Articles | Volume 12, issue 2
https://doi.org/10.5194/amt-12-1295-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-1295-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Halo ratio from ground-based all-sky imaging
Paolo Dandini
School of Physics Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK
Laboratoire d'Optique Atmosphérique, Université de Lille/CNRS, Villeneuve d'Ascq, France
Zbigniew Ulanowski
CORRESPONDING AUTHOR
School of Physics Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK
David Campbell
School of Physics Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK
Richard Kaye
School of Engineering and Technology, University of Hertfordshire, Hatfield, AL10 9AB, UK
Related authors
No articles found.
Christoph Kottmeier, Andreas Wieser, Ulrich Corsmeier, Norbert Kalthoff, Philipp Gasch, Bastian Kirsch, Dörthe Ebert, Zbigniew Ulanowski, Dieter Schell, Harald Franke, Florian Schmidmer, Johannes Frielingsdorf, Thomas Feuerle, and Rudolf Hankers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2817, https://doi.org/10.5194/egusphere-2024-2817, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A new aerological dropsonde system for research aircraft has been developed. The system allows to drop up to 4 sondes with one release container and data from up to 30 sondes can be transmitted simultaneously. The sondes enable high-resolution profiling of temperature, humidity, pressure, and wind. Additional sensors for radioactivity and particles have integrated and tested. Operations in different campaigns have confirmed the reliability of the system and the quality of data.
Vasiliki Daskalopoulou, Panagiotis I. Raptis, Alexandra Tsekeri, Vassilis Amiridis, Stelios Kazadzis, Zbigniew Ulanowski, Vassilis Charmandaris, Konstantinos Tassis, and William Martin
Atmos. Meas. Tech., 16, 4529–4550, https://doi.org/10.5194/amt-16-4529-2023, https://doi.org/10.5194/amt-16-4529-2023, 2023
Short summary
Short summary
Atmospheric dust particles may present a preferential alignment due to their shape on long range transport. Since dust is abundant and plays a key role to global climate, the elusive observation of orientation will be a game changer to existing measurement techniques and the representation of particles in climate models. We utilize a specifically designed instrument, SolPol, and target the Sun from the ground for large polarization values under dusty conditions, a clear sign of orientation.
Maria Kezoudi, Matthias Tesche, Helen Smith, Alexandra Tsekeri, Holger Baars, Maximilian Dollner, Víctor Estellés, Johannes Bühl, Bernadett Weinzierl, Zbigniew Ulanowski, Detlef Müller, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 6781–6797, https://doi.org/10.5194/acp-21-6781-2021, https://doi.org/10.5194/acp-21-6781-2021, 2021
Short summary
Short summary
Mineral dust concentrations in the diameter range from 0.4 to 14.0 μm were measured with the balloon-borne UCASS optical particle counter. Launches were coordinated with ground-based remote-sensing and airborne in situ measurements during a Saharan dust outbreak over Cyprus. Particle number concentrations reached 50 cm−3 for the diameter range 0.8–13.9 μm. Comparisons with aircraft data show reasonable agreement in magnitude and shape of the particle size distribution.
Sebastian O'Shea, Jonathan Crosier, James Dorsey, Louis Gallagher, Waldemar Schledewitz, Keith Bower, Oliver Schlenczek, Stephan Borrmann, Richard Cotton, Christopher Westbrook, and Zbigniew Ulanowski
Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021, https://doi.org/10.5194/amt-14-1917-2021, 2021
Short summary
Short summary
The number, shape, and size of ice crystals in clouds are important properties that influence the Earth's radiation budget, cloud evolution, and precipitation formation. This work suggests that one of the most widely used methods for in situ measurements of these properties has significant uncertainties and biases. We suggest methods that dramatically improve these measurements, which can be applied to past and future datasets from these instruments.
Vasiliki Daskalopoulou, Sotirios A. Mallios, Zbigniew Ulanowski, George Hloupis, Anna Gialitaki, Ioanna Tsikoudi, Konstantinos Tassis, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 927–949, https://doi.org/10.5194/acp-21-927-2021, https://doi.org/10.5194/acp-21-927-2021, 2021
Short summary
Short summary
This research highlights the detection of charged Saharan dust in Greece and provides indications of charge separation in the plumes through the first-ever co-located ground electric field measurements and sophisticated lidar observations. We provide a robust methodology for the extraction of a fair-weather proxy field used to assess the effect of lofted dust particles to the electric field and insert a realistic modelling aspect to the charge accumulation areas within electrically active dust.
Joseph Girdwood, Helen Smith, Warren Stanley, Zbigniew Ulanowski, Chris Stopford, Charles Chemel, Konstantinos-Matthaios Doulgeris, David Brus, David Campbell, and Robert Mackenzie
Atmos. Meas. Tech., 13, 6613–6630, https://doi.org/10.5194/amt-13-6613-2020, https://doi.org/10.5194/amt-13-6613-2020, 2020
Short summary
Short summary
We present the design and validation of an unmanned aerial vehicle (UAV) equipped with a bespoke optical particle counter (OPC). This is used to monitor atmospheric particles, which have significant effects on our weather and climate. These effects are hard to characterise properly, partly because they occur in regions that are not commonly accessible to traditional instrumentation. Our new platform gives us the capability to access these regions.
Helen R. Smith, Zbigniew Ulanowski, Paul H. Kaye, Edwin Hirst, Warren Stanley, Richard Kaye, Andreas Wieser, Chris Stopford, Maria Kezoudi, Joseph Girdwood, Richard Greenaway, and Robert Mackenzie
Atmos. Meas. Tech., 12, 6579–6599, https://doi.org/10.5194/amt-12-6579-2019, https://doi.org/10.5194/amt-12-6579-2019, 2019
Short summary
Short summary
The Universal Cloud and Aerosol Sounding System (UCASS) is a low-cost miniature optical particle counter (OPC) capable of sizing particles in the size range 0.4–40 μm. The open-geometry design makes the instrument suitable for deployment on balloon-borne sounding systems, dropsonde systems or as part of an unmanned aerial vehicle (UAV). Laboratory and field experiments show good agreement with reference instruments in a range of cloudy and dusty environments.
Jens Voigtländer, Cedric Chou, Henner Bieligk, Tina Clauss, Susan Hartmann, Paul Herenz, Dennis Niedermeier, Georg Ritter, Frank Stratmann, and Zbigniew Ulanowski
Atmos. Chem. Phys., 18, 13687–13702, https://doi.org/10.5194/acp-18-13687-2018, https://doi.org/10.5194/acp-18-13687-2018, 2018
Short summary
Short summary
Surface roughness of ice crystals has recently been acknowledged to strongly influence the radiative properties of cold clouds such as cirrus, but it is unclear how this roughness arises. The study investigates the origins of ice surface roughness under a variety of atmospherically relevant conditions, using a novel method to measure roughness quantitatively. It is found that faster growth leads to stronger roughness. Roughness also increases following repeated growth–sublimation cycles.
Martin Schnaiter, Emma Järvinen, Paul Vochezer, Ahmed Abdelmonem, Robert Wagner, Olivier Jourdan, Guillaume Mioche, Valery N. Shcherbakov, Carl G. Schmitt, Ugo Tricoli, Zbigniew Ulanowski, and Andrew J. Heymsfield
Atmos. Chem. Phys., 16, 5091–5110, https://doi.org/10.5194/acp-16-5091-2016, https://doi.org/10.5194/acp-16-5091-2016, 2016
Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier
Atmos. Chem. Phys., 14, 1649–1662, https://doi.org/10.5194/acp-14-1649-2014, https://doi.org/10.5194/acp-14-1649-2014, 2014
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
The first microwave and submillimetre closure study using particle models of oriented ice hydrometeors to simulate polarimetric measurements of ice clouds
Polarization upgrade of specMACS: calibration and characterization of the 2D RGB polarization-resolving cameras
Advantages of G-band radar in multi-frequency, liquid phase microphysical retrievals
Detection of small drizzle droplets in a large cloud chamber using ultrahigh-resolution radar
W-band S–Z relationships for rimed snow particles: observational evidence from combined airborne and ground-based observations
The generation of EarthCARE L1 test data sets using atmospheric model data sets
The EarthCARE mission – science and system overview
Processing reflectivity and Doppler velocity from EarthCARE's cloud-profiling radar: the C-FMR, C-CD and C-APC products
3D cloud envelope and cloud development velocity from simulated CLOUD (C3IEL) stereo images
Passive ground-based remote sensing of radiation fog
Locations for the best lidar view of mid-level and high clouds
VELOX – a new thermal infrared imager for airborne remote sensing of cloud and surface properties
Above-aircraft cirrus cloud and aerosol optical depth from hyperspectral irradiances measured by a total-diffuse radiometer
Impact of second-trip echoes for space-borne high-pulse-repetition-frequency nadir-looking W-band cloud radars
Spaceborne differential absorption radar water vapor retrieval capabilities in tropical and subtropical boundary layer cloud regimes
Multifrequency radar observations of clouds and precipitation including the G-band
Can machine learning correct microwave humidity radiances for the influence of clouds?
