Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-1001-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-1001-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Portable calibrator for NO based on the photolysis of N2O and a combined NO2∕NO∕O3 source for field calibrations of air pollution monitors
John W. Birks
CORRESPONDING AUTHOR
2B Technologies, 2100 Central Ave., Boulder, CO 80301, USA
Andrew A. Turnipseed
2B Technologies, 2100 Central Ave., Boulder, CO 80301, USA
Peter C. Andersen
2B Technologies, 2100 Central Ave., Boulder, CO 80301, USA
Craig J. Williford
2B Technologies, 2100 Central Ave., Boulder, CO 80301, USA
Stanley Strunk
2B Technologies, 2100 Central Ave., Boulder, CO 80301, USA
Brian Carpenter
2B Technologies, 2100 Central Ave., Boulder, CO 80301, USA
Christine A. Ennis
2B Technologies, 2100 Central Ave., Boulder, CO 80301, USA
Related authors
John W. Birks, Craig J. Williford, Peter C. Andersen, Andrew A. Turnipseed, Stanley Strunk, and Christine A. Ennis
Atmos. Meas. Tech., 11, 4797–4807, https://doi.org/10.5194/amt-11-4797-2018, https://doi.org/10.5194/amt-11-4797-2018, 2018
Short summary
Short summary
A highly portable ozone calibration source based on the photolysis of oxygen is described and evaluated. The ozone mixing ratio produced is independent of both pressure and temperature, and humidity effects are small and correctable. The resulting O3 calibrator has a response time < 20 s, a precision of 0.4 %, and can serve as a U.S. EPA level 4 transfer standard for the calibration of ozone analyzers.
John W. Birks, Peter C. Andersen, Craig J. Williford, Andrew A. Turnipseed, Stanley E. Strunk, Christine A. Ennis, and Erick Mattson
Atmos. Meas. Tech., 11, 2821–2835, https://doi.org/10.5194/amt-11-2821-2018, https://doi.org/10.5194/amt-11-2821-2018, 2018
Short summary
Short summary
A modular long-path folded tubular photometer for making absorbance measurements of air pollutant concentrations is described. The present paper applies this photometer to direct measurements of nitrogen dioxide and, indirectly, to nitric oxide. Excellent agreement for both was observed for measurements along an urban roadside compared with existing standard techniques. Advantages and extension of this technique to other atmospheric pollutants, including particulates, are discussed.
Andrew A. Turnipseed, Peter C. Andersen, Craig J. Williford, Christine A. Ennis, and John W. Birks
Atmos. Meas. Tech., 10, 2253–2269, https://doi.org/10.5194/amt-10-2253-2017, https://doi.org/10.5194/amt-10-2253-2017, 2017
Short summary
Short summary
We investigated a new solid-phase scrubber for use in conventional ozone UV-absorption photometers. A heated graphite scrubber efficiently removed ozone and was less susceptible to interference from water vapor, mercury vapor, and aromatic hydrocarbons compared to conventional metal oxide scrubbers. Reducing interferences from these atmospheric species in conventional ozone photometers could lead to more accurate ozone measurements in compliance monitoring or for indoor air quality.
David D. Parrish and Christine A. Ennis
Atmos. Chem. Phys., 19, 12587–12605, https://doi.org/10.5194/acp-19-12587-2019, https://doi.org/10.5194/acp-19-12587-2019, 2019
Short summary
Short summary
Background ozone transported into cities contributes greatly to urban concentrations. Based on projections of past trends, the largest ozone concentrations on which the 70 ppb National Ambient Air Quality Standard is based will reach that standard by ∼ 2021 in the New York City area but much later (∼ 2050) in the Los Angeles region. The much smaller background contribution in New York City (45.8 ± 1.7 ppb) than in Los Angeles (62.0 ± 2.0 ppb) is the primary reason for this large difference.
John W. Birks, Craig J. Williford, Peter C. Andersen, Andrew A. Turnipseed, Stanley Strunk, and Christine A. Ennis
Atmos. Meas. Tech., 11, 4797–4807, https://doi.org/10.5194/amt-11-4797-2018, https://doi.org/10.5194/amt-11-4797-2018, 2018
Short summary
Short summary
A highly portable ozone calibration source based on the photolysis of oxygen is described and evaluated. The ozone mixing ratio produced is independent of both pressure and temperature, and humidity effects are small and correctable. The resulting O3 calibrator has a response time < 20 s, a precision of 0.4 %, and can serve as a U.S. EPA level 4 transfer standard for the calibration of ozone analyzers.
