Articles | Volume 12, issue 11
https://doi.org/10.5194/amt-12-5817-2019
https://doi.org/10.5194/amt-12-5817-2019
Research article
 | 
07 Nov 2019
Research article |  | 07 Nov 2019

A new approach to estimate supersaturation fluctuations in stratocumulus cloud using ground-based remote-sensing measurements

Fan Yang, Robert McGraw, Edward P. Luke, Damao Zhang, Pavlos Kollias, and Andrew M. Vogelmann

Related authors

Microphysics regimes due to haze–cloud interactions: cloud oscillation and cloud collapse
Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov
Atmos. Chem. Phys., 25, 3785–3806, https://doi.org/10.5194/acp-25-3785-2025,https://doi.org/10.5194/acp-25-3785-2025, 2025
Short summary
Detection of small drizzle droplets in a large cloud chamber using ultrahigh-resolution radar
Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alex B. Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, and Mariko Oue
Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024,https://doi.org/10.5194/amt-17-1133-2024, 2024
Short summary
Evaluation of four ground-based retrievals of cloud droplet number concentration in marine stratocumulus with aircraft in situ measurements
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023,https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Particle inertial effects on radar Doppler spectra simulation
Zeen Zhu, Pavlos Kollias, and Fan Yang
Atmos. Meas. Tech., 16, 3727–3737, https://doi.org/10.5194/amt-16-3727-2023,https://doi.org/10.5194/amt-16-3727-2023, 2023
Short summary
New insights on the prevalence of drizzle in marine stratocumulus clouds based on a machine learning algorithm applied to radar Doppler spectra
Zeen Zhu, Pavlos Kollias, Edward Luke, and Fan Yang
Atmos. Chem. Phys., 22, 7405–7416, https://doi.org/10.5194/acp-22-7405-2022,https://doi.org/10.5194/acp-22-7405-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: the CPR_CLP, AC_CLP, and ACM_CLP products
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025,https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Peering into the heart of thunderstorm clouds: insights from cloud radar and spectral polarimetry
Ho Yi Lydia Mak and Christine Unal
Atmos. Meas. Tech., 18, 1209–1242, https://doi.org/10.5194/amt-18-1209-2025,https://doi.org/10.5194/amt-18-1209-2025, 2025
Short summary
Retrieving cloud-base height and geometric thickness using the oxygen A-band channel of GCOM-C/SGLI
Takashi M. Nagao, Kentaroh Suzuki, and Makoto Kuji
Atmos. Meas. Tech., 18, 773–792, https://doi.org/10.5194/amt-18-773-2025,https://doi.org/10.5194/amt-18-773-2025, 2025
Short summary
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025,https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Satellite-based detection of deep convective clouds: the sensitivity of infrared methods, and implications for cloud climatology
Andrzej Zbigniew Kotarba and Izabela Wojciechowska
EGUsphere, https://doi.org/10.5194/egusphere-2024-3693,https://doi.org/10.5194/egusphere-2024-3693, 2025
Short summary

Cited articles

Borque, P., Luke, E., and Kollias, P.: On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars, J. Geophys. Res.-Atmos., 121, 5972–5989, https://doi.org/10.1002/2015JD024543, 2016. a
Borque, P., Luke, E. P., Kollias, P., and Yang, F.: Relationship between turbulence and drizzle in continental and marine low stratiform clouds, J. Atmos. Sci., 75, 4139–4148, https://doi.org/10.1175/JAS-D-18-0060.1, 2018. a, b
Chandrakar, K. K., Cantrell, W., Chang, K., Ciochetto, D., Niedermeier, D., Ovchinnikov, M., Shaw, R. A., and Yang, F.: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions, P. Natl. Acad. Sci. USA, 113, 14243–14248, https://doi.org/10.1073/pnas.1612686113, 2016. a, b, c
Chandrakar, K. K., Saito, I., Yang, F., Cantrell, W., Gotoh, T., and Shaw, R. A.: Droplet size distributions in turbulent clouds: experimental evaluation of theoretical distributions, Q. J. Roy. Meteorol. Soc., accepted, 2019. a
Costa, A. A., de Oliveira, C. J., de Oliveira, J. C. P., and da Costa Sampaio, A. J.: Microphysical observations of warm cumulus clouds in Ceara, Brazil, Atmos. Res., 54, 167–199, https://doi.org/10.1016/S0169-8095(00)00045-4, 2000. a, b
Download
Short summary
In-cloud supersaturation is crucial for droplet activation, growth, and drizzle initiation but is poorly known and hardly measured. Here we provide a novel method to estimate supersaturation fluctuation in stratocumulus clouds using remote-sensing measurements, and results show that our estimated supersaturation agrees reasonably well with in situ measurements. Our method provides a unique way to estimate supersaturation in stratocumulus clouds from long-term ground-based observations.
Share