrument mounted on an aircraft. MethaneAIR can map methane with high precision and accuracy over a typically sized oil and gas basin (~200 km2) in a single flight. This paper demonstrates the capability of the upcoming satellite to routinely track global O&G emissions.
Matthieu Dogniaux and Cyril Crevoisier
Atmos. Meas. Tech., 17, 5373–5396, https://doi.org/10.5194/amt-17-5373-2024, https://doi.org/10.5194/amt-17-5373-2024, 2024
Short summary
Short summary
Many CO2-observing satellite concepts, with very different design choices and trade-offs, are expected to be put into orbit during the upcoming decade. This work uses numerical simulations to explore the impact of critical design parameters on the performance of upcoming CO2-observing satellite concepts.
Francesca Vittorioso, Vincent Guidard, and Nadia Fourrié
Atmos. Meas. Tech., 17, 5279–5299, https://doi.org/10.5194/amt-17-5279-2024, https://doi.org/10.5194/amt-17-5279-2024, 2024
Short summary
Short summary
The future Meteosat Third Generation Infrared Sounder (MTG-IRS) will represent a major innovation for the monitoring of the chemical state of the atmosphere. MTG-IRS will have the advantage of being based on a geostationary platform and acquiring data with a high temporal frequency. This work aims to evaluate its potential impact over Europe within a chemical transport model (MOCAGE). The results indicate that the assimilation of these data always has a positive impact on ozone analysis.
Matthias Schneider, Kinya Toride, Farahnaz Khosrawi, Frank Hase, Benjamin Ertl, Christopher J. Diekmann, and Kei Yoshimura
Atmos. Meas. Tech., 17, 5243–5259, https://doi.org/10.5194/amt-17-5243-2024, https://doi.org/10.5194/amt-17-5243-2024, 2024
Short summary
Short summary
Despite its importance for extreme weather and climate feedbacks, atmospheric convection is not well constrained. This study assesses the potential of novel tropospheric water vapour isotopologue satellite observations for improving the analyses of convective events. We find that the impact of the isotopologues is small for stable atmospheric conditions but significant for unstable conditions, which have the strongest societal impacts (e.g. storms and flooding).
Mengyao Liu, Ronald van der A, Michiel van Weele, Lotte Bryan, Henk Eskes, Pepijn Veefkind, Yongxue Liu, Xiaojuan Lin, Jos de Laat, and Jieying Ding
Atmos. Meas. Tech., 17, 5261–5277, https://doi.org/10.5194/amt-17-5261-2024, https://doi.org/10.5194/amt-17-5261-2024, 2024
Short summary
Short summary
A new divergence method was developed and applied to estimate methane emissions from TROPOMI observations over the Middle East, where it is typically challenging for a satellite to measure methane due to its complicated orography and surface albedo. Our results show the potential of TROPOMI to quantify methane emissions from various sources rather than big emitters from space after objectively excluding the artifacts in the retrieval.
Yujin J. Oak, Daniel J. Jacob, Nicholas Balasus, Laura H. Yang, Heesung Chong, Junsung Park, Hanlim Lee, Gitaek T. Lee, Eunjo S. Ha, Rokjin J. Park, Hyeong-Ahn Kwon, and Jhoon Kim
Atmos. Meas. Tech., 17, 5147–5159, https://doi.org/10.5194/amt-17-5147-2024, https://doi.org/10.5194/amt-17-5147-2024, 2024
Short summary
Short summary
We present an improved NO2 product from GEMS by calibrating it to TROPOMI using machine learning and by reprocessing both satellite products to adopt common NO2 profiles. Our corrected GEMS product combines the high data density of GEMS with the accuracy of TROPOMI, supporting the combined use for analyses of East Asia air quality including emissions and chemistry. This method can be extended to other species and geostationary satellites including TEMPO and Sentinel-4.
Alistair Bell, Eric Sauvageat, Gunter Stober, Klemens Hocke, and Axel Murk
EGUsphere, https://doi.org/10.5194/egusphere-2024-2474, https://doi.org/10.5194/egusphere-2024-2474, 2024
Short summary
Short summary
Hardware and software developments have been made on a 22 GHz microwave radiometer for the measurement of middle atmosphere water vapour near Bern, Switzerland. Previous measurements dating back to 2010 have been re-calibrated and an improved optimal estimation retrieval performed on these measurements, giving a 13 year long dataset. Measurements made with new and improved instrumental hardware are used to correct previous measurements, which show better agreement than the non-corrected dataset.
Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2365, https://doi.org/10.5194/egusphere-2024-2365, 2024
Short summary
Short summary
Carbon dioxide (CO2) and methane (CH4) are the main anthropogenic greenhouse gases. The European Copernicus CO2 monitoring satellite mission CO2M will provide measurements of their atmospheric concentrations, but the accuracy requirements are demanding and conventional retrieval methods computationally expensive. We present a new retrieval algorithm based on artificial neural networks that has the potential to meet the stringent requirements of the CO2M mission with minimal computational effort.
Xianzhong Duan, Ming Chang, Guotong Wu, Suping Situ, Shengjie Zhu, Qi Zhang, Yibo Huangfu, Weiwen Wang, Weihua Chen, Bin Yuan, and Xuemei Wang
Atmos. Meas. Tech., 17, 4065–4079, https://doi.org/10.5194/amt-17-4065-2024, https://doi.org/10.5194/amt-17-4065-2024, 2024
Short summary
Short summary
Accurately estimating biogenic volatile organic compound (BVOC) emissions in forest ecosystems has been challenging. This research presents a framework that utilizes drone-based lidar, photogrammetry, and image recognition technologies to identify plant species and estimate BVOC emissions. The largest cumulative isoprene emissions were found in the Myrtaceae family, while those of monoterpenes were from the Rubiaceae family.
Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, and Isamu Morino
Atmos. Meas. Tech., 17, 3949–3967, https://doi.org/10.5194/amt-17-3949-2024, https://doi.org/10.5194/amt-17-3949-2024, 2024
Short summary
Short summary
This study demonstrates a new machine learning approach to efficiently and accurately estimate atmospheric carbon dioxide levels from satellite data. Rather than using traditional complex physics-based retrieval methods, neural network models are trained on simulated data to rapidly predict CO2 concentrations directly from satellite spectral measurements.
Steffen Beirle and Thomas Wagner
Atmos. Meas. Tech., 17, 3439–3453, https://doi.org/10.5194/amt-17-3439-2024, https://doi.org/10.5194/amt-17-3439-2024, 2024
Short summary
Short summary
We present a new method for estimating emissions and lifetimes for nitrogen oxides emitted from large cities by using satellite NO2 observations combined with wind fields. The estimate is based on the simultaneous evaluation of the downwind plumes for opposing wind directions. This allows us to derive seasonal mean emissions and lifetimes for 100 cities around the globe.
Qiurun Yu, Dylan Jervis, and Yi Huang
Atmos. Meas. Tech., 17, 3347–3366, https://doi.org/10.5194/amt-17-3347-2024, https://doi.org/10.5194/amt-17-3347-2024, 2024
Short summary
Short summary
This study estimated the effects of aerosols on GHGSat satellite methane retrieval and investigated the performance of simultaneously retrieving aerosol and methane information using a multi-angle viewing method. Results suggested that the performance of GHGSat methane retrieval improved when aerosols were considered, and the multi-angle viewing method is insensitive to the satellite angle setting. This performance assessment is useful for improving future GHGSat-like instruments.
Zhonghua He, Ling Gao, Miao Liang, and Zhao-Cheng Zeng
Atmos. Meas. Tech., 17, 2937–2956, https://doi.org/10.5194/amt-17-2937-2024, https://doi.org/10.5194/amt-17-2937-2024, 2024
Short summary
Short summary
Using Gaofen-5B satellite data, this study detected 93 methane plume events from 32 coal mines in Shanxi, China, with emission rates spanning from 761.78 ± 185.00 to 12729.12 ± 4658.13 kg h-1, showing significant variability among sources. This study highlights Gaofen-5B’s capacity for monitoring large methane point sources, offering valuable support in reducing greenhouse gas emissions.
Heesung Chong, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Alfonso Saiz-Lopez, Rafael P. Fernandez, Hyeong-Ahn Kwon, Zolal Ayazpour, Huiqun Wang, Amir H. Souri, Xiong Liu, Kelly Chance, Ewan O'Sullivan, Jhoon Kim, Ja-Ho Koo, William R. Simpson, François Hendrick, Richard Querel, Glen Jaross, Colin Seftor, and Raid M. Suleiman
Atmos. Meas. Tech., 17, 2873–2916, https://doi.org/10.5194/amt-17-2873-2024, https://doi.org/10.5194/amt-17-2873-2024, 2024
Short summary
Short summary
We present a new bromine monoxide (BrO) product derived using radiances measured from OMPS-NM on board the Suomi-NPP satellite. This product provides nearly a decade of global stratospheric and tropospheric column retrievals, a feature that is currently rare in publicly accessible datasets. Both stratospheric and tropospheric columns from OMPS-NM demonstrate robust performance, exhibiting good agreement with ground-based observations collected at three stations (Lauder, Utqiagvik, and Harestua).
Norbert Glatthor, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 17, 2849–2871, https://doi.org/10.5194/amt-17-2849-2024, https://doi.org/10.5194/amt-17-2849-2024, 2024
Short summary
Short summary
We present global atmospheric methane (CH4) and nitrous oxide (N2O) distributions retrieved from measurements of the MIPAS instrument on board the Environmental Satellite (Envisat) during 2002 to 2012. Monitoring of these gases is of scientific interest because both of them are strong greenhouse gases. We analyze the latest, improved version of calibrated MIPAS measurements. Further, we apply a new retrieval scheme leading to an improved CH4 and N2O data product .
Matthieu Dogniaux, Joannes D. Maasakkers, Daniel J. Varon, and Ilse Aben
Atmos. Meas. Tech., 17, 2777–2787, https://doi.org/10.5194/amt-17-2777-2024, https://doi.org/10.5194/amt-17-2777-2024, 2024
Short summary
Short summary
We analyze Landsat 8 (L8) and Sentinel-2B (S-2B) observations of the 2022 Nord Stream 2 methane leak and show how challenging this case is for usual data analysis methods. We provide customized calibrations for this Nord Stream 2 case and assess that no firm conclusion can be drawn from L8 or S-2B single overpasses. However, if we opportunistically assume that L8 and S-2B results are independent, we find an averaged L8 and S-2B combined methane leak rate of 502 ± 464 t h−1.
Jack H. Bruno, Dylan Jervis, Daniel J. Varon, and Daniel J. Jacob
Atmos. Meas. Tech., 17, 2625–2636, https://doi.org/10.5194/amt-17-2625-2024, https://doi.org/10.5194/amt-17-2625-2024, 2024
Short summary
Short summary
Methane is a potent greenhouse gas and a current high-priority target for short- to mid-term climate change mitigation. Detection of individual methane emitters from space has become possible in recent years, and the volume of data for this task has been rapidly growing, outpacing processing capabilities. We introduce an automated approach, U-Plume, which can detect and quantify emissions from individual methane sources in high-spatial-resolution satellite data.
