Articles | Volume 12, issue 3
https://doi.org/10.5194/amt-12-1755-2019
https://doi.org/10.5194/amt-12-1755-2019
Research article
 | 
18 Mar 2019
Research article |  | 18 Mar 2019

Albedo-Ice Regression method for determining ice water content of polar mesospheric clouds using ultraviolet observations from space

Gary E. Thomas, Jerry Lumpe, Charles Bardeen, and Cora E. Randall

Related authors

Extending the SBUV polar mesospheric cloud data record with the OMPS NP
Matthew T. DeLand and Gary E. Thomas
Atmos. Chem. Phys., 19, 7913–7925, https://doi.org/10.5194/acp-19-7913-2019,https://doi.org/10.5194/acp-19-7913-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024,https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024,https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024,https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024,https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
The EarthCARE mission: science data processing chain overview
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024,https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary

Cited articles

AIM CIPS Science Team: Cloud Imaging and Particle Size (CIPS) Instrument Overview, available at: http://lasp.colorado.edu/aim/, last access: 12 March 2019. 
Bailey, S. M., Thomas, G. E., Rusch, D. W., Merkel, A. W., Jeppesen, C., Carstens, J. N., Randall, C. E., McClintock, W. E., and Russell III, J. M.: Phase functions of polar mesospheric cloud ice as observed by the CIPS instrument on the AIM satellite, J. Atmos. Sol.-Terr. Phy., 71, 373–380, https://doi.org/10.1016/j.jastp.2008.09.039, 2009. 
Bardeen, C. G., Toon, O. B., Jensen, E. J., Hervig, M. E., Randall, C. E., Benze, S., Marsh, D. R., and Merkel, A.: Numerical simulations of the three-dimensional distribution of polar mesospheric clouds and comparisons with Cloud Imaging and Particle Size (CIPS) experiment and the Solar Occultation For Ice Experiment (SOFIE) observations, J. Geophys. Res., 115, D10204, https://doi.org/10.1029/2009JD012451, 2010. 
Baumgarten, G., Fiedler, J., and Rapp, M.: On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and width of the particle size-distribution, Atmos. Chem. Phys., 10, 6661–6668, https://doi.org/10.5194/acp-10-6661-2010, 2010. 
Benze, S., Randall, C. E., DeLand, M. T., Thomas, G. E., Rusch, D. W., Bailey, S. M., Russell III, J. M., McClintock, W., Merkel, A. W., and Jeppesen, C.: Comparison of polar mesospheric cloud measurements from the Cloud Imaging and Particle Size experiment and the Solar Backscatter Ultraviolet instrument in 2007, J. Atmos. Sol.-Terr. Phy., 71, 365–372, 2009. 
Download
Short summary
Polar mesospheric clouds are an upper atmospheric phenomenon of great interest in that they provide information about a previously inaccessible atmospheric region, the coldest of the planet. This paper provides the basis for converting raw radiance measurements of clouds, made by diverse satellite instrumentation, into a physically based quantity, the cloud ice water content. The new algorithm allows intercomparisons of data collected using diverse optical methods.