John W. Birks, Peter C. Andersen, Craig J. Williford, Andrew A. Turnipseed, Stanley E. Strunk, Christine A. Ennis, and Erick Mattson
Atmos. Meas. Tech., 11, 2821–2835, https://doi.org/10.5194/amt-11-2821-2018, https://doi.org/10.5194/amt-11-2821-2018, 2018
Short summary
Short summary
A modular long-path folded tubular photometer for making absorbance measurements of air pollutant concentrations is described. The present paper applies this photometer to direct measurements of nitrogen dioxide and, indirectly, to nitric oxide. Excellent agreement for both was observed for measurements along an urban roadside compared with existing standard techniques. Advantages and extension of this technique to other atmospheric pollutants, including particulates, are discussed.
Robert C. Rhew, Malte Julian Deventer, Andrew A. Turnipseed, Carsten Warneke, John Ortega, Steve Shen, Luis Martinez, Abigail Koss, Brian M. Lerner, Jessica B. Gilman, James N. Smith, Alex B. Guenther, and Joost A. de Gouw
Atmos. Chem. Phys., 17, 13417–13438, https://doi.org/10.5194/acp-17-13417-2017, https://doi.org/10.5194/acp-17-13417-2017, 2017
Short summary
Short summary
Alkenes emanate from both natural and anthropogenic sources and can contribute to atmospheric ozone production. This study measured
lightalkene (ethene, propene and butene) fluxes from a ponderosa pine forest using a novel relaxed eddy accumulation method, revealing much larger emissions than previously estimated and accounting for a significant fraction of OH reactivity. Emissions have a diurnal cycle related to sunlight and temperature, and the forest canopy appears to be the source.
Andrew A. Turnipseed, Peter C. Andersen, Craig J. Williford, Christine A. Ennis, and John W. Birks
Atmos. Meas. Tech., 10, 2253–2269, https://doi.org/10.5194/amt-10-2253-2017, https://doi.org/10.5194/amt-10-2253-2017, 2017
Short summary
Short summary
We investigated a new solid-phase scrubber for use in conventional ozone UV-absorption photometers. A heated graphite scrubber efficiently removed ozone and was less susceptible to interference from water vapor, mercury vapor, and aromatic hydrocarbons compared to conventional metal oxide scrubbers. Reducing interferences from these atmospheric species in conventional ozone photometers could lead to more accurate ozone measurements in compliance monitoring or for indoor air quality.
S. P. Burns, P. D. Blanken, A. A. Turnipseed, J. Hu, and R. K. Monson
Biogeosciences, 12, 7349–7377, https://doi.org/10.5194/bg-12-7349-2015, https://doi.org/10.5194/bg-12-7349-2015, 2015
Short summary
Short summary
The effect of warm-season precipitation on
environmental conditions and ecosystem-scale fluxes at a
high-elevation subalpine forest site was investigated. As would be
expected (based on the surface energy balance), precipitation caused
an increase in latent heat flux (evapotranspiration) and a decrease in
sensible heat flux. The evaporative component of evapotranspiration
was, on average, estimated to be around 6% in dry conditions and
between 15-25% in partially wet conditions.
