Articles | Volume 9, issue 11
Atmos. Meas. Tech., 9, 5347–5365, 2016
https://doi.org/10.5194/amt-9-5347-2016
Atmos. Meas. Tech., 9, 5347–5365, 2016
https://doi.org/10.5194/amt-9-5347-2016

Research article 07 Nov 2016

Research article | 07 Nov 2016

Radiation fog formation alerts using attenuated backscatter power from automatic lidars and ceilometers

Martial Haeffelin et al.

Related authors

A new conceptual model for adiabatic fog
Felipe Toledo, Martial Haeffelin, Eivind Wærsted, and Jean-Charles Dupont
Atmos. Chem. Phys., 21, 13099–13117, https://doi.org/10.5194/acp-21-13099-2021,https://doi.org/10.5194/acp-21-13099-2021, 2021
Short summary
Sensitivity to the sources of uncertainties in the modeling of atmospheric CO2 concentration within and in the vicinity of Paris
Jinghui Lian, François-Marie Bréon, Grégoire Broquet, Thomas Lauvaux, Bo Zheng, Michel Ramonet, Irène Xueref-Remy, Simone Kotthaus, Martial Haeffelin, and Philippe Ciais
Atmos. Chem. Phys., 21, 10707–10726, https://doi.org/10.5194/acp-21-10707-2021,https://doi.org/10.5194/acp-21-10707-2021, 2021
Short summary
Response of atmospheric composition to COVID-19 lockdown measures during Spring in the Paris region (France)
Jean-Eudes Petit, Jean-Charles Dupont, Olivier Favez, Valérie Gros, Yunjiang Zhang, Jean Sciare, Leïla Simon, François Truong, Nicolas Bonnaire, Tanguy Amodeo, Robert Vautard, and Martial Haeffelin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-369,https://doi.org/10.5194/acp-2021-369, 2021
Preprint under review for ACP
Short summary
PARAFOG v2.0: a near real-time decision tool to support nowcasting fog formation events at local scales
Jean-François Ribaud, Martial Haeffelin, Jean-Charles Dupont, Marc-Antoine Drouin, Felipe Toledo, and Simone Kotthaus
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-99,https://doi.org/10.5194/amt-2021-99, 2021
Preprint under review for AMT
Short summary
Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning
Roland Stirnberg, Jan Cermak, Simone Kotthaus, Martial Haeffelin, Hendrik Andersen, Julia Fuchs, Miae Kim, Jean-Eudes Petit, and Olivier Favez
Atmos. Chem. Phys., 21, 3919–3948, https://doi.org/10.5194/acp-21-3919-2021,https://doi.org/10.5194/acp-21-3919-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrievals of dust-related particle mass and ice-nucleating particle concentration profiles with ground-based polarization lidar and sun photometer over a megacity in central China
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021,https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Introducing the MISR level 2 near real-time aerosol product
Marcin L. Witek, Michael J. Garay, David J. Diner, Michael A. Bull, Felix C. Seidel, Abigail M. Nastan, and Earl G. Hansen
Atmos. Meas. Tech., 14, 5577–5591, https://doi.org/10.5194/amt-14-5577-2021,https://doi.org/10.5194/amt-14-5577-2021, 2021
Short summary
Estimation of PM2.5 concentration in China using linear hybrid machine learning model
Zhihao Song, Bin Chen, Yue Huang, Li Dong, and Tingting Yang
Atmos. Meas. Tech., 14, 5333–5347, https://doi.org/10.5194/amt-14-5333-2021,https://doi.org/10.5194/amt-14-5333-2021, 2021
Short summary
Species correlation measurements in turbulent flare plumes: considerations for field measurements
Scott P. Seymour and Matthew R. Johnson
Atmos. Meas. Tech., 14, 5179–5197, https://doi.org/10.5194/amt-14-5179-2021,https://doi.org/10.5194/amt-14-5179-2021, 2021
Short summary
Retrieval of aerosol microphysical properties from atmospheric lidar sounding: an investigation using synthetic measurements and data from the ACEPOL campaign
William G. K. McLean, Guangliang Fu, Sharon P. Burton, and Otto P. Hasekamp
Atmos. Meas. Tech., 14, 4755–4771, https://doi.org/10.5194/amt-14-4755-2021,https://doi.org/10.5194/amt-14-4755-2021, 2021
Short summary

Cited articles

Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008.
Bergot, T., Escobar, J., and Masson, V.: Effect of small-scale surface heterogeneities and buildings on radiation fog: Large-eddy simulation study at Paris–Charles de Gaulle airport. Q. J. Roy. Meteor. Soc., 141, 285–298, 2015.
Boneh, T., Weymouth, G. T., Newham, P., Potts, R., Bally, J., Nicholson, A. E., and Korb, K. B.: Fog Forecasting for Melbourne Airport Using a Bayesian Decision Network, Weather and Forecast., 30, 1218–1233, 2015.
Dupont, J. C., Haeffelin, M., Stolaki, S., and Elias, T.: Analysis of dynamical and thermal processes driving fog and quasi-fog life cycles using the 2010–2013 ParisFog dataset, Pure Appl. Geophys., 173, 1337–1358, 2016.
Dutta, D. and Chaudhuri, S.: Nowcasting visibility during wintertime fog over the airport of a metropolis of India: decision tree algorithm and artificial neural network approach, Nat. Hazards, 75, 1349–1368, 2015.
Download
Short summary
Air traffic at busy airports can be significantly disrupted because low visibility due to fog makes it unsafe to take off, land and taxi on the ground. In this paper we show how automatic profiling lidar ceilometer measurements, available at most airports, can be used to provide pre-fog alert information, and hence help airport weather forecasters to better predict these low visibility conditions. This research was carried out in the context of a field campaign at Paris CDG airport (France).