Articles | Volume 10, issue 2
https://doi.org/10.5194/amt-10-445-2017
https://doi.org/10.5194/amt-10-445-2017
Research article
 | 
06 Feb 2017
Research article |  | 06 Feb 2017

New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO2 dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

Can Li, Nickolay A. Krotkov, Simon Carn, Yan Zhang, Robert J. D. Spurr, and Joanna Joiner

Related authors

Opinion: Beyond global means – novel space-based approaches to indirectly constrain the concentrations of and trends and variations in the tropospheric hydroxyl radical (OH)
Bryan N. Duncan, Daniel C. Anderson, Arlene M. Fiore, Joanna Joiner, Nickolay A. Krotkov, Can Li, Dylan B. Millet, Julie M. Nicely, Luke D. Oman, Jason M. St. Clair, Joshua D. Shutter, Amir H. Souri, Sarah A. Strode, Brad Weir, Glenn M. Wolfe, Helen M. Worden, and Qindan Zhu
Atmos. Chem. Phys., 24, 13001–13023, https://doi.org/10.5194/acp-24-13001-2024,https://doi.org/10.5194/acp-24-13001-2024, 2024
Short summary
Version 1 NOAA-20/OMPS Nadir Mapper total column SO2 product: continuation of NASA long-term global data record
Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov
Earth Syst. Sci. Data, 16, 4291–4309, https://doi.org/10.5194/essd-16-4291-2024,https://doi.org/10.5194/essd-16-4291-2024, 2024
Short summary
Estimation of anthropogenic and volcanic SO2 emissions from satellite data in the presence of snow/ice on the ground
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Nickolay A. Krotkov, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Atmos. Meas. Tech., 16, 5575–5592, https://doi.org/10.5194/amt-16-5575-2023,https://doi.org/10.5194/amt-16-5575-2023, 2023
Short summary
Use of machine learning and principal component analysis to retrieve nitrogen dioxide (NO2) with hyperspectral imagers and reduce noise in spectral fitting
Joanna Joiner, Sergey Marchenko, Zachary Fasnacht, Lok Lamsal, Can Li, Alexander Vasilkov, and Nickolay Krotkov
Atmos. Meas. Tech., 16, 481–500, https://doi.org/10.5194/amt-16-481-2023,https://doi.org/10.5194/amt-16-481-2023, 2023
Short summary
Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations
Jing Wei, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, and Maureen Cribb
Atmos. Chem. Phys., 23, 1511–1532, https://doi.org/10.5194/acp-23-1511-2023,https://doi.org/10.5194/acp-23-1511-2023, 2023
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024,https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024,https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024,https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary
Can the remote sensing of combustion phase improve estimates of landscape fire smoke emission rate and composition?
Farrer Owsley-Brown, Martin J. Wooster, Mark J. Grosvenor, and Yanan Liu
Atmos. Meas. Tech., 17, 6247–6264, https://doi.org/10.5194/amt-17-6247-2024,https://doi.org/10.5194/amt-17-6247-2024, 2024
Short summary

Cited articles

Ahmad, Z., Bhartia, P. K., and Krotkov, N.: Spectral properties of backscattered UV radiation in cloudy atmospheres, J. Geophys. Res., 109, D01201, https://doi.org/10.1029/2003JD003395, 2004.
Bhartia, P. K. and Wellemeyer, C. W.: OMI TOMS-V8 Total O3 Algorithm, Algorithm Theoretical Baseline Document: OMI Ozone Products, edited by: Bhartia, P. K., ATBD-OMI-02, version 2.0, available at: http://eospso.gsfc.nasa.gov/sites/default/files/atbd/ATBD-OMI-02.pdf (last access: 31 January 2017), 2002.
Bluth, G. J. S., Schnetzler, C. C., Krueger, A. J., and Walter, L. S.: The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations, Nature, 366, 327–329, 1993.
Burrows, J. P, Weber, M., Buchwitz, M., Rozanov, V. V., Ladstädter-Weissenmayer, A., Richter, A., de Beek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U., Eisinger, M., and Perner, D.: The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results, J. Atmos. Sci., 56, 151–175, 1999.
Carn, S. A.: Multi-Satellite Volcanic Sulfur Dioxide (SO2) Database Long-Term L4 Global, Version 2, Goddard Earth Science Data and Information Services Center (GES DISC), Greenbelt, MD, USA, available at: http://disc.sci.gsfc.nasa.gov/datacollection/MSVOLSO2L4_V2.html (last access: 17 June 2016), 2015.
Download
Short summary
In this paper, we describe the new-generation OMI volcanic SO2 algorithm based on our principal component analysis (PCA) retrieval technique. We demonstrate significant improvement in the our new OMI volcanic SO2 data, with the retrieval noise reduced by a factor of 2 as compared with the previous dataset. The algorithm also improves the accuracy for large volcanic eruptions. It is also capable of producing consistent retrievals between different instruments.