Related subject area
Subject: Gases | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Characterization of a new Teflon chamber and on-line analysis of isomeric multifunctional photooxidation products
A versatile water vapor generation module for vapor isotope calibration and liquid isotope measurements
Extraction, purification, and clumped isotope analysis of methane (Δ13CDH3 and Δ12CD2H2) from sources and the atmosphere
Optimizing Iodide-Adduct CIMS Quantitative Method for Toluene Oxidation Intermediates: Experimental Insights into Functional Group Differences
Response of protonated, adduct, and fragmented ions in Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS)
Evaluation of a reduced pressure chemical ion reactor utilizing adduct ionization for the detection of gaseous organic and inorganic species
Absorption of volatile organic compounds (VOCs) by polymer tubing: implications for indoor air and use as a simple gas-phase volatility separation technique
A high-accuracy dynamic dilution method for generating reference gas mixtures of carbonyl sulfide at sub-nanomole-per-mole levels for long-term atmospheric observation
A flexible device to produce a gas stream with a precisely controlled water vapour mixing ratio and isotope composition based on microdrop dispensing technology
Revision of an open-split-based dual-inlet system for elemental and isotope ratio mass spectrometers with a focus on clumped-isotope measurements
Characterisation of gaseous iodine species detection using the multi-scheme chemical ionisation inlet 2 with bromide and nitrate chemical ionisation methods
A novel inlet for enriching concentrations of reactive organic gases in low sampling flows
Ammonium CI-Orbitrap: a tool for characterizing the reactivity of oxygenated organic molecules
Characterizing the automatic radon flux transfer standard system Autoflux: laboratory calibration and field experiments
Water vapor stable isotope memory effects of common tubing materials
Influence of ozone and humidity on PTR-MS and GC-MS VOC measurements with and without a Na2S2O3 ozone scrubber
Laser-induced sublimation extraction for centimeter-resolution multi-species greenhouse gas analysis on ice cores
Ozone reactivity measurement of biogenic volatile organic compound emissions
Comparison of two photolytic calibration methods for nitrous acid
Measurement of enantiomer percentages for five monoterpenes from six conifer species by cartridge-tube-based passive sampling adsorption–thermal desorption (ps-ATD)
Identification, monitoring, and reaction kinetics of reactive trace species using time-resolved mid-infrared quantum cascade laser absorption spectroscopy: development, characterisation, and initial results for the CH2OO Criegee intermediate
Air pollution monitoring: development of ammonia (NH3) dynamic reference gas mixtures at nanomoles per mole levels to improve the lack of traceability of measurements
Formaldehyde and glyoxal measurement deploying a selected ion flow tube mass spectrometer (SIFT-MS)
Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides
MULTICHARME: a modified Chernin-type multi-pass cell designed for IR and THz long-path absorption measurements in the CHARME atmospheric simulation chamber
Silicone tube humidity generator
A source for the continuous generation of pure and quantifiable HONO mixtures
Photochemical method for removing methane interference for improved gas analysis
A simulation chamber for absorption spectroscopy in planetary atmospheres
An automated system for trace gas flux measurements from plant foliage and other plant compartments
Simultaneous measurement of δ13C, δ18O and δ17O of atmospheric CO2 – performance assessment of a dual-laser absorption spectrometer
Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers
A method for resolving changes in atmospheric He ∕ N2 as an indicator of fossil fuel extraction and stratospheric circulation
Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
Atomic emission detector with gas chromatographic separation and cryogenic pre-concentration (CryoTrap–GC–AED) for atmospheric trace gas measurements
New technique for high-precision, simultaneous measurements of CH4, N2O and CO2 concentrations; isotopic and elemental ratios of N2, O2 and Ar; and total air content in ice cores by wet extraction
High-precision laser spectrometer for multiple greenhouse gas analysis in 1 mL air from ice core samples
A thermal-dissociation–cavity ring-down spectrometer (TD-CRDS) for the detection of organic nitrates in gas and particle phases
Interference from alkenes in chemiluminescent NOx measurements
Calibration of an airborne HOx instrument using the All Pressure Altitude-based Calibrator for HOx Experimentation (APACHE)
Measurement of ammonia, amines and iodine compounds using protonated water cluster chemical ionization mass spectrometry
An instrument for in situ measurement of total ozone reactivity
A new instrument for time-resolved measurement of HO2 radicals
Investigation of adsorption and desorption behavior of small-volume cylinders and its relevance for atmospheric trace gas analysis
Towards an understanding of surface effects: testing of various materials in a small volume measurement chamber and its relevance for atmospheric trace gas analysis
Stability of halocarbons in air samples stored in stainless- steel canisters
High-precision atmospheric oxygen measurement comparisons between a newly built CRDS analyzer and existing measurement techniques
Characterisation of the transfer of cluster ions through an atmospheric pressure interface time-of-flight mass spectrometer with hexapole ion guides
Addition of fast gas chromatography to selected ion flow tube mass spectrometry for analysis of individual monoterpenes in mixtures
Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas–wall interactions
Finja Löher, Esther Borrás, Amalia Muñoz, and Anke Christine Nölscher
Atmos. Meas. Tech., 17, 4553–4579, https://doi.org/10.5194/amt-17-4553-2024, https://doi.org/10.5194/amt-17-4553-2024, 2024
Short summary
Short summary
We constructed and characterized a new indoor Teflon atmospheric simulation chamber. We evaluated wall losses, photolysis rates, and secondary reactions of multifunctional photooxidation products in the chamber. To measure these products on-line, we combined chromatographic and mass spectrometric analyses to obtain both isomeric information and a high temporal resolution. For method validation, we studied the formation yields of the main ring-retaining products of toluene.