McRALI: a Monte Carlo high-spectral-resolution lidar and Doppler radar simulator for three-dimensional cloudy atmosphere remote sensing
Cirrus cloud shape detection by tomographic extinction retrievals from infrared limb emission sounder measurements
Absolute calibration method for frequency-modulated continuous wave (FMCW) cloud radars based on corner reflectors
Evaluation of the reflectivity calibration of W-band radars based on observations in rain
A technical description of the Balloon Lidar Experiment (BOLIDE)
Application of the shipborne remote sensing supersite OCEANET for profiling of Arctic aerosols and clouds during Polarstern cruise PS106
Mind the gap – Part 2: Improving quantitative estimates of cloud and rain water path in oceanic warm rain using spaceborne radars
Ice crystal characterization in cirrus clouds II: radiometric characterization of HaloCam for the quantitative analysis of halo displays
Mind the gap – Part 1: Accurately locating warm marine boundary layer clouds and precipitation using spaceborne radars
Free-fall experiments of volcanic ash particles using a 2-D video disdrometer
Microwave Radar/radiometer for Arctic Clouds (MiRAC): first insights from the ACLOUD campaign
A robust automated technique for operational calibration of ceilometers using the integrated backscatter from totally attenuating liquid clouds
Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds
Use of polarimetric radar measurements to constrain simulated convective cell evolution: a pilot study with Lagrangian tracking
Improvement of airborne retrievals of cloud droplet number concentration of trade wind cumulus using a synergetic approach
Aircraft-based stereographic reconstruction of 3-D cloud geometry
Polarization lidar: an extended three-signal calibration approach
The NCAS mobile dual-polarisation Doppler X-band weather radar (NXPol)
Initial report on polar mesospheric cloud observations by Himawari-8
Combining cloud radar and radar wind profiler for a value added estimate of vertical air motion and particle terminal velocity within clouds
A simple biota removal algorithm for 35 GHz cloud radar measurements
Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar
All-sky photogrammetry techniques to georeference a cloud field
Depolarization calibration and measurements using the CANDAC Rayleigh–Mie–Raman lidar at Eureka, Canada
Ice crystal characterization in cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays
ISMAR: an airborne submillimetre radiometer
Sky camera geometric calibration using solar observations
Application of oxygen A-band equivalent width to disambiguate downwelling radiances for cloud optical depth measurement
Toward autonomous surface-based infrared remote sensing of polar clouds: cloud-height retrievals
How big is an OMI pixel?
Differential absorption radar techniques: water vapor retrievals
Design and characterization of specMACS, a multipurpose hyperspectral cloud and sky imager
A microbolometer-based far infrared radiometer to study thin ice clouds in the Arctic
Karina McCusker, Anthony J. Baran, Chris Westbrook, Stuart Fox, Patrick Eriksson, Richard Cotton, Julien Delanoë, and Florian Ewald
Atmos. Meas. Tech., 17, 3533–3552, https://doi.org/10.5194/amt-17-3533-2024, https://doi.org/10.5194/amt-17-3533-2024, 2024
Short summary
Short summary
Polarised radiative transfer simulations are performed using an atmospheric model based on in situ measurements. These are compared to large polarisation measurements to explore whether such measurements can provide information on cloud ice, e.g. particle shape and orientation. We find that using oriented particle models with shapes based on imagery generally allows for accurate simulations. However, results are sensitive to shape assumptions such as the choice of single crystals or aggregates.
Anna Weber, Tobias Kölling, Veronika Pörtge, Andreas Baumgartner, Clemens Rammeloo, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 1419–1439, https://doi.org/10.5194/amt-17-1419-2024, https://doi.org/10.5194/amt-17-1419-2024, 2024
Short summary
Short summary
In this work, we introduce the 2D RGB polarization-resolving cameras of the airborne hyperspectral and polarized imaging system specMACS. A full characterization and calibration of the cameras including a geometric calibration as well as a radiometric characterization is provided, allowing for the computation of absolute calibrated, georeferenced Stokes vectors rotated into the scattering plane. We validate the calibration by comparing sunglint measurements to radiative transfer simulations.
Benjamin Michael Courtier, Alessandro Battaglia, and Kamil Mroz
EGUsphere, https://doi.org/10.5194/egusphere-2024-205, https://doi.org/10.5194/egusphere-2024-205, 2024
Short summary
Short summary
A new millimetre wavelength radar is used to improve methods of retrieving information about the smallest droplets that exist within clouds. The radar is shown to be able to retrieve the vertical wind speed more to, to retrieve the cloud liquid water content for thinner clouds and can retrieve information about the droplet sizes and the average drop size in lighter rainfall than would be possible by using longer wavelength radars.
Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alex B. Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, and Mariko Oue
Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024, https://doi.org/10.5194/amt-17-1133-2024, 2024
Short summary
Short summary
In this article, we demonstrate the feasibility of applying advanced radar technology to detect liquid droplets generated in the cloud chamber. Specifically, we show that using radar with centimeter-scale resolution, single drizzle drops with a diameter larger than 40 µm can be detected. This study demonstrates the applicability of remote sensing instruments in laboratory experiments and suggests new applications of ultrahigh-resolution radar for atmospheric sensing.
Shelby Fuller, Samuel A. Marlow, Samuel Haimov, Matthew Burkhart, Kevin Shaffer, Austin Morgan, and Jefferson R. Snider
Atmos. Meas. Tech., 16, 6123–6142, https://doi.org/10.5194/amt-16-6123-2023, https://doi.org/10.5194/amt-16-6123-2023, 2023
Short summary
Short summary
Snowfall rate and radar reflectivity measurements were analyzed. We confirmed that the relationship between snowfall rate and reflectivity is dependent on snow particle type. It is likely that the measured snowfall was produced by solid (ice) particles colliding with liquid cloud droplets, forming rimed snow particles. This analysis is expected to improve snowfall rate estimation based on measurements made using W-band radars.
David P. Donovan, Pavlos Kollias, Almudena Velázquez Blázquez, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5327–5356, https://doi.org/10.5194/amt-16-5327-2023, https://doi.org/10.5194/amt-16-5327-2023, 2023
Short summary
Short summary
The Earth Cloud, Aerosol and Radiation Explorer mission (EarthCARE) is a multi-instrument cloud–aerosol–radiation-oriented satellite for climate and weather applications. For this satellite mission to be successful, the development and implementation of new techniques for turning the measured raw signals into useful data is required. This paper describes how atmospheric model data were used as the basis for creating realistic high-resolution simulated data sets to facilitate this process.
Tobias Wehr, Takuji Kubota, Georgios Tzeremes, Kotska Wallace, Hirotaka Nakatsuka, Yuichi Ohno, Rob Koopman, Stephanie Rusli, Maki Kikuchi, Michael Eisinger, Toshiyuki Tanaka, Masatoshi Taga, Patrick Deghaye, Eichi Tomita, and Dirk Bernaerts
Atmos. Meas. Tech., 16, 3581–3608, https://doi.org/10.5194/amt-16-3581-2023, https://doi.org/10.5194/amt-16-3581-2023, 2023
Short summary
Short summary
The EarthCARE satellite is due for launch in 2024. It includes four scientific instruments to measure global vertical profiles of aerosols, clouds and precipitation properties together with radiative fluxes and derived heating rates. The mission's scientific requirements, the satellite and the ground segment are described. In particular, the four scientific instruments and their performance are described at the level of detail required by mission data users.
Pavlos Kollias, Bernat Puidgomènech Treserras, Alessandro Battaglia, Paloma C. Borque, and Aleksandra Tatarevic
Atmos. Meas. Tech., 16, 1901–1914, https://doi.org/10.5194/amt-16-1901-2023, https://doi.org/10.5194/amt-16-1901-2023, 2023
Short summary
Short summary
The Earth Clouds, Aerosols and Radiation (EarthCARE) satellite mission developed by the European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) features the first spaceborne 94 GHz Doppler cloud-profiling radar (CPR) with Doppler capability. Here, we describe the post-processing algorithms that apply quality control and corrections to CPR measurements and derive key geophysical variables such as hydrometeor locations and best estimates of particle sedimentation fall velocities.