Anna Vaughan, Gonzalo Mateo-García, Luis Gómez-Chova, Vít Růžička, Luis Guanter, and Itziar Irakulis-Loitxate
Atmos. Meas. Tech., 17, 2583–2593, https://doi.org/10.5194/amt-17-2583-2024, https://doi.org/10.5194/amt-17-2583-2024, 2024
Short summary
Short summary
Methane is a potent greenhouse gas that has been responsible for around 25 % of global warming since the industrial revolution. Consequently identifying and mitigating methane emissions comprise an important step in combating the climate crisis. We develop a new deep learning model to automatically detect methane plumes from satellite images and demonstrate that this can be applied to monitor large methane emissions resulting from the oil and gas industry.
Stefan Noël, Michael Buchwitz, Michael Hilker, Maximilian Reuter, Michael Weimer, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 17, 2317–2334, https://doi.org/10.5194/amt-17-2317-2024, https://doi.org/10.5194/amt-17-2317-2024, 2024
Short summary
Short summary
FOCAL-CO2M is one of the three operational retrieval algorithms which will be used to derive XCO2 and XCH4 from measurements of the forthcoming European CO2M mission. We present results of applications of FOCAL-CO2M to simulated spectra, from which confidence is gained that the algorithm is able to fulfil the challenging requirements on systematic errors for the CO2M mission (spatio-temporal bias ≤ 0.5 ppm for XCO2 and ≤ 5 ppb for XCH4).
Marvin Knapp, Ralph Kleinschek, Sanam N. Vardag, Felix Külheim, Helge Haveresch, Moritz Sindram, Tim Siegel, Bruno Burger, and André Butz
Atmos. Meas. Tech., 17, 2257–2275, https://doi.org/10.5194/amt-17-2257-2024, https://doi.org/10.5194/amt-17-2257-2024, 2024
Short summary
Short summary
Imaging carbon dioxide (CO2) plumes of anthropogenic sources from planes and satellites has proven valuable for detecting emitters and monitoring climate mitigation efforts. We present the first images of CO2 plumes taken with a ground-based spectral camera, observing a coal-fired power plant as a validation target. We develop a technique to find the source emission strength with an hourly resolution, which reasonably agrees with the expected emissions under favorable conditions.
Karl Voglmeier, Voltaire A. Velazco, Luca Egli, Julian Gröbner, Alberto Redondas, and Wolfgang Steinbrecht
Atmos. Meas. Tech., 17, 2277–2294, https://doi.org/10.5194/amt-17-2277-2024, https://doi.org/10.5194/amt-17-2277-2024, 2024
Short summary
Short summary
Comparison between total ozone column (TOC) measurements from ground-based Dobson and Brewer spectrophotometers generally reveals seasonally varying differences of a few percent. This study recommends a new TOC retrieval approach, which effectively eliminates these seasonally varying differences by applying new ozone absorption cross sections, appropriate slit functions for the Dobson instrument, and climatological values for the effective ozone temperature.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden
Atmos. Meas. Tech., 17, 1941–1963, https://doi.org/10.5194/amt-17-1941-2024, https://doi.org/10.5194/amt-17-1941-2024, 2024
Short summary
Short summary
We assimilate different MOPITT CO products to understand the impact of (1) assimilating multispectral and joint retrievals versus single spectral products, (2) assimilating satellite profile products versus column products, and (3) assimilating multispectral and joint retrievals versus assimilating individual products separately.
Juseon Bak, Xiong Liu, Kai Yang, Gonzalo Gonzalez Abad, Ewan O'Sullivan, Kelly Chance, and Cheol-Hee Kim
Atmos. Meas. Tech., 17, 1891–1911, https://doi.org/10.5194/amt-17-1891-2024, https://doi.org/10.5194/amt-17-1891-2024, 2024
Short summary
Short summary
The new version (V2) of the OMI ozone profile product is introduced to improve retrieval quality and long-term consistency of tropospheric ozone by incorporating the recent collection 4 OMI L1b spectral products and refining radiometric correction, forward model calculation, and a priori ozone data.
Andrea Orfanoz-Cheuquelaf, Carlo Arosio, Alexei Rozanov, Mark Weber, Annette Ladstätter-Weißenmayer, John P. Burrows, Anne M. Thompson, Ryan M. Stauffer, and Debra E. Kollonige
Atmos. Meas. Tech., 17, 1791–1809, https://doi.org/10.5194/amt-17-1791-2024, https://doi.org/10.5194/amt-17-1791-2024, 2024
Short summary
Short summary
Valuable information on the tropospheric ozone column (TrOC) can be obtained globally by combining space-borne limb and nadir measurements (limb–nadir matching, LNM). This study describes the retrieval of TrOC from the OMPS instrument (since 2012) using the LNM technique. The OMPS-LNM TrOC was compared with ozonesondes and other satellite measurements, showing a good agreement with a negative bias within 1 to 4 DU. This new dataset is suitable for pollution studies.
Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Bernd Funke, Maya García-Comas, and Manuel López-Puertas
Atmos. Meas. Tech., 17, 1759–1789, https://doi.org/10.5194/amt-17-1759-2024, https://doi.org/10.5194/amt-17-1759-2024, 2024
Short summary
Short summary
CFC-11, CFC-12, and HCFC-22 contribute to the depletion of ozone and are potent greenhouse gases. They have been banned by the Montreal protocol. With MIPAS on Envisat the atmospheric composition could be observed between 2002 and 2012. We present here the retrieval of their atmospheric distributions for the final data version 8. We characterise the derived data by their error budget and their spatial resolution. An additional representation for direct comparison to models is also provided.