Hans Christian Steen-Larsen and Daniele Zannoni
Atmos. Meas. Tech., 17, 4391–4409, https://doi.org/10.5194/amt-17-4391-2024, https://doi.org/10.5194/amt-17-4391-2024, 2024
Short summary
Short summary
The water vapor generation module is completely scalable, allowing autonomous calibrations to use N standards and providing integration times only restricted by sample availability. We document improved reproducibility in 17O-excess liquid measurements. This module makes spectroscopy measurements comparable to mass spectrometry. We document that the vapor generation module can be used to analyze instrument performance and for vapor isotope calibration during field campaign measurements.
Malavika Sivan, Thomas Röckmann, Carina van der Veen, and Maria Elena Popa
Atmos. Meas. Tech., 17, 2687–2705, https://doi.org/10.5194/amt-17-2687-2024, https://doi.org/10.5194/amt-17-2687-2024, 2024
Short summary
Short summary
We have set up a measurement system for methane-clumped isotopologues. We have built an extraction and purification system to extract pure methane for these measurements, for samples of various origins, including atmospheric air, for which we need to process about 1000 L of air for one measurement. We report here the technical setup for extraction and measurements, as well as the calibration, and we give an overview of the samples measured so far.
Mengdi Song, Shuyu He, Xin Li, Ying Liu, Shengrong Lou, Sihua Lu, Limin Zeng, and Yuanhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1203, https://doi.org/10.5194/egusphere-2024-1203, 2024
Short summary
Short summary
This study introduces detailed and improved quantitation and semi-quantitation methods of Iodide time-of-flight chemical ionization mass spectrometry (I-CIMS) to measure toluene oxidation intermediates. It assesses the experimental sensitivity of various functional group species and their binding energy with iodide ions in I-CIMS. A novel classification approach improves semi-quantitative methods (R2 > 0.88) and reduces oxidation intermediate uncertainty to 15 %–45 %.
Fangbing Li, Dan Dan Huang, Linhui Tian, Bin Yuan, Wen Tan, Liang Zhu, Penglin Ye, Douglas Worsnop, Ka In Hoi, Kai Meng Mok, and Yong Jie Li
Atmos. Meas. Tech., 17, 2415–2427, https://doi.org/10.5194/amt-17-2415-2024, https://doi.org/10.5194/amt-17-2415-2024, 2024
Short summary
Short summary
The responses of protonated, adduct, and fragmented ions of 21 volatile organic compounds (VOCs) were investigated with varying instrument settings and relative humidity (RH) in a Vocus proton-transfer-reaction mass spectrometer (PTR-MS). The protonated ions of most VOCs studied show < 15 % variation in sensitivity, except for some long-chain aldehydes. The relationship between sensitivity and PTR rate constant is complicated by the influences from ion transmission and protonated ion fraction.
Matthieu Riva, Veronika Pospisilova, Carla Frege, Sebastien Perrier, Priyanka Bansal, Spiro Jorga, Patrick Sturm, Joel Thornton, Urs Rohner, and Felipe Lopez-Hilfiker
EGUsphere, https://doi.org/10.5194/egusphere-2024-945, https://doi.org/10.5194/egusphere-2024-945, 2024
Short summary
Short summary
We present a newly designed reduced-pressure chemical ionization reactor for the detection of gas phase organic and inorganic species. The system operates through the combined use of VUV ionization and photosensitizers to generate numerous adduct ionization schemes. As a result, it offers the ability to simultaneously measure a wide variety of organic and inorganic species in terms of compound volatility and functionality, while being largely independent of changes in the sample humidity.
Melissa A. Morris, Demetrios Pagonis, Douglas A. Day, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
Atmos. Meas. Tech., 17, 1545–1559, https://doi.org/10.5194/amt-17-1545-2024, https://doi.org/10.5194/amt-17-1545-2024, 2024
Short summary
Short summary
Polymer absorption of volatile organic compounds (VOCs) is important to characterize for atmospheric sampling setups (as interactions cause sampling delays) and indoor air quality. Here we test different polymer materials and quantify their absorptive capacities through modeling. We found the main polymers in carpets to be highly absorptive, acting as large reservoirs for indoor pollution. We also demonstrated how polymer tubes can be used as a low-cost gas separation technique.