Paolo Dandini, Céline Cornet, Renaud Binet, Laetitia Fenouil, Vadim Holodovsky, Yoav Y. Schechner, Didier Ricard, and Daniel Rosenfeld
Atmos. Meas. Tech., 15, 6221–6242, https://doi.org/10.5194/amt-15-6221-2022, https://doi.org/10.5194/amt-15-6221-2022, 2022
Short summary
Short summary
3D cloud envelope and development velocity are retrieved from realistic simulations of multi-view
CLOUD (C3IEL) images. Cloud development velocity is derived by finding matching features
between acquisitions separated by 20 s. The tie points are then mapped from image to space via 3D
reconstruction of the cloud envelope obtained from 2 simultaneous images. The retrieved cloud
topography as well as the velocities are in good agreement with the estimates obtained from the
physical models.
Heather Guy, David D. Turner, Von P. Walden, Ian M. Brooks, and Ryan R. Neely
Atmos. Meas. Tech., 15, 5095–5115, https://doi.org/10.5194/amt-15-5095-2022, https://doi.org/10.5194/amt-15-5095-2022, 2022
Short summary
Short summary
Fog formation is highly sensitive to near-surface temperatures and humidity profiles. Passive remote sensing instruments can provide continuous measurements of the vertical temperature and humidity profiles and liquid water content, which can improve fog forecasts. Here we compare the performance of collocated infrared and microwave remote sensing instruments and demonstrate that the infrared instrument is especially sensitive to the onset of thin radiation fog.
Matthias Tesche and Vincent Noel
Atmos. Meas. Tech., 15, 4225–4240, https://doi.org/10.5194/amt-15-4225-2022, https://doi.org/10.5194/amt-15-4225-2022, 2022
Short summary
Short summary
Mid-level and high clouds can be considered natural laboratories for studying cloud glaciation in the atmosphere. While they can be conveniently observed from ground with lidar, such measurements require a clear line of sight between the instrument and the target cloud. Here, observations of clouds with two spaceborne lidars are used to assess where ground-based lidar measurements of mid- and upper-level clouds are least affected by the light-attenuating effect of low-level clouds.
Michael Schäfer, Kevin Wolf, André Ehrlich, Christoph Hallbauer, Evelyn Jäkel, Friedhelm Jansen, Anna Elizabeth Luebke, Joshua Müller, Jakob Thoböll, Timo Röschenthaler, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 15, 1491–1509, https://doi.org/10.5194/amt-15-1491-2022, https://doi.org/10.5194/amt-15-1491-2022, 2022
Short summary
Short summary
The new airborne thermal infrared imager VELOX is introduced. It measures two-dimensional fields of spectral thermal infrared radiance or brightness temperature within the large atmospheric window. The technical specifications as well as necessary calibration and correction procedures are presented. Example measurements from the first field deployment are analysed with respect to cloud coverage and cloud top altitude.
Matthew S. Norgren, John Wood, K. Sebastian Schmidt, Bastiaan van Diedenhoven, Snorre A. Stamnes, Luke D. Ziemba, Ewan C. Crosbie, Michael A. Shook, A. Scott Kittelman, Samuel E. LeBlanc, Stephen Broccardo, Steffen Freitag, and Jeffrey S. Reid
Atmos. Meas. Tech., 15, 1373–1394, https://doi.org/10.5194/amt-15-1373-2022, https://doi.org/10.5194/amt-15-1373-2022, 2022
Short summary
Short summary
A new spectral instrument (SPN-S), with the ability to partition solar radiation into direct and diffuse components, is used in airborne settings to study the optical properties of aerosols and cirrus. It is a low-cost and mechanically simple system but has higher measurement uncertainty than existing standards. This challenge is overcome by utilizing the unique measurement capabilities to develop new retrieval techniques. Validation is done with data from two NASA airborne research campaigns.
Alessandro Battaglia
Atmos. Meas. Tech., 14, 7809–7820, https://doi.org/10.5194/amt-14-7809-2021, https://doi.org/10.5194/amt-14-7809-2021, 2021
Short summary
Short summary
Space-borne radar returns can be contaminated by artefacts caused by radiation that undergoes multiple scattering events and appears to originate from ranges well below the surface range. While such artefacts have been rarely observed from the currently deployed systems, they may become a concern in future cloud radar systems, potentially enhancing cloud cover high up in the troposphere via ghost returns.
Richard J. Roy, Matthew Lebsock, and Marcin J. Kurowski
Atmos. Meas. Tech., 14, 6443–6468, https://doi.org/10.5194/amt-14-6443-2021, https://doi.org/10.5194/amt-14-6443-2021, 2021
Short summary
Short summary
This study describes the potential capabilities of a hypothetical spaceborne radar to observe water vapor within clouds.
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021, https://doi.org/10.5194/amt-14-3615-2021, 2021
Short summary
Short summary
Observations collected during the 25 February 2020 deployment of the VIPR at the Stony Brook Radar Observatory clearly demonstrate the potential of G-band radars for cloud and precipitation research. The field experiment, which coordinated an X-, Ka-, W- and G-band radar, revealed that the differential reflectivity from Ka–G band pair provides larger signals than the traditional Ka–W pairing underpinning an increased sensitivity to smaller amounts of liquid and ice water mass and sizes.
Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan
Atmos. Meas. Tech., 14, 2957–2979, https://doi.org/10.5194/amt-14-2957-2021, https://doi.org/10.5194/amt-14-2957-2021, 2021
Short summary
Short summary
Currently, cloud contamination in microwave humidity channels is addressed using filtering schemes. We present an approach to correct the cloud-affected microwave humidity radiances using a Bayesian machine learning technique. The technique combines orthogonal information from microwave channels to obtain a probabilistic prediction of the clear-sky radiances. With this approach, we are able to predict bias-free clear-sky radiances with well-represented case-specific uncertainty estimates.
Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, Valery Shcherbakov, Céline Cornet, Julien Delanoë, Yahya Gour, Olivier Jourdan, Sandra Banson, and Edouard Bray
Atmos. Meas. Tech., 14, 199–221, https://doi.org/10.5194/amt-14-199-2021, https://doi.org/10.5194/amt-14-199-2021, 2021
Short summary
Short summary
Spaceborne lidar and radar are suitable tools to investigate cloud vertical properties on a global scale. This paper presents the McRALI code that provides simulations of lidar and radar signals from the EarthCARE mission. Regarding radar signals, cloud heterogeneity induces a severe bias in velocity estimates. Regarding lidar signals, multiple scattering is not negligible. Our results also give some insight into the reliability of lidar signal modeling using independent column approximation.
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045, https://doi.org/10.5194/amt-13-7025-2020, https://doi.org/10.5194/amt-13-7025-2020, 2020
Short summary
Short summary
This study examines the potential of new IR limb imager instruments and tomographic methods for cloud detection purposes. Simple color-ratio-based methods are examined and compared against more involved nonlinear convex optimization. In a second part, 3-D measurements of the airborne limb sounder GLORIA taken during the Wave-driven ISentropic Exchange campaign are used to exemplarily derive the location and extent of small-scale cirrus clouds with high spatial accuracy.
Felipe Toledo, Julien Delanoë, Martial Haeffelin, Jean-Charles Dupont, Susana Jorquera, and Christophe Le Gac
Atmos. Meas. Tech., 13, 6853–6875, https://doi.org/10.5194/amt-13-6853-2020, https://doi.org/10.5194/amt-13-6853-2020, 2020
Short summary
Short summary
Cloud observations are essential to rainfall, fog and climate change forecasts. One key instrument for these observations is cloud radar. Yet, discrepancies are found when comparing radars from different ground stations or satellites. Our work presents a calibration methodology for cloud radars based on reference targets, including an analysis of the uncertainty sources. The method enables the calibration of reference instruments to improve the quality and value of the cloud radar network data.
Alexander Myagkov, Stefan Kneifel, and Thomas Rose
Atmos. Meas. Tech., 13, 5799–5825, https://doi.org/10.5194/amt-13-5799-2020, https://doi.org/10.5194/amt-13-5799-2020, 2020
Short summary
Short summary
This study shows two methods for evaluating the reflectivity calibration of W-band cloud radars. Both methods use natural rain as a reference target. The first method is based on spectral polarimetric observations and requires a polarimetric cloud radar with a scanner. The second method utilizes disdrometer observations and can be applied to scanning and vertically pointed radars. Both methods show consistent results and can be applied for operational monitoring of measurement quality.