Nicole Jacobs, Christopher W. O'Dell, Thomas E. Taylor, Thomas L. Logan, Brendan Byrne, Matthäus Kiel, Rigel Kivi, Pauli Heikkinen, Aronne Merrelli, Vivienne H. Payne, and Abhishek Chatterjee
Atmos. Meas. Tech., 17, 1375–1401, https://doi.org/10.5194/amt-17-1375-2024, https://doi.org/10.5194/amt-17-1375-2024, 2024
Short summary
Short summary
The accuracy of trace gas retrievals from spaceborne observations, like those from the Orbiting Carbon Observatory 2 (OCO-2), are sensitive to the referenced digital elevation model (DEM). Therefore, we evaluate several global DEMs, used in versions 10 and 11 of the OCO-2 retrieval along with the Copernicus DEM. We explore the impacts of changing the DEM on biases in OCO-2-retrieved XCO2 and inferred CO2 fluxes. Our findings led to an update to OCO-2 v11.1 using the Copernicus DEM globally.
Eamon K. Conway, Amir H. Souri, Joshua Benmergui, Kang Sun, Xiong Liu, Carly Staebell, Christopher Chan Miller, Jonathan Franklin, Jenna Samra, Jonas Wilzewski, Sebastien Roche, Bingkun Luo, Apisada Chulakadabba, Maryann Sargent, Jacob Hohl, Bruce Daube, Iouli Gordon, Kelly Chance, and Steven Wofsy
Atmos. Meas. Tech., 17, 1347–1362, https://doi.org/10.5194/amt-17-1347-2024, https://doi.org/10.5194/amt-17-1347-2024, 2024
Short summary
Short summary
The work presented here describes the processes required to convert raw sensor data for the MethaneAIR instrument to geometrically calibrated data. Each algorithm is described in detail. MethaneAIR is the airborne simulator for MethaneSAT, a new satellite under development by MethaneSAT LLC, a subsidiary of the EDF. MethaneSAT's goals are to precisely map over 80 % of the production sources of methane emissions from oil and gas fields across the globe to a high degree of accuracy.
Javier Roger, Luis Guanter, Javier Gorroño, and Itziar Irakulis-Loitxate
Atmos. Meas. Tech., 17, 1333–1346, https://doi.org/10.5194/amt-17-1333-2024, https://doi.org/10.5194/amt-17-1333-2024, 2024
Short summary
Short summary
Methane emissions can be identified using remote sensing, but surface-related structures disturb detection. In this work, a variation of the matched filter method that exploits a large fraction of the near-infrared range (1000–2500 nm) is applied. In comparison to the raw matched filter, it reduces background noise and strongly attenuates the surface-related artifacts, which leads to a greater detection capability. We propose this variation as a standard methodology for methane detection.
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-27, https://doi.org/10.5194/amt-2024-27, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study explores differences between remote sensing and in situ instruments in terms of their vertical, horizontal, and temporal sampling differences. Understanding and resolving these differences are critical for future analyses linking satellite, ground-based remote sensing, and in situ observations in air quality monitoring. It shows the meteorological conditions (wind directions, speed, and boundary layer conditions) will strongly affect the agreement between the two measurements.
Blanca Fuentes Andrade, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Andreas Richter, Hartmut Boesch, and John P. Burrows
Atmos. Meas. Tech., 17, 1145–1173, https://doi.org/10.5194/amt-17-1145-2024, https://doi.org/10.5194/amt-17-1145-2024, 2024
Short summary
Short summary
We developed a method to estimate CO2 emissions from localized sources, such as power plants, using satellite data and applied it to estimate CO2 emissions from the Bełchatów Power Station (Poland). As the detection of CO2 emission plumes from satellite data is difficult, we used observations of co-emitted NO2 to constrain the emission plume region. Our results agree with CO2 emission estimations based on the power-plant-generated power and emission factors.
Gregory R. McGarragh, Christopher W. O'Dell, Sean M. R. Crowell, Peter Somkuti, Eric B. Burgh, and Berrien Moore III
Atmos. Meas. Tech., 17, 1091–1121, https://doi.org/10.5194/amt-17-1091-2024, https://doi.org/10.5194/amt-17-1091-2024, 2024
Short summary
Short summary
Carbon dioxide and methane are greenhouse gases that have been rapidly increasing due to human activity since the industrial revolution, leading to global warming and subsequently negative affects on the climate. It is important to measure the concentrations of these gases in order to make climate predictions that drive policy changes to mitigate climate change. GeoCarb aims to measure the concentrations of these gases from space over the Americas at unprecedented spatial and temporal scales.
Jianping Mao, James B. Abshire, S. Randy Kawa, Xiaoli Sun, and Haris Riris
Atmos. Meas. Tech., 17, 1061–1074, https://doi.org/10.5194/amt-17-1061-2024, https://doi.org/10.5194/amt-17-1061-2024, 2024
Short summary
Short summary
NASA Goddard Space Flight Center has developed an integrated-path, differential absorption lidar approach to measure column-averaged atmospheric CO2 (XCO2). We demonstrated the lidar’s capability to measure XCO2 to cloud tops ,as well as to the ground, with the data from the summer 2017 airborne campaign in the US and Canada. This active remote sensing technique can provide all-sky data coverage and high-quality XCO2 measurements for future airborne science campaigns and space missions.
Jong-Uk Park, Hyun-Jae Kim, Jin-Soo Park, Jinsoo Choi, Sang Seo Park, Kangho Bae, Jong-Jae Lee, Chang-Keun Song, Soojin Park, Kyuseok Shim, Yeonsoo Cho, and Sang-Woo Kim
Atmos. Meas. Tech., 17, 197–217, https://doi.org/10.5194/amt-17-197-2024, https://doi.org/10.5194/amt-17-197-2024, 2024
Short summary
Short summary
The high-spatial-resolution NO2 vertical column densities (VCDs) were measured from airborne observations using the low-cost hyperspectral imaging sensor (HIS) at three industrial areas in South Korea with the newly developed versatile NO2 VCD retrieval algorithm apt to be applied to the instruments with volatile optical and radiometric properties. The airborne HIS observations emphasized the intensifying satellite sub-grid variability in NO2 VCDs near the emission sources.
