Articles | Volume 12, issue 2
https://doi.org/10.5194/amt-12-1013-2019
https://doi.org/10.5194/amt-12-1013-2019
Research article
 | 
15 Feb 2019
Research article |  | 15 Feb 2019

Correcting atmospheric CO2 and CH4 mole fractions obtained with Picarro analyzers for sensitivity of cavity pressure to water vapor

Friedemann Reum, Christoph Gerbig, Jost V. Lavric, Chris W. Rella, and Mathias Göckede

Related authors

Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2023-2839,https://doi.org/10.5194/egusphere-2023-2839, 2024
Short summary
Accurate measurements of atmospheric carbon dioxide and methane mole fractions at the Siberian coastal site Ambarchik
Friedemann Reum, Mathias Göckede, Jost V. Lavric, Olaf Kolle, Sergey Zimov, Nikita Zimov, Martijn Pallandt, and Martin Heimann
Atmos. Meas. Tech., 12, 5717–5740, https://doi.org/10.5194/amt-12-5717-2019,https://doi.org/10.5194/amt-12-5717-2019, 2019
Short summary
An improved water correction function for Picarro greenhouse gas analyzers
Friedemann Reum, Christoph Gerbig, Jost V. Lavric, Chris W. Rella, and Mathias Göckede
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-174,https://doi.org/10.5194/amt-2017-174, 2017
Revised manuscript not accepted
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Long-term evaluation of commercial air quality sensors: an overview from the QUANT (Quantification of Utility of Atmospheric Network Technologies) study
Sebastian Diez, Stuart Lacy, Hugh Coe, Josefina Urquiza, Max Priestman, Michael Flynn, Nicholas Marsden, Nicholas A. Martin, Stefan Gillott, Thomas Bannan, and Pete M. Edwards
Atmos. Meas. Tech., 17, 3809–3827, https://doi.org/10.5194/amt-17-3809-2024,https://doi.org/10.5194/amt-17-3809-2024, 2024
Short summary
In-flight characterization of a compact airborne quantum cascade laser absorption spectrometer
Linda Ort, Lenard Lukas Röder, Uwe Parchatka, Rainer Königstedt, Daniel Crowley, Frank Kunz, Ralf Wittkowski, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 17, 3553–3565, https://doi.org/10.5194/amt-17-3553-2024,https://doi.org/10.5194/amt-17-3553-2024, 2024
Short summary
Full characterization and calibration of a transfer standard monitor for atmospheric radon measurements
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024,https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Observing low-altitude features in ozone concentrations in a shoreline environment via uncrewed aerial systems
Josie K. Radtke, Benjamin N. Kies, Whitney A. Mottishaw, Sydney M. Zeuli, Aidan T. H. Voon, Kelly L. Koerber, Grant W. Petty, Michael P. Vermeuel, Timothy H. Bertram, Ankur R. Desai, Joseph P. Hupy, R. Bradley Pierce, Timothy J. Wagner, and Patricia A. Cleary
Atmos. Meas. Tech., 17, 2833–2847, https://doi.org/10.5194/amt-17-2833-2024,https://doi.org/10.5194/amt-17-2833-2024, 2024
Short summary
An integrated uncrewed aerial vehicle platform with sensing and sampling systems for the measurement of air pollutant concentrations
Chen-Wei Liang and Chang-Hung Shen
Atmos. Meas. Tech., 17, 2671–2686, https://doi.org/10.5194/amt-17-2671-2024,https://doi.org/10.5194/amt-17-2671-2024, 2024
Short summary

Cited articles

Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., Desai, A. R., Stanier, C. O., De Wekker, S. F. J., Wolfe, D. E., Munger, J. W., and Tans, P. P.: CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts, Atmos. Meas. Tech., 7, 647–687, https://doi.org/10.5194/amt-7-647-2014, 2014. 
Chen, H., Winderlich, J., Gerbig, C., Hoefer, A., Rella, C. W., Crosson, E. R., Van Pelt, A. D., Steinbach, J., Kolle, O., Beck, V., Daube, B. C., Gottlieb, E. W., Chow, V. Y., Santoni, G. W., and Wofsy, S. C.: High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique, Atmos. Meas. Tech., 3, 375–386, https://doi.org/10.5194/amt-3-375-2010, 2010. 
Chen, Q., Zhang, M., Liu, S., He, Y., Luo, H., Luo, J., and Lv, W.: Revision to the humidity correction equation in the calculation formulae of the air refractive index based on a phase step interferometer with three frequency-stabilized lasers, Meas. Sci. Technol., 27, 125002, https://doi.org/10.1088/0957-0233/27/12/125002, 2016. 
Crosson, E. R.: A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor, Appl. Phys. B, 92, 403–408, https://doi.org/10.1007/s00340-008-3135-y, 2008. 
Johnson, J. E. and Rella, C. W.: Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O−H2O and δ2H−H2O values by cavity ring-down spectroscopy, Atmos. Meas. Tech., 10, 3073–3091, https://doi.org/10.5194/amt-10-3073-2017, 2017. 
Download
Short summary
Atmospheric CO2 and CH4 mole fractions are often measured using greenhouse gas analyzers manufactured by Picarro, Inc. We report biases in these measurements that are related to pressure changes in the optical cavity of the analyzers and occur mainly at low water vapor mole fractions. We provide a method to correct the biases, which contributes to keeping the overall accuracy of CO2 and CH4 measurements with Picarro analyzers within the WMO interlaboratory compatibility goals.