Bernd Kaifler, Dimitry Rempel, Philipp Roßi, Christian Büdenbender, Natalie Kaifler, and Volodymyr Baturkin
Atmos. Meas. Tech., 13, 5681–5695, https://doi.org/10.5194/amt-13-5681-2020, https://doi.org/10.5194/amt-13-5681-2020, 2020
Short summary
Short summary
The Balloon Lidar Experiment was the first lidar dedicated to measurements in the mesosphere flown on a balloon. During a 6 d flight, it made high-resolution observations of polar mesospheric clouds which form at high latitudes during summer at ~ 83 km altitude and are the highest clouds in Earth's atmosphere. We describe the instrument and assess its performance. We could detect fainter clouds with higher resolution than what is possible with ground-based instruments.
Hannes J. Griesche, Patric Seifert, Albert Ansmann, Holger Baars, Carola Barrientos Velasco, Johannes Bühl, Ronny Engelmann, Martin Radenz, Yin Zhenping, and Andreas Macke
Atmos. Meas. Tech., 13, 5335–5358, https://doi.org/10.5194/amt-13-5335-2020, https://doi.org/10.5194/amt-13-5335-2020, 2020
Short summary
Short summary
In summer 2017, the research vessel Polarstern performed cruise PS106 to the Arctic north of Svalbard. In the frame of the cruise, remote-sensing observations of the atmosphere were performed on Polarstern to continuously monitor aerosol and clouds above the vessel. In our study, we present the deployed instrumentation and applied data analysis methods and provide case studies of the aerosol and cloud observations made during the cruise. Statistics of low-cloud occurrence are presented as well.
Alessandro Battaglia, Pavlos Kollias, Ranvir Dhillon, Katia Lamer, Marat Khairoutdinov, and Daniel Watters
Atmos. Meas. Tech., 13, 4865–4883, https://doi.org/10.5194/amt-13-4865-2020, https://doi.org/10.5194/amt-13-4865-2020, 2020
Short summary
Short summary
Warm rain accounts for slightly more than 30 % of the total rain amount and 70 % of the total rain area in the tropical belt and usually appears in kilometer-size cells. Spaceborne radars adopting millimeter wavelengths are excellent tools for detecting such precipitation types and for separating between the cloud and rain components. Our work highlights the benefits of operating multifrequency radars and discusses the impact of antenna footprints in quantitative estimates of liquid water paths.
Linda Forster, Meinhard Seefeldner, Andreas Baumgartner, Tobias Kölling, and Bernhard Mayer
Atmos. Meas. Tech., 13, 3977–3991, https://doi.org/10.5194/amt-13-3977-2020, https://doi.org/10.5194/amt-13-3977-2020, 2020
Short summary
Short summary
We present a procedure for both the geometric and absolute radiometric characterization of the weather-proof RGB camera HaloCamRAW, which is part of our automated halo observation system HaloCam, designed for the quantitative analysis of halo displays. By comparing the calibrated HaloCamRAW radiances of a 22° halo scene with radiative transfer simulations, we demonstrate the potential of developing a retrieval method for ice crystal properties, such as size, shape, and surface roughness.
Katia Lamer, Pavlos Kollias, Alessandro Battaglia, and Simon Preval
Atmos. Meas. Tech., 13, 2363–2379, https://doi.org/10.5194/amt-13-2363-2020, https://doi.org/10.5194/amt-13-2363-2020, 2020
Short summary
Short summary
According to ground-based radar observations, 50 % of liquid low-level clouds over the Atlantic extend below 1.2 km and are thinner than 400 m, thus limiting their detection from space. Using an emulator, we estimate that a 250 m resolution radar would capture cloud base better than the CloudSat radar which misses about 52 %. The more sensitive EarthCARE radar is expected to capture cloud cover but stretch cloud. This calls for the operation of interlaced pulse modes for future space missions.
Sung-Ho Suh, Masayuki Maki, Masato Iguchi, Dong-In Lee, Akihiko Yamaji, and Tatsuya Momotani
Atmos. Meas. Tech., 12, 5363–5379, https://doi.org/10.5194/amt-12-5363-2019, https://doi.org/10.5194/amt-12-5363-2019, 2019
Short summary
Short summary
This is a fundamental study on the features of aerodynamic parameters: terminal velocity, axis ratio, and canting angle. These are necessary for developing a quantitative ash fall estimation method based on weather radar. They were analyzed under controlled conditions from laboratory free-fall experiments, since the aerodynamic properties of the particles are highly dependent on external conditions. These results will help in the development of quantitative ash estimation.
Mario Mech, Leif-Leonard Kliesch, Andreas Anhäuser, Thomas Rose, Pavlos Kollias, and Susanne Crewell
Atmos. Meas. Tech., 12, 5019–5037, https://doi.org/10.5194/amt-12-5019-2019, https://doi.org/10.5194/amt-12-5019-2019, 2019
Short summary
Short summary
An improved understanding of Arctic mixed-phase clouds and their contribution to Arctic warming can be achieved by observations from airborne platforms with remote sensing instruments. Such an instrument is MiRAC combining active and passive techniques to gain information on the distribution of clouds, the occurrence of precipitation, and the amount of liquid and ice within the cloud. Operated during a campaign in Arctic summer, it could observe lower clouds often not seen by spaceborne radars.
Emma Hopkin, Anthony J. Illingworth, Cristina Charlton-Perez, Chris D. Westbrook, and Sue Ballard
Atmos. Meas. Tech., 12, 4131–4147, https://doi.org/10.5194/amt-12-4131-2019, https://doi.org/10.5194/amt-12-4131-2019, 2019
Short summary
Short summary
Ceilometers are laser cloud base recorders which retrieve information about atmospheric aerosol and differing cloud types. In order to ensure the information retrieved from the ceilometer is correct and comparable with other ceilometers in an observation network, a calibration is needed. Presented here is a novel automated calibration method, which includes a correction for the effects of water vapour in the atmosphere and shows its application on the UK Met Office's ceilometer network.
Alessandro Battaglia and Pavlos Kollias
Atmos. Meas. Tech., 12, 3335–3349, https://doi.org/10.5194/amt-12-3335-2019, https://doi.org/10.5194/amt-12-3335-2019, 2019
Short summary
Short summary
This work investigates the potential of an innovative differential absorption radar for retrieving relative humidity inside ice clouds. The radar exploits the strong spectral dependence of the water vapour absorption for frequencies close to the 183 GHz water vapour band.
Results show that observations from a system with 4–6 frequencies can provide
novel information for understanding the formation and growth of ice crystals.
Ann M. Fridlind, Marcus van Lier-Walqui, Scott Collis, Scott E. Giangrande, Robert C. Jackson, Xiaowen Li, Toshihisa Matsui, Richard Orville, Mark H. Picel, Daniel Rosenfeld, Alexander Ryzhkov, Richard Weitz, and Pengfei Zhang
Atmos. Meas. Tech., 12, 2979–3000, https://doi.org/10.5194/amt-12-2979-2019, https://doi.org/10.5194/amt-12-2979-2019, 2019
Short summary
Short summary
Weather radars are offering improved capabilities to investigate storm physics, which remain poorly understood. We investigate enhanced use of such data near Houston, Texas, where pollution sources often provide a convenient contrast between polluted and clean air. We conclude that Houston is a favorable location to conduct a future field campaign during June through September because isolated storms are common and tend to last an hour, allowing frequent observations of a full life cycle.
Kevin Wolf, André Ehrlich, Marek Jacob, Susanne Crewell, Martin Wirth, and Manfred Wendisch
Atmos. Meas. Tech., 12, 1635–1658, https://doi.org/10.5194/amt-12-1635-2019, https://doi.org/10.5194/amt-12-1635-2019, 2019
Short summary
Short summary
Using passive spectral solar radiation and active lidar, radar, and microwave measurements with HALO during NARVAL-II, the cloud droplet number concentration of shallow trade wind cumulus is estimated. With stepwise inclusion of the different instruments into the retrieval, the benefits of the synergetic approach based on artificial measurements and two cloud cases are demonstrated. Significant improvement with the synergetic method compared to the solar-radiation-only method is reported.
Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 12, 1155–1166, https://doi.org/10.5194/amt-12-1155-2019, https://doi.org/10.5194/amt-12-1155-2019, 2019
Short summary
Short summary
Imaging technology allows us to quickly gather information on larger cloud fields. Unlike using lidar or radar, it is difficult to obtain accurate position information about the observed clouds. This work presents a method to retrieve the missing position information using RGB images from an airborne video camera. Using field campaign data, we observe and explain a median offset of 126 m compared to lidar data and show that systematic errors across the measurement swath are well below 50 m.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, Moritz Haarig, Jörg Schmidt, and Ulla Wandinger
Atmos. Meas. Tech., 12, 1077–1093, https://doi.org/10.5194/amt-12-1077-2019, https://doi.org/10.5194/amt-12-1077-2019, 2019
Short summary
Short summary
We propose an extended formalism for a full instrumental characterization of a three-channel lidar system, allowing the retrieval of highly accurate linear depolarization profiles. The results obtained at several depolarizing scenarios, the good agreement with the retrievals of a second collocated calibrated lidar system, and the long-term stability of the calibration parameters corroborate the potential and robustness of the new technique.
Ryan R. Neely III, Lindsay Bennett, Alan Blyth, Chris Collier, David Dufton, James Groves, Daniel Walker, Chris Walden, John Bradford, Barbara Brooks, Freya I. Addison, John Nicol, and Ben Pickering
Atmos. Meas. Tech., 11, 6481–6494, https://doi.org/10.5194/amt-11-6481-2018, https://doi.org/10.5194/amt-11-6481-2018, 2018
Short summary
Short summary
Mobile X-band radars are widely used by atmospheric scientists to observe clouds and make estimates of rainfall. Here we describe the National Centre for Atmospheric Science's mobile X-band dual-polarisation Doppler radar (NXPol). NXPol is the first radar of its kind in the UK. To demonstrate the radar’s capabilities, we present examples of its use in three field campaigns as well as an example from ongoing observations at the National Facility for Atmospheric and Radio Research.
Takuo T. Tsuda, Yuta Hozumi, Kento Kawaura, Keisuke Hosokawa, Hidehiko Suzuki, and Takuji Nakamura
Atmos. Meas. Tech., 11, 6163–6168, https://doi.org/10.5194/amt-11-6163-2018, https://doi.org/10.5194/amt-11-6163-2018, 2018
Short summary
Short summary
Polar mesospheric clouds (PMCs) or noctilucent clouds (NLCs) are the highest clouds in the Earth's atmosphere. In this paper, we introduce new PMC observations by the Japanese Geostationary Earth Orbit (GEO) meteorological satellite Himawari-8, which was launched in October 2014.
Martin Radenz, Johannes Bühl, Volker Lehmann, Ulrich Görsdorf, and Ronny Leinweber
Atmos. Meas. Tech., 11, 5925–5940, https://doi.org/10.5194/amt-11-5925-2018, https://doi.org/10.5194/amt-11-5925-2018, 2018
Short summary
Short summary
Ultra-high-frequency radar wind profilers are widely used for remote sensing of horizontal and vertical wind velocity. They emit electromagnetic radiation at a wavelength of 60 cm and receive signals from both falling particles and the air itself. In this paper, we describe a method to separate both signal components with the help of an additional cloud radar system in order to come up with undisturbed measurements of both vertical air velocity and the fall velocity of particles.
Madhu Chandra R. Kalapureddy, Patra Sukanya, Subrata K. Das, Sachin M. Deshpande, Govindan Pandithurai, Andrew L. Pazamany, Jha Ambuj K., Kaustav Chakravarty, Prasad Kalekar, Hari Krishna Devisetty, and Sreenivas Annam
Atmos. Meas. Tech., 11, 1417–1436, https://doi.org/10.5194/amt-11-1417-2018, https://doi.org/10.5194/amt-11-1417-2018, 2018
Short summary
Short summary
A new technique to separate cloud and non-hydrometeor returns from a cloud radar high-resolution reflectivity measurements is proposed. The TEST algorithm potentially identifies cloud height with the theoretical echo sensitivity curves and observed echo statistics for the cloud height tracing. TEST is more robust in identifying and filtering out the biota contributions by constraining further with spectral width and LDR measurements. This algorithm improves the monsoon cloud characterization.
Robert A. Stillwell, Ryan R. Neely III, Jeffrey P. Thayer, Matthew D. Shupe, and David D. Turner
Atmos. Meas. Tech., 11, 835–859, https://doi.org/10.5194/amt-11-835-2018, https://doi.org/10.5194/amt-11-835-2018, 2018
Short summary
Short summary
This work focuses on making unambiguous measurements of Arctic cloud phase and assessing those measurements within the context of cloud radiative effects. It is found that effects related to lidar data recording systems can cause retrieval ambiguities that alter the interpretation of cloud phase in as much as 30 % of the available data. This misinterpretation of cloud-phase data can cause a misinterpretation of the effect of cloud phase on the surface radiation budget by as much as 10 to 30 %.
Pierre Crispel and Gregory Roberts
Atmos. Meas. Tech., 11, 593–609, https://doi.org/10.5194/amt-11-593-2018, https://doi.org/10.5194/amt-11-593-2018, 2018
Short summary
Short summary
In this study, we use an all-sky stereo camera network to perform geolocation of individual elements of a cloud field in order to track individual clouds and estimate some of their morphological characteristics and their evolution in time. Furthermore, this allows use of cloud geolocation for cloud airborne measurements. For example, in the case of instrumented UAVs, the GPS coordinates of the target cloud may be communicated in real time to the autopilot.
Emily M. McCullough, Robert J. Sica, James R. Drummond, Graeme Nott, Christopher Perro, Colin P. Thackray, Jason Hopper, Jonathan Doyle, Thomas J. Duck, and Kaley A. Walker
Atmos. Meas. Tech., 10, 4253–4277, https://doi.org/10.5194/amt-10-4253-2017, https://doi.org/10.5194/amt-10-4253-2017, 2017
Short summary
Short summary
CRL lidar in the Canadian High Arctic uses lasers and a telescope to study polar clouds, essential for understanding the changing global climate. Hardware added to CRL allows it to measure the polarization of returned laser light, indicating whether cloud particles are liquid or frozen. Calibrations show that traditional analysis methods work well, although CRL was not originally set up to make this type of measurement. CRL can now measure cloud particle phase every 5 min, every 37.5 m, 24h/day.
Linda Forster, Meinhard Seefeldner, Matthias Wiegner, and Bernhard Mayer
Atmos. Meas. Tech., 10, 2499–2516, https://doi.org/10.5194/amt-10-2499-2017, https://doi.org/10.5194/amt-10-2499-2017, 2017
Short summary
Short summary
Halo displays are produced by scattering of sunlight by smooth, hexagonal ice crystals. Consequently, the presence of a halo should contain information on particle shape. This study presents HaloCam, a novel sun-tracking camera system, and an automated detection algorithm to collect and evaluate long-term halo observations. Two-year HaloCam observations revealed that about 25 % of the detected cirrus clouds occurred together with a 22° halo indicating the presence of smooth, hexagonal crystals.
Stuart Fox, Clare Lee, Brian Moyna, Martin Philipp, Ian Rule, Stuart Rogers, Robert King, Matthew Oldfield, Simon Rea, Manju Henry, Hui Wang, and R. Chawn Harlow
Atmos. Meas. Tech., 10, 477–490, https://doi.org/10.5194/amt-10-477-2017, https://doi.org/10.5194/amt-10-477-2017, 2017
Short summary
Short summary
In this paper we present the ISMAR instrument, a new airborne submillimetre radiometer designed for cloud ice remote sensing. We discuss the instrument calibration and evaluate the main sources of bias and the radiometric sensitivity in different measurement scenarios. We also compare clear-sky zenith measurements from high altitude with radiative transfer simulations to demonstrate the performance of ISMAR in flight.
Bryan Urquhart, Ben Kurtz, and Jan Kleissl
Atmos. Meas. Tech., 9, 4279–4294, https://doi.org/10.5194/amt-9-4279-2016, https://doi.org/10.5194/amt-9-4279-2016, 2016
Short summary
Short summary
A model relating the position of objects in the 3-D world to their pixel coordinates has been developed for a fixed-focal length fisheye lens camera. An associated automated method to calibrate model parameters has been developed for a daytime skyward-pointing camera. The position of the sun throughout the day is used as input to the calibration algorithm. The accuracy of the calibration was found to be on the same order as the accuracy of sun position detection in an image.