Hideki Nara, Takuya Saito, Taku Umezawa, and Yasunori Tohjima
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-16, https://doi.org/10.5194/amt-2024-16, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
We have developed a high-accuracy dynamic dilution system for generating reference gas mixtures containing carbonyl sulfide (COS). Although COS at ambient levels generally has poor storage stability, our approach involves dilution of a gas mixture containing micromole-per-mole levels of COS, the stability of which was validated for at least 10 years. Developed system has excellent dilution performance and will facilitate accurate instrumental calibration for atmospheric COS observation.
Harald Sodemann, Alena Dekhtyareva, Alvaro Fernandez, Andrew Seidl, and Jenny Maccali
Atmos. Meas. Tech., 16, 5181–5203, https://doi.org/10.5194/amt-16-5181-2023, https://doi.org/10.5194/amt-16-5181-2023, 2023
Short summary
Short summary
We describe a device that allows one to produce a continuous stream of water vapour with a specified level of humidity. As a main innovation, we can mix waters with different water isotope composition. Through a series of tests we show that the performance characteristics of the device are in line with specifications. We present two laboratory applications where the device proves useful, first in characterizing instruments, and second for the analysis of water contained in stalagmites.
Stephan Räss, Peter Nyfeler, Paul Wheeler, Will Price, and Markus Christian Leuenberger
Atmos. Meas. Tech., 16, 4489–4505, https://doi.org/10.5194/amt-16-4489-2023, https://doi.org/10.5194/amt-16-4489-2023, 2023
Short summary
Short summary
Due to technological advances clumped-isotope studies have gained importance in recent years. Typically, these studies are performed with high-resolution isotope ratio mass spectrometers (IRMSs) along with a changeover-valve-based dual-inlet system (DIS). We are taking a different approach, namely performing clumped-isotope measurements with a compact low-resolution IRMS with an open-split-based DIS. Currently, we are working with pure-oxygen gas for which we are providing a proof of concept.
Xu-Cheng He, Jiali Shen, Siddharth Iyer, Paxton Juuti, Jiangyi Zhang, Mrisha Koirala, Mikko M. Kytökari, Douglas R. Worsnop, Matti Rissanen, Markku Kulmala, Norbert M. Maier, Jyri Mikkilä, Mikko Sipilä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 4461–4487, https://doi.org/10.5194/amt-16-4461-2023, https://doi.org/10.5194/amt-16-4461-2023, 2023
Short summary
Short summary
In this study, the upgraded multi-scheme chemical ionisation inlet 2 is presented. Sulfuric acid, hypoiodous acid, iodine, sulfur dioxide, and hydroperoxyl radicals are calibrated, and the improved ion optics allow us to detect sulfuric acid and iodine-containing molecules at as low as a few parts per quadrillion by volume. Additionally, we confirm the reliable detection of iodic acid using both the nitrate and bromide chemical ionisation methods under atmospherically relevant conditions.
Namrata Shanmukh Panji and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 16, 4319–4330, https://doi.org/10.5194/amt-16-4319-2023, https://doi.org/10.5194/amt-16-4319-2023, 2023
Short summary
Short summary
Measuring volatile organic compounds (VOCs) in the atmosphere is crucial for understanding air quality and environmental impact. Since these compounds are present in low concentrations, preconcentration of samples is often necessary for accurate detection. To address this issue, we have developed a novel inlet that uses selective permeation to concentrate organic gases in small sample flows. This device offers a promising approach for accurately detecting low levels of VOCs in the atmosphere.
Dandan Li, Dongyu Wang, Lucia Caudillo, Wiebke Scholz, Mingyi Wang, Sophie Tomaz, Guillaume Marie, Mihnea Surdu, Elias Eccli, Xianda Gong, Loic Gonzalez-Carracedo, Manuel Granzin, Joschka Pfeifer, Birte Rörup, Benjamin Schulze, Pekka Rantala, Sébastien Perrier, Armin Hansel, Joachim Curtius, Jasper Kirkby, Neil M. Donahue, Christian George, Imad El-Haddad, and Matthieu Riva
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-149, https://doi.org/10.5194/amt-2023-149, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
Due to various analytical challenges in measuring organic vapors, it remains challenging to identify and quantify organic molecules present in the atmosphere, Here, we explore the performance of the chemical ionization Orbitrap mass spectrometer (CI-Orbitrap) using ammonium ion chemistry. This study shows that ammonium ion-based chemistry associated with the high mass resolving power of the Orbitrap mass analyzer can measure almost all-inclusive compounds.