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell
Atmos. Meas. Tech., 16, 5725–5748, https://doi.org/10.5194/amt-16-5725-2023, https://doi.org/10.5194/amt-16-5725-2023, 2023
Short summary
Short summary
Measurement errors in satellite observations of CO2 attributed to co-estimated atmospheric variables are corrected using a linear regression on quality-filtered data. We propose a nonlinear method that improves correction against a set of ground truth proxies and allows for high throughput of well-corrected data.
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 5609–5645, https://doi.org/10.5194/amt-16-5609-2023, https://doi.org/10.5194/amt-16-5609-2023, 2023
Short summary
Short summary
This paper describes a new version (V8) of ozone data from MIPAS middle-atmosphere spectra. The dataset comprises high-quality ozone profiles from 20 to 100 km, with pole-to-pole latitude coverage for the day- and nighttime, spanning 2005 until 2012. An exhaustive treatment of errors has been performed. Compared to other satellite instruments, MIPAS ozone shows a positive bias of 5 %–8 % below 70 km. In the upper mesosphere, this new version agrees much better than previous ones (within 10 %).
Minqiang Zhou, Bavo Langerock, Mahesh Kumar Sha, Christian Hermans, Nicolas Kumps, Rigel Kivi, Pauli Heikkinen, Christof Petri, Justus Notholt, Huilin Chen, and Martine De Mazière
Atmos. Meas. Tech., 16, 5593–5608, https://doi.org/10.5194/amt-16-5593-2023, https://doi.org/10.5194/amt-16-5593-2023, 2023
Short summary
Short summary
Atmospheric N2O and CH4 columns are successfully retrieved from low-resolution FTIR spectra recorded by a Bruker VERTEX 70. The 1-year measurements at Sodankylä show that the N2O total columns retrieved from 125HR and VERTEX 70 spectra are −0.3 ± 0.7 % with an R value of 0.93. The relative differences between the CH4 total columns retrieved from the 125HR and VERTEX spectra are 0.0 ± 0.8 % with an R value of 0.87. Such a technique can help to fill the gap in NDACC N2O and CH4 measurements.
Simon Warnach, Holger Sihler, Christian Borger, Nicole Bobrowski, Steffen Beirle, Ulrich Platt, and Thomas Wagner
Atmos. Meas. Tech., 16, 5537–5573, https://doi.org/10.5194/amt-16-5537-2023, https://doi.org/10.5194/amt-16-5537-2023, 2023
Short summary
Short summary
BrO inside volcanic gas plumes but can be used in combination with SO2 to characterize the volcanic property and its activity state. High-quality satellite observations can provide a global inventory of this important quantity. This paper investigates how to accurately detect BrO inside volcanic plumes from the satellite UV spectrum. A sophisticated novel non-volcanic background correction scheme is presented, and systematic errors including cross-interference with formaldehyde are minimized.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Nickolay A. Krotkov, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Atmos. Meas. Tech., 16, 5575–5592, https://doi.org/10.5194/amt-16-5575-2023, https://doi.org/10.5194/amt-16-5575-2023, 2023
Short summary
Short summary
Snow-covered terrain, with its high reflectance in the UV, typically enhances satellite sensitivity to boundary layer pollution. However, a significant fraction of high-quality cloud-free measurements over snow is currently excluded from analyses. In this study, we investigated how satellite SO2 measurements over snow-covered surfaces can be used to improve estimations of annual SO2 emissions.
Lieven Clarisse, Bruno Franco, Martin Van Damme, Tommaso Di Gioacchino, Juliette Hadji-Lazaro, Simon Whitburn, Lara Noppen, Daniel Hurtmans, Cathy Clerbaux, and Pierre Coheur
Atmos. Meas. Tech., 16, 5009–5028, https://doi.org/10.5194/amt-16-5009-2023, https://doi.org/10.5194/amt-16-5009-2023, 2023
Short summary
Short summary
Ammonia is an important atmospheric pollutant. This article presents version 4 of the algorithm which retrieves ammonia abundances from the infrared measurements of the satellite sounder IASI. A measurement operator is introduced that can emulate the measurements (so-called averaging kernels) and measurement uncertainty is better characterized. Several other changes to the product itself are also documented, most of which improve the temporal consistency of the 2007–2022 IASI NH3 dataset.
Vladimir Savastiouk, Henri Diémoz, and C. Thomas McElroy
Atmos. Meas. Tech., 16, 4785–4806, https://doi.org/10.5194/amt-16-4785-2023, https://doi.org/10.5194/amt-16-4785-2023, 2023
Short summary
Short summary
This paper describes a way to significantly improve ozone measurements at low sun elevations and large ozone amounts when using the Brewer ozone spectrophotometer. The proposed algorithm will allow more uniform ozone measurements across the monitoring network. This will contribute to more reliable trend analysis and support the satellite validation. This research contributes to better understanding the physics of the instrument, and the new algorithm is based on this new knowledge.
Alexandre Danjou, Grégoire Broquet, Andrew Schuh, François-Marie Bréon, and Thomas Lauvaux
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-199, https://doi.org/10.5194/amt-2023-199, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
We study the capacity of XCO2 space-borne imagery to estimate urban CO2 emissions with synthetic data. We define automatic and standard methods, and objective criteria for image selection. Wind variability and urban emission budget guide the emission estimation error. Images with low wind variability and high urban emissions account for 47 % of images and give a bias on the emission estimation of -7 % of the emissions and a spread of 56 %. Other images give a bias of -31 % and a spread of 99 %.