Edward R. Niple, Herman E. Scott, John A. Conant, Stephen H. Jones, Frank J. Iannarilli, and Wellesley E. Pereira
Atmos. Meas. Tech., 9, 4167–4179, https://doi.org/10.5194/amt-9-4167-2016, https://doi.org/10.5194/amt-9-4167-2016, 2016
Penny M. Rowe, Christopher J. Cox, and Von P. Walden
Atmos. Meas. Tech., 9, 3641–3659, https://doi.org/10.5194/amt-9-3641-2016, https://doi.org/10.5194/amt-9-3641-2016, 2016
Short summary
Short summary
Clouds play an important role in the rapid climate change occurring in polar regions, yet cloud measurements are challenging in such harsh, remote environments. Here we explore how well a proposed low-power infrared spectrometer, which would be highly portable, could be used to determine cloud height. Using simulated data, we estimate retrieval accuracy, finding that such an instrument would be able to constrain cloud height, particular for low, thick clouds, which are common in polar region.
Martin de Graaf, Holger Sihler, Lieuwe G. Tilstra, and Piet Stammes
Atmos. Meas. Tech., 9, 3607–3618, https://doi.org/10.5194/amt-9-3607-2016, https://doi.org/10.5194/amt-9-3607-2016, 2016
Short summary
Short summary
The shapes and sizes of the FoV from the OMI satellite instrument were determined with extensive lab tests but never verified after launch. Here, collocated measurements from MODIS, flying in formation, were used to find the most optimal shape of the OMI FoV. This shape is not quadrangular, as suggested by the provided corner coordinates of a pixel, but rather super-Gaussian shaped and overlapping with the FoV of neighbouring pixels.
Luis Millán, Matthew Lebsock, Nathaniel Livesey, and Simone Tanelli
Atmos. Meas. Tech., 9, 2633–2646, https://doi.org/10.5194/amt-9-2633-2016, https://doi.org/10.5194/amt-9-2633-2016, 2016
Short summary
Short summary
We discuss the theoretical capabilities of a radar technique to measure profiles of water vapor in cloudy/precipitating areas. The method uses two radar pulses at different frequencies near the 183 GHz H2O absorption line to determine water vapor profiles by measuring the differential absorption on and off the line. Results of inverting synthetic data assuming a satellite radar are presented.
Florian Ewald, Tobias Kölling, Andreas Baumgartner, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 9, 2015–2042, https://doi.org/10.5194/amt-9-2015-2016, https://doi.org/10.5194/amt-9-2015-2016, 2016
Short summary
Short summary
The new spectrometer of the Munich Aerosol Cloud Scanner (specMACS) is a
multipurpose hyperspectral cloud and sky imager which is designated, but not limited, to investigations of cloud-aerosol interactions in Earth's atmosphere. This paper describes the specMACS instrument's hardware and software design and
characterizes the instrument performance. Initial measurements of cloud sides are presented which demonstrate the wide applicability of the instrument.
Quentin Libois, Christian Proulx, Liviu Ivanescu, Laurence Coursol, Ludovick S. Pelletier, Yacine Bouzid, Francesco Barbero, Éric Girard, and Jean-Pierre Blanchet
Atmos. Meas. Tech., 9, 1817–1832, https://doi.org/10.5194/amt-9-1817-2016, https://doi.org/10.5194/amt-9-1817-2016, 2016
Short summary
Short summary
Here we present a radiometer, FIRR, aimed at measuring atmospheric radiation in the far infrared, an underexplored region of the Earth spectrum. The FIRR is a prototype for the planned TICFIRE satellite mission dedicated to studying thin ice clouds in polar regions. Preliminary in situ measurements compare well with radiative transfer simulations. This highlights the high sensitivity of the FIRR to water vapor content and cloud physical properties, paving the way for new retrieval algorithms.
Cited articles
Allmen, M. and Kegelmeyer Jr., W. P.: The computation of cloud-base height
from paired whole-sky imaging cameras, J. Atmos. Ocean. Tech., 13, 97–113,
https://doi.org/10.1175/1520-0426(1996)013<0097:TCOCBH>2.0.CO;2, 1996.
Auriol, F., Gayet, J. F., Febvre, G., Jourdan, O., Labonnote, L., and
Brogniez, G.: In situ observations of cirrus cloud scattering phase function
with 22∘ and 46∘ halos: cloud field study on 19 February
1998, J. Atmos. Sci., 58, 3376–3390,
https://doi.org/10.1175/1520-0469(2001)058<3376:ISOOCS>2.0.CO;2, 2001.
Baran, A. J.: From the single-scattering properties of ice crystals to
climate prediction: A way forward, J. Atmos. Res., 112, 45–69,
https://doi.org/10.1016/j.atmosres.2012.04.010, 2012.
Baran, A. J. and Labonnote, L. C.:
A self consistent scattering model for cirrus, I: the solar region,
Q. J. Roy. Meteor. Soc., 133, 1899–1912, https://doi.org/10.1002/qj.164, 2007.
Baran, A. J., Furtado, K., Labonnote, L.-C., Havemann, S., Thelen, J.-C., and Marenco, F.:
On the relationship between the scattering phase function of cirrus and
the atmospheric state, Atmos. Chem. Phys., 15, 1105–1127, https://doi.org/10.5194/acp-15-1105-2015,
2015.
Baum, B. A., Yang, P., Heymsfield, A. J., Schmitt, C., Xie, Y., Bansemer, A.,
Hu, Y. X., and Zhang, Z.: Improvements in shortwave bulk scattering and
absorption models for the remote sensing of ice clouds, J. Appl. Meteor.
Climatol., 50, 1037–1056, https://doi.org/10.1175/2010JAMC2608.1, 2011.
Berger, L., Besnard, T., Genkova, I., Gillotay, D., Long, C.N., Zanghi, F.,
Deslondes, J. P., and Perdereau, G.: Image comparison from two cloud cover
sensor in infrared and visible spectral regions, in: Proceedings of the 21st
International Conference on Interactive Information Processing Systems (IIPS)
for Meteorology, Oceanography, and Hydrology, San Diego, CA, 9–13 January
2005.
Brocard, E., Schneebeli, M., and Mätzler, C.: Detection of cirrus clouds
using infrared radiometry, IEEE T. Geosci. Remote, 49, 595–602,
https://doi.org/10.1109/TGRS.2010.2063033, 2011.
Calbó, J. and Sabburg, J.: Feature extraction from whole-sky groundbased
images for cloud-type recognition, J. Atmos. Ocean. Tech., 25, 3–14,
https://doi.org/10.1175/2007JTECHA959.1, 2008.
Calbó, J., Pagès, D., and González, J. A.: Empirical studies of cloud effects on UV radiation: a review, Rev. Geophys.,
43, 1–28, https://doi.org/10.1029/2004RG000155, 2008.
Campbell, D.: Widefield Imaging at Bayfordbury Observatory, BS thesis,
University of Hertfordshire, Hatfield, 47, 2010.
Cazorla, A., Olmo, F. J., and Alados-Arboledas, L.: Using a sky imager for
aerosol characterization, Atmos. Environ., 42, 2739–2745,
https://doi.org/10.1016/j.atmosenv.2007.06.016, 2008a.
Cazorla, A., Olmo, F. J., and Alados-Arboledas, L.: Development of a sky
imager for cloud cover assessment, J. Opt. Soc. Am., 25, 29–39,
https://doi.org/10.1364/JOSAA.25.000029, 2008b.
Chow, C. W., Urquhart, B., Dominguez, A., Kleissl, J., Shields, J., and
Washom, B.: Intra-hour forecasting with a total sky imager at the UC San
Diego solar energy testbed, Sol. Energy, 85, 2881–2893,
https://doi.org/10.1016/j.solener.2011.08.025, 2011.
Cole, B. H., Yang, P., Baum, B. A., Riedi, J., Labonnote, L. C., Thieuleux,
F., and Platnick, S.: Comparison of PARASOL observations with polarized
reflectances simulated using different ice habit mixtures, J. Appl. Meteorol.
Clim., 52, 186–196, https://doi.org/10.1175/JAMC-D-12-097.1, 2013.
Dandini, P.: Cirrus occurrence and properties determined from ground-based
remote sensing, PhD, University of Hertfordshire, Hatfield, UK, 213 pp., 2016.
Duchon, C. E. and O'Malley, M. S.: Estimating cloud type from pyranometer
observations, J. App. Meteorol., 38, 132–141,
https://doi.org/10.1175/1520-0450(1999)038<0132:ECTFPO>2.0.CO;2, 1999.
Fitzpatrick, M. F. and Warren, S. G.: Transmission of solar radiation by clouds
over snow and ice surfaces. Part II: Cloud optical depth and shortwave
radiative forcing from pyranometer measurements in the Southern Ocean, J.
Climate, 18, 4637–4648, https://doi.org/10.1175/JCLI3562.1, 2005.
Forster, L., Seefeldner, M., Wiegner, M., and Mayer, B.: Ice crystal characterization in
cirrus clouds: a sun-tracking camera system and automated detection algorithm for
halo displays, Atmos. Meas. Tech., 10, 2499–2516, https://doi.org/10.5194/amt-10-2499-2017, 2017.
Garrett, T. J., Hobbs, P. V., and Gerber, H.: Shortwave, single scattering
properties of arctic ice clouds, J. Geophys. Res., 106, 15155–15172,
https://doi.org/10.1029/2000JD900195, 2001.
Gayet, J.-F., Mioche, G., Shcherbakov, V., Gourbeyre, C., Busen, R., and Minikin, A.:
Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case
study during CIRCLE-2 experiment, Atmos. Chem. Phys., 11, 2537–2544, https://doi.org/10.5194/acp-11-2537-2011, 2011.
Gedzelman, S. D. and Vollmer, M.: Atmospheric optical phenomena and radiative transfer, B. Am. Meteorol. Soc., 89, 471–485,
https://doi.org/10.1175/BAMS-89-4-471, 2008.
Ghonima, M. S., Urquhart, B., Chow, C. W., Shields, J. E., Cazorla, A., and Kleissl, J.:
A method for cloud detection and opacity classification based on ground based
sky imagery, Atmos. Meas. Tech., 5, 2881–2892, https://doi.org/10.5194/amt-5-2881-2012, 2012.
Heinle, A., Macke, A., and Srivastav, A.: Automatic cloud classification
of whole sky images, Atmos. Meas. Tech., 3, 557–567, https://doi.org/10.5194/amt-3-557-2010, 2010.
Heneghan, C. and McDarby, G.: Establishing the relation between detrended
fluctuation analysis and power spectral density analysis for stochastic
processes, Phys. Rev. E, 62, 6103–6110, https://doi.org/10.1103/PhysRevE.62.6103, 2000.
Heymsfield, A., Kramer, M., Brown, P., Cziczo, D., Franklin, C., Lawson, P.,
Lohmann, U., Luebke, A., McFarquhar, G. M., and Ulanowski, Z.: Cirrus clouds,
Meteor. Monographs, 58, 2.1–2.26, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0010.1,
2017.
Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J., Setzer, A.,
Vermote, E., Reagan, J., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak,
I., and Smirnov, A.: AERONET – A Federated Instrument Network and Data
Archive for Aerosol Characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Horvath, G., Barta, A., Gal, J., Suhai, B., and Haiman, O.: Ground-based
full-sky imaging polarimetry of rapidly changing skies and its use for
polarimetric cloud detection, Appl. Optics, 41, 543–559,
https://doi.org/10.1364/AO.41.000543, 2002.
Hoyningen-Huene, W., Dinter, T., Kokhanovsky, A., Burrows, J., Wendisch, M.,
Bierwirth, E., Muller, D., and Diouri, M.: Measurements of desert dust optical
characteristic at Porte au Sahara during SAMUM, Tellus B, 61, 206–215,
https://doi.org/10.1111/j.1600-0889.2008.00405.x, 2009.
Jacobs, A. and Wilson, M.: Determining lens vignetting with HDR techniques,
XII National Conference on Lighting, Varna, Bulgaria, 10–12 June 2007.
Janeiro, F. M., Ramos, P. M., Wagner, F., and Silva, A. M.: Developments of
low-cost procedure to estimate cloud base height based on a digital camera,
Measurements, 43, 684–689, https://doi.org/10.1016/j.measurement.2010.01.007, 2010.
Johnson, R. W. and Hering, W. S.: Automated cloud cover measurements with a
solid state imaging system, Tech. note 206, Visibility Laboratory, University
of California, San Diego, Scripps Institution of Oceanography, La Jolla, CA,
11 pp., 1987.
Kaskaoutis, D. G., Kambezidis, H. D., Kharol, S. K., and Badarinath, K. V. S.: The
diffuse-to-global spectral irradiance ratio as a cloud-screening technique
for radiometric data, J. Atmos. Sol.-Terr. Phy., 70, 1597–1606,
https://doi.org/10.1016/j.jastp.2008.04.013, 2008.
Kassianov, E. I., Long, C., and Ovtchinnikov, M.: Cloud sky cover versus cloud
fraction: Whole-sky simulations and observations, J. Appl. Meteor., 44,
86–98, https://doi.org/10.1175/JAM-2184.1, 2005.
Kegelmeyer, W. P.: Extraction of Cloud Statistics from Whole Sky Imaging Cameras, SANDIA Report, SAND94-8222,
Sandia National Laboratories Albuquerque, New Mexico and Livermore, CA, 17 pp., 1994.
Kokhanovsky, A.: The contrast and brightness of halos in crystalline clouds,
Atmos. Res., 89, 110–112, https://doi.org/10.1016/j.atmosres.2007.12.006, 2008.
Korolev, A., Isaac, G. A., and Hallett, J.: Ice particle habits in stratiform
clouds, Q. J. Roy. Meteor. Soc., 126, 2873–2902, https://doi.org/10.1002/qj.49712656913,
2000.
Liu, C., Panetta, R. L., and Yang, P.: The effects of surface roughness on
the scattering properties of hexagonal columns with sizes from the Rayleigh
to the geometric optics regimes, J. Quant. Spectr. Ra., 129, 169–185,
https://doi.org/10.1016/j.jqsrt.2013.06.011, 2013.
Long, C. N.: Correcting for circumsolar and near-horizon errors in sky cover
retrievals from sky images, The Open Atmos. Sci. J., 4, 45–52,
https://doi.org/10.2174/1874282301004010045, 2010.
Long, C. N. and DeLuisi, J. J.: Development of an automated hemispheric sky
imager for cloud fraction retrievals, in: Proceedings of the tenth Symposium
on meteorological observations and instrumentation, Phoenix, AZ, Amer.
Meteor. Soc., 78, 171–174, 1998.
Long, C. N., Slater, D., and Tooman, T.: Total Sky Imager (TSI) Model 880 status
and testing results, Tech. Rep., DOE Office of Science Atmospheric Radiation
Measurement (ARM) Program, United States, 36 pp., 2001.
Long, C. N., Sabburg, J., Calbó, J., and Pagès, D.: Retrieving cloud
characteristics from ground-based daytime color all-sky images, J. Atmos.
Ocean. Tech., 23, 633–652, https://doi.org/10.1175/JTECH1875.1, 2006.
Lund, I. A.: Joint probabilities of cloud-free lines of sight through the
atmosphere at Grand Forks, Fargo, and Minot, North Dakota, Air Forces Surveys
in Geophys., 262, 1–17, 1973.
Lund, I. A., Grantham D. D., and Davis, R. E.: Estimating probabilities of
cloud-free field of view from the Earth through the atmosphere, J. Appl.
Meteorol., 19, 452–463, https://doi.org/10.1175/1520-0450(1980)019<0452:EPOCFF>2.0.CO;2,
1980.
Lynch, D. K. and Schwartz, P.: Intensity profile of the 22∘ halo, J.
Opt. Soc. Am. A, 2, 584–589, https://doi.org/10.1364/JOSAA.2.000584, 1985.
Lyons, R. D.: Computation of height and velocity of clouds over Barbados from
a whole-sky camera network, Issue 95 of SMRP research paper, Satellite and
Mesometeorology Research Project, University of Chicago, SMRP Research Rep.
95, 18 pp., 1971.
Macke, A., Mueller, J., and Raschke, E.: Single scattering properties of
atmospheric ice crystals, J. Atmos. Sci., 53, 2813–2825,
https://doi.org/10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2, 1996.
Martínez-Chico, M., Batlles, F. J., and Bosch, J. L.: Cloud
classification in a Mediterranean location using radiation data and sky
images, Energy, 36, 4055–4062, https://doi.org/10.1016/j.energy.2011.04.043, 2011.
Meeus, J. H.: Astronomical Algorithms, 2nd edition, Willmann-Bell, Richmond, VA, 477 pp.,
1999.