Yuhang Zhang, Jintai Lin, Jhoon Kim, Hanlim Lee, Junsung Park, Hyunkee Hong, Michel Van Roozendael, Francois Hendrick, Ting Wang, Pucai Wang, Qin He, Kai Qin, Yongjoo Choi, Yugo Kanaya, Jin Xu, Pinhua Xie, Xin Tian, Sanbao Zhang, Shanshan Wang, Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Thomas Wagner, Robert Spurr, Lulu Chen, Hao Kong, and Mengyao Liu
Atmos. Meas. Tech., 16, 4643–4665, https://doi.org/10.5194/amt-16-4643-2023, https://doi.org/10.5194/amt-16-4643-2023, 2023
Short summary
Short summary
Our tropospheric NO2 vertical column density product with high spatiotemporal resolution is based on the Geostationary Environment Monitoring Spectrometer (GEMS) and named POMINO–GEMS. Strong hotspot signals and NO2 diurnal variations are clearly seen. Validations with multiple satellite products and ground-based, mobile car and surface measurements exhibit the overall great performance of the POMINO–GEMS product, indicating its capability for application in environmental studies.
Cited articles
Ahmad, Z., McClain, C. R., Herman, J. R., Franz, B. A., Kwiatkowska, E. J., Robinson, W. D., Bucsela, E. J., and Tzortziou, M.: Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements, Appl. Opt., 46, 6504–6512, 2007.
Bass, A. M. and Paur, R. J.: The Ultraviolet Cross-sections of Ozone: I. The Measurements, Proc. Quadriennial Ozone Symp., Halkidiki, Greece, 606–616, 1984.
Bates, D. R.: Rayleigh-scattering by air, Planet Space Sci., 32, 785–790, https://doi.org/10.1016/0032-0633(84)90102-8, 1984.
Bauer, R., Rozanov, A., McLinden, C. A., Gordley, L. L., Lotz, W., Russell III, J. M., Walker, K. A., Zawodny, J. M., Ladstätter-Weißenmayer, A., Bovensmann, H., and Burrows, J. P.: Validation of SCIAMACHY limb NO2 profiles using solar occultation measurements, Atmos. Meas. Tech., 5, 1059–1084, https://doi.org/10.5194/amt-5-1059-2012, 2012.
Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O. C., Vogel, A., Hartmann, M., Kromminga, H., Bovensmann, H., Frerick, J., and Burrows, J. P.: Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region, J. Photochem. Photobiol. A, 157, 167–184, https://doi.org/10.1016/s1010-6030(03)00062-5, 2003.
Bösenberg, J.: Instrument Development for Atmospheric Research and Monitoring, 1 ed., Transport and Chemical Transformation of Pollutants in the Troposphere, 8, edited by: Bösenberg, J., Brassington, D. J., and Simon, P. C., Springer-Verlag, Berlin Heidelberg, XIX, 396 pp., 1997.
Bracher, A., Sinnhuber, M., Rozanov, A., and Burrows, J. P.: Using a photochemical model for the validation of NO2 satellite measurements at different solar zenith angles, Atmos. Chem. Phys., 5, 393–408, https://doi.org/10.5194/acp-5-393-2005, 2005.
Brion, J., Chakir, A., Charbonnier, J., Daumont, D., Parisse, C., and Malicet, J.: Absorption Spectra Measurements for the Ozone Molecule in the 350–830 nm Region, J. Atmos. Chem., 30, 291–299, https://doi.org/10.1023/a:1006036924364, 1998.
Brohede, S., McLinden, C. A., Berthet, G., Haley, C. S., Murtagh, D., and Sioris, C. E.: A stratospheric NO2 climatology from Odin/OSIRIS limb-scatter measurements, Can. J. Phys., 85, 1253–1274, https://doi.org/10.1139/p07-141, 2007.
Brühl, C., Lelieveld, J., Höpfner, M., and Tost, H.: Stratospheric SO2 and sulphate aerosol, model simulations and satellite observations, Atmos. Chem. Phys. Discuss., 13, 11395–11425, https://doi.org/10.5194/acpd-13-11395-2013, 2013.
Bucholtz, A.: Rayleigh-scattering calculations for the terrestrial atmosphere, Appl. Opt., 34, 2765–2773, 1995.
Burrows, J. P., Richter, A., Dehn, A., Deters, B., Himmelmann, S., and Orphal, J.: Atmospheric remote-sensing reference data from GOME – 2. Temperature-dependent absorption cross-sections of O-3 in the 231–794 nm range, J. Quant. Spectr. Rad. Trans., 61, 509–517, https://doi.org/10.1016/s0022-4073(98)00037-5, 1999.
Cao, N., Fukuchi, T., Fujii, T., Collins, R. L., Li, S., Wang, Z., and Chen, Z.: Error analysis for NO2 DIAL measurement in the troposphere, Appl. Phys. B: Lasers and Optics, 82, 141–148, https://doi.org/10.1007/s00340-005-2050-8, 2006.
Chehade, W., Gorshelev, V., Serdyuchenko, A., Burrows, J. P., and Weber, M.: Revised temperature-dependent ozone absorption cross-section spectra (Bogumil et al.) measured with the SCIAMACHY satellite spectrometer, Atmos. Meas. Tech., 6, 3055–3065, https://doi.org/10.5194/amt-6-3055-2013, 2013.
Daumont, D., Brion, J., Charbonnier, J., and Malicet, J.: Ozone UV Spectroscopy I: Absorption Cross-Sections at Room Temperature, J. Atmos Chem., 15, 145–155, https://doi.org/10.1007/bf00053756, 1992.
Donovan, D. P., Whiteway, J. A., and Carswell, A. I.: Correction for nonlinear photon-counting effects in lidar systems, Appl. Opt., 32, 6742–6753, 1993.
Eberhard, W. L.: Correct equations and common approximations for calculating Rayleigh scatter in pure gases and mixtures and evaluation of differences, Appl. Opt., 49, 1116–1130, 2010.
Eisele, H. and Trickl, T.: Improvements of the aerosol algorithm in ozone lidar data processing by use of evolutionary strategies, Appl. Opt., 44, 2638–2651, 2005.
Fally, S., Vandaele, A. C., Carleer, M., Hermans, C., Jenouvrier, A., Merienne, M. F., Coquart, B., and Colin, R.: Fourier transform spectroscopy of the O-2 Herzberg bands. III. Absorption cross-sections of the collision-induced bands and of the Herzberg continuum, J. Mol. Spectrosc., 204, 10–20, https://doi.org/10.1006/jmsp.2000.8204, 2000.
Finger, F. G., Gelman, M. E., Wild, J. D., Chanin, M. L., Hauchecorne, A., and Miller, A. J.: Evaluation of NMC upper-stratospheric temperature analyses using rocketsonde and lidar data, Bull. Amer. Meteorol. Soc., 74, 789–799, 1993
Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., and Sassi, F.: Simulation of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res.-Atmos., 112, D09301, https://doi.org/10.1029/2006jd007485, 2007.
Godin, S.: Étude expérimentale par télédétection laser et modélisation de la distribution verticale d'ozone dans la haute stratosphère, PhD thesis (in French), Université Pierre et Marie Curie, Paris, 231 pp., 1987.
Godin, S., Carswell, A. I., Donovan, D. P., Claude, H., Steinbrecht, W., McDermid, I. S., McGee, T. J., Gross, M. R., Nakane, H., Swart, D. P. J., Bergwerff, H. B., Uchino, O., von der Gathen, P., and Neuber, R.: Ozone Differential Absorption Lidar Algorithm Intercomparison, Appl. Opt., 38, 6225–6236, 1999.
Godin-Beekmann, S. and Nair, P. J.: Sensitivity of stratospheric ozone lidar measurements to a change in ozone absorption cross-sections, J. Quant. Spectr. Rad. Trans., 113, 1317–1321, https://doi.org/10.1016/j.jqsrt.2012.03.002, 2012.
Godin-Beekmann, S., Porteneuve, J., and Garnier, A.: Systematic DIAL lidar monitoring of the stratospheric ozone vertical distribution at Observatoire de Haute-Provence (43.92 degrees N, 5.71 degrees E), J. Environ. Monit., 5, 57–67, https://doi.org/10.1039/b205880d, 2003.
Gorshelev, V., Serdyuchenko, A., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K, Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014, 2014.
He, H., Loughner, C. P., Stehr, J. W., Arkinson, H. L., Brent, L. C., Follette-Cook, M. B., Tzortziou, M. A., Pickering, K. E., Thompson, A. M., Martins, D. K., Diskin, G. S., Anderson, B. E., Crawford, J. H., Weinheimer, A. J., Lee, P., Hains, J. C., and Dickerson, R. R.: An elevated reservoir of air pollutants over the Mid-Atlantic States during the 2011 DISCOVER-AQ campaign: Airborne measurements and numerical simulations, Atmos. Env., 85, 18–30, https://doi.org/10.1016/j.atmosenv.2013.11.039, 2014.
Hinkley, E. D.: Laser monitoring of the atmosphere, Topics in applied physics, 14, Springer-Verlag, New York, 380 pp., 1976.
Höpfner, M., Glatthor, N., Grabowski, U., Kellmann, S., Kiefer, M., Linden, A., Orphal, J., Stiller, G., von Clarmann, T., Funke, B., and Boone, C. D.: Sulfur dioxide (SO2) as observed by MIPAS/Envisat: temporal development and spatial distribution at 15–45 km altitude, Atmos. Chem. Phys., 13, 10405–10423, https://doi.org/10.5194/acp-13-10405-2013, 2013.
Hurst, D. F., Hall, E. G., Jordan, A. F., Miloshevich, L. M., Whiteman, D. N., Leblanc, T., Walsh, D., Vömel, H., and Oltmans, S. J.: Comparisons of temperature, pressure and humidity measurements by balloon-borne radiosondes and frost point hygrometers during MOHAVE-2009, Atmos. Meas. Tech., 4, 2777–2793, https://doi.org/10.5194/amt-4-2777-2011, 2011.
JCGM: International vocabulary of basic and general terms in metrology (VIM), Tech. Rep. JCGM 200:2008, International Bureau of Weights and Measures (BIPM), 2008a.
JCGM: Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM), Tech. Rep. JCGM 100: 2008, International Bureau of Weights and Measures (BIPM), 2008b.
JCGM: Evaluation of measurement data – An introduction to the “Guide to the expression of uncertainty in measurement” and related documents, Tech. Rep. JCGM 104: 2009, International Bureau of Weights and Measures (BIPM), 2009.
JCGM: International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM3), Tech. Rep. JCGM 200: 2012, International Bureau of Weights and Measures (BIPM), 2012.
Jenouvrier, A., Merienne, M. F., Coquart, B., Carleer, M., Fally, S., Vandaele, A. C., Hermans, C., and Colin, R.: Fourier transform spectroscopy of the O-2 Herzberg bands - I. Rotational analysis, J. Mol. Spectrosc., 198, 136–162, https://doi.org/10.1006/jmsp.1999.7950, 1999.