Mishchenko, M. I. and Macke, A.: Incorporation of physical optics effects and
computation of the Legendre expansion for ray-tracing phase functions
involving δ-function transmission, J. Geophys. Res., 103,
1799–1805, https://doi.org/10.1029/97JD03121, 1998.
Mishchenko, M. I. and Macke, A.: How big should hexagonal ice crystals be to
produce halos?, Appl. Optics, 38, 1626–1629, https://doi.org/10.1364/AO.38.001626,
1999.
Orsini, A., Tomas, C., Calzolari, F., Nardino, M., Cacciari, A., and
Georgiadis, T.: Cloud cover classification through simultaneous ground-based
measurements of solar and infrared radiation, Atmos. Res., 61, 251–275,
https://doi.org/10.1016/S0169-8095(02)00003-0, 2002.
Pagès, D., Calbó, J., and González, J. A.: Using routine meteorological
data to derive sky conditions, Ann. Geophys., 21, 649–654, https://doi.org/10.5194/angeo-21-649-2003, 2003.
Patat, F.: UBVRI night sky brightness during sunspot maximum at ESO-Paranal,
Astron. Astrophys., 400, 1183–1198, https://doi.org/10.1051/0004-6361:20030030, 2003.
Pfister, G., McKenzie, R. L., Liley, J. B., Thomas, A., Forgan, B. W., and Long,
C. N.: Cloud coverage based on all-sky imaging and its impact on surface solar
irradiance, J. Appl. Meteorol., 42, 1421–1434,
https://doi.org/10.1175/1520-0450(2003)042<1421:CCBOAI>2.0.CO;2, 2003.
Qiu, J.: Cloud optical thickness retrievals from ground-based pyranometer measurements, J. Geophys. Res., 111, D22206, https://doi.org/10.1029/2005JD006792, 2006.
Rapp-Arraras, I. and Domingo-Santos, J. M.: Functional forms for
approximating the relative optical air mass, J. Geophys. Res., 116, D24308,
https://doi.org/10.1029/2011JD016706, 2011.
Ray, S. F.: Applied photographic optics, Focal Press, Oxford, 2002.
Rocks, J. K.: The microscience whole-sky sensor, Fifth Tri-Service Clouds
Modelling Workshop, United States Naval Academy, Annapolis, MD, 23–24 June
1987.
Sassen, K., Knight, N. C., Yoshihide, T., and Heymsfield, A. J.: Effects of ice-crystal
structure on halo formation: cirrus cloud experimental and ray-tracing modeling
studies, Appl. Optics, 33, 4590–4601, https://doi.org/10.1364/AO.33.004590, 1994.
Sassen, K., Zhu, J., and Benson, S.: Midlatitude cirrus cloud climatology from
the Facility for Atmospheric Remote Sensing. IV. Optical displays, Appl. Optics, 42, 332–341, https://doi.org/10.1364/AO.42.000332, 2003.
Seiz, G., Baltsavias, E. P., and Gruen, A.: Cloud mapping from the ground:
Use of photogrammetric methods. Photogramm. Eng. Rem. S., 68, 941–951,
https://doi.org/10.3929/ethz-a-004657107, 2002.
Shaklin, I. A. and Lund, M. D.: Photogrammetrically determined cloud-free
lines-of-sight through the atmosphere, J. Appl. Meteorol., 11, 773–782,
https://doi.org/10.1175/1520-0450(1972)011<0773:PDCFLO>2.0.CO;2, 1972.
Shaklin, I. A. and Lund, M. D.: Universal methods for estimating cloud-free
lines-of-sight through the atmosphere, J. Appl. Meteorol., 12, 28–35,
https://doi.org/10.1175/1520-0450(1973)012<0028:UMFEPO>2.0.CO;2, 1973.
Shcherbakov, V.: Why the 46∘ halo is seen far less often than the
22∘ halo?, J. Quant. Spectrosc. Ra., 124, 37–44,
https://doi.org/10.1016/j.jqsrt.2013.03.002, 2013.
Shcherbakov, V., Gayet, J. F., Jourdan, O., Strom, J., and Minikin, A.: Light
scattering by single ice crystals of cirrus clouds, Geophys. Res. Lett., 33,
L15809, https://doi.org/10.1029/2006GL026055, 2006.
Shields, J. E., Koehler, T. L., and Johnson, R. W.: Whole sky imager, in:
Proceedings of the Cloud Impacts on DOD Operations and Systems, Marine
Physical Laboratory, Scripps Institution of Oceanography, University of
California, San Diego, 123–128, 1989/1990.
Shields, J. E., Johnson, R. W., Karr, M. E., Weymouth, R. A., and Sauer, D.
S.: Delivery and development of a day/night whole sky imager with enhanced
angular alignment for full 24 hour cloud distribution assessment, Final
Report, Marine Physical Laboratory, Scripps Institution of Oceanography,
University of California, San Diego, 19 pp., 1997.
Shields, J. E., Karr, M. E., Johnson, R. W., and Burden, A. R.: Day/night
whole sky imagers for 24-h cloud and sky assessment: history and overview,
Appl. Optics, 52, 1605–1616, https://doi.org/10.1364/AO.52.001605, 2013.
Slater, D. W., Long, C. N., and Tooman, T. P.: Total sky imager/whole sky
imager cloud fraction comparison, in: Proceedings of the Eleventh ARM Science
Team Meeting, Atlanta, Georgia, 19–23 March 2001, 1–11, 2001.
Smith, H. R., Connolly, P. J., Baran, A. J., Hesse, E., Smedley, A. R., and
Webb, A. R.: Cloud chamber laboratory investigations into scattering
properties of hollow ice particles, J. Quant. Spectrosc. Ra., 157, 106–118,
https://doi.org/10.1016/j.jqsrt.2015.02.015, 2015.
Tapakis, R. and Charalambides, A. G.: Equipment and methodologies for cloud
detection and classification: A review, Sol. Energy, 95, 392–430,
https://doi.org/10.1016/j.solener.2012.11.015, 2013.
TRUESENSE imaging: KAI-0340 Image Sensor 640 (H) × 480 (V) Interline CCD Image Sensor, Rev. 1.0 PS-0024, ON Semiconductor, Phoenix, AZ 85008 USA, 2012.
Ulanowski, Z.: Ice analog halos, Appl. Optics, 44, 5754–5758, https://doi.org/10.1016/j.jqsrt.2005.11.052, 2005.
Ulanowski, Z., Hesse, E., Kaye, P., and Baran, A. J.: Light scattering by
complex ice-analogue crystals, J. Quant. Spectrosc. Ra., 100, 382–392,
https://doi.org/10.1016/j.jqsrt.2005.11.052, 2006.
Ulanowski, Z., Kaye, P. H., Hirst, E., Greenaway, R. S., Cotton, R. J., Hesse, E.,
and Collier, C. T.: Incidence of rough and irregular atmospheric ice particles
from Small Ice Detector 3 measurements, Atmos. Chem. Phys., 14, 1649–1662, https://doi.org/10.5194/acp-14-1649-2014, 2014.
Um, J. and McFarquhar, G. M.: Dependence of the single-scattering properties of small
ice crystals on idealized shape models, Atmos. Chem. Phys., 11, 3159–3171, https://doi.org/10.5194/acp-11-3159-2011, 2011.
Vollmer, M. and Gedzelman, S. D.: Colours of the Sun and Moon: The role of
the optical air mass, Eur. J. Phys., 27, 299–309,
https://doi.org/10.1088/0143-0807/27/2/013, 2006.
Volz, F. E.: Measurements of the skylight scattering function, Appl. Optics, 26, 4098–4105, https://doi.org/10.1364/AO.26.004098, 1987.
Yi, B., Yang, P., Baum, B. A., L'Ecuyer, T., Oreopoulos, L., Mlawer, E. J.,
Heymsfield, A. J., and Liou, K. N.: Influence of Ice Particle Surface
Roughening on the Global Cloud Radiative Effect, J. Atmos. Sci., 70,
2794–2807, https://doi.org/10.1175/JAS-D-13-020.1,35 2013.
Short summary
The halo ratio indicates the strength of the 22° cirrus halo and gives valuable information on cloud properties. We obtain it from all-sky images by applying a range of transformations and corrections and averaging brightness azimuthally over sun-centred images. The ratio is then taken at two angles from the sun, 20° and 23°, in variance from previous suggestions. While we find ratios > 1 to be linked to halos, they can also occur under scattered cumuli as artefacts due to cloud edges.
The halo ratio indicates the strength of the 22° cirrus halo and gives valuable information on...