Leblanc, T., Sica R., van Gijsel, A., Godin-Beekmann, S., Haefele, A., Trickl, T., Payen, G., and Liberti, G.: Standardized definition and reporting of vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms, ISSI Team on NDACC Lidar Algorithms Report, available for download at: http://www.issibern.ch/teams/ndacc/ISSI_Team_Report.htm, 2016a.
Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Godin-Beekman, S., Haefele, A., Trickl, T., Payen, G., and Gabarrot, F.: Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 1: Vertical resolution, Atmos. Meas. Tech., 9, 4029–4049, https://doi.org/10.5194/amt-9-4029-2016, 2016b.
Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Haefele, A., Payen, G., and Liberti, G.: Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 3: Temperature uncertainty budget, Atmos. Meas. Tech., 9, 4079–4101, https://doi.org/10.5194/amt-9-4079-2016, 2016c.
Malicet, J., Daumont, D., Charbonnier, J., Parisse, C., Chakir, A., and Brion, J.: Ozone uv spectroscopy. 2. Absorption cross-sections and temperature-dependence, J. Atmos. Chem., 21, 263–273, https://doi.org/10.1007/bf00696758, 1995.
McDermid, I. S., Godin, S. M., and Lindqvist, L. O.: Ground-based laser dial system for long-term measurements of stratospheric ozone, Appl. Opt., 29, 3603–3612, 1990.
McDermid, I. S., Beyerle, G., Haner, D. A., and Leblanc, T.: Redesign and improved performance of the tropospheric ozone lidar at the Jet Propulsion Laboratory Table Mountain Facility, Appl. Opt., 41, 7550–7555, 2002.
McGee, T. J., Gross, M., Ferrare, R., Heaps, W., and Singh, U.: Raman dial measurements of stratospheric ozone in the presence of volcanic aerosols, Geophys. Res. Lett., 20, 955–958, https://doi.org/10.1029/93gl00751, 1993.
McGee, T. J., Whiteman, D., Ferrare, R., Butler, J. J., and Burris, J. F.: STROZ LITE – STRatospheric OZone Lidar Trailer Experiment, Opt. Engin., 30, 31–39, 1991.
McLinden, C. A., Fioletov, V., Boersma, K. F., Kharol, S. K., Krotkov, N., Lamsal, L., Makar, P. A., Martin, R. V., Veefkind, J. P., and Yang, K.: Improved satellite retrievals of NO2 and SO2 over the Canadian oil sands and comparisons with surface measurements, Atmos. Chem. Phys., 14, 3637–3656, https://doi.org/10.5194/acp-14-3637-2014, 2014.
Measures, R. M.: Laser remote sensing: fundamentals and applications, Wiley, 510 pp., 1984.
Mégie, G., Allain, J. Y., Chanin, M. L., and Blamont, J. E.: Vertical Profile of Stratospheric Ozone by Lidar Sounding from Ground, Nature, 270, 32-9-331, 1977.
Mégie, G. and Menzies, R. T.: Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species, Appl. Opt., 19, 1173–1183, 1980.
Merienne, M. F., Jenouvrier, A., Coquart, B., Carleer, M., Fally, S., Colin, R., Vandaele, A. C., and Hermans, C.: Improved data set for the Herzberg band systems of 16O2, J. Mol. Spectrosc., 207, 120–120, https://doi.org/10.1006/jmsp.2001.8314, 2001.
Mohr, P. J., Taylor, B. N., and Newell, D. B.: CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys., 80, 633–730, https://doi.org/10.1103/RevModPhys.80.633, 2008.
Müller, J. W.: Dead-time problems, Nucl. Instr. and Meth., 112, 47–57, https://doi.org/10.1016/0029-554X(73)90773-8, 1973.
Papayannis, A., Ancellet, G., Pelon, J., and Mégie, G.: Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere, Appl. Opt., 29, 467–476, 1990.
Pelon, J., and Mégie, G.: Ozone monitoring in the troposphere and lower stratosphere – evaluation and operation of a ground-based lidar station, J. Geophys. Res., 87, 4947–4955, https://doi.org/10.1029/JC087iC07p04947, 1982.
Press, W. H.; Flannery, B. P., Teukolsky, S. A., and Vetterling W. T.: Numerical Recipes: The Art of Scientific Computing (1st ed.), New York, Cambridge University Press, 818 pp., ISBN-13: 978-0-521-88068-8, 1986.
Serdyuchenko, A., Gorshelev, V., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence, Atmos. Meas. Tech., 7, 625–636, https://doi.org/10.5194/amt-7-625-2014, 2014.
Strutt, J. W. (Lord Rayleigh): XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky, Philos. Mag., 47, 375–384, https://doi.org/10.1080/14786449908621276, 1899.
Uchino, O. and Tabata, I.: Mobile lidar for simultaneous measurements of ozone, aerosols, and temperature in the stratosphere, Appl. Opt., 30, 2005–2012, 1991.
Völger, P., Bösenberg, J., and Schult, I.: Scattering Properties of Selected Model Aerosols Calculated at UV-Wavelengths: Implications for DIAL Measurements of Tropospheric Ozone, Beitr. Phys. Atmosph. 69, 177–187, 1996.
Weitkamp, C.: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences, 102, Springer, New York, 460 pp., 2005.
Short summary
This article proposes a standardized approach for the treatment of uncertainty in the ozone differential absorption lidar data processing algorithms. The recommendations are designed to be used homogeneously across large atmospheric observation networks such as NDACC, and allow a clear understanding of the uncertainty budget of multiple lidar datasets for a large spectrum of ozone-related science applications (e.g., climatology, long-term trends, air quality).
This article proposes a standardized approach for the treatment of uncertainty in the ozone...