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023, https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Short summary
The automatic and low-maintenance radon flux system Autoflux, completed with environmental soil and atmosphere sensors, has been theoretically and experimentally characterized and calibrated under laboratory conditions to be used as transfer standard for in situ measurements. It will offer for the first time long-term measurements to validate radon flux maps used by the climate and the radiation protection communities for assessing the radon gas emissions in the atmosphere.
Alexandra L. Meyer and Lisa R. Welp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-56, https://doi.org/10.5194/amt-2023-56, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
Water molecules stick to air intake tubing wall surfaces and exchange with ambient vapor. This can slow signal change measurements. We tested whether material type affects this stickiness. Less stickiness would lead to an instrument seeing signal changes faster. We unexpectedly saw no difference in signal speed between material types. Water vapor stable isotope users can more confidently use plastic tubing and compare measurements across observation systems that used different tubing materials.
Lisa Ernle, Monika Akima Ringsdorf, and Jonathan Williams
Atmos. Meas. Tech., 16, 1179–1194, https://doi.org/10.5194/amt-16-1179-2023, https://doi.org/10.5194/amt-16-1179-2023, 2023
Short summary
Short summary
Atmospheric ozone can induce artefacts in volatile organic compound measurements. Laboratory tests were made using GC-MS and PTR-MS aircraft systems under tropospheric and stratospheric conditions of humidity and ozone, with and without sodium thiosulfate filter scrubbers. Ozone in dry air produces some carbonyls and degrades alkenes. The scrubber lifetime depends on ozone concentration, flow rate and humidity. For the troposphere with scrubber, no significant artefacts were found over 14 d.
Lars Mächler, Daniel Baggenstos, Florian Krauss, Jochen Schmitt, Bernhard Bereiter, Remo Walther, Christoph Reinhard, Béla Tuzson, Lukas Emmenegger, and Hubertus Fischer
Atmos. Meas. Tech., 16, 355–372, https://doi.org/10.5194/amt-16-355-2023, https://doi.org/10.5194/amt-16-355-2023, 2023
Short summary
Short summary
We present a new method to extract the gases from ice cores and measure their greenhouse gas composition. The ice is sublimated continuously with a near-infrared laser, releasing the gases, which are then analyzed on a laser absorption spectrometer. The main advantage over previous efforts is a low effective resolution of 1–2 cm. This capability is crucial for the analysis of highly thinned ice, as expected from ongoing drilling efforts to extend ice core history further back in time.
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Wei Wang, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech., 15, 5439–5454, https://doi.org/10.5194/amt-15-5439-2022, https://doi.org/10.5194/amt-15-5439-2022, 2022
Short summary
Short summary
This research demonstrates a new method for determination of the chemical reactivity of volatile organic compounds that are emitted from the leaves and needles of trees. These measurements allow elucidating if and how much of these emissions and their associated reactivity are captured and quantified by currently applicable chemical analysis methods.
Andrew J. Lindsay and Ezra C. Wood
Atmos. Meas. Tech., 15, 5455–5464, https://doi.org/10.5194/amt-15-5455-2022, https://doi.org/10.5194/amt-15-5455-2022, 2022
Short summary
Short summary
Nitrous acid (HONO) is an important source of the main atmospheric oxidant – the hydroxyl radical (OH). Advances in nitrous acid measurement techniques and calibration methods therefore improve our understanding of atmospheric oxidation processes. In this paper, we present two calibration methods based on photo-dissociating water vapor. These calibration methods are useful alternatives to conventional calibrations that involve a reacting hydrogen chloride vapor with sodium nitrite.
Ying Wang, Wentai Luo, Todd N. Rosenstiel, and James F. Pankow
Atmos. Meas. Tech., 15, 4651–4661, https://doi.org/10.5194/amt-15-4651-2022, https://doi.org/10.5194/amt-15-4651-2022, 2022
Short summary
Short summary
A rapid, sensitive, and precise analytical method was developed for measuring the fractional amounts of the (−) and (+) forms of chiral enantiomeric forms of monoterpenes in air containing biogenic plant emissions. The method uses passive air sampling onto adsorption–thermal desorption (ATD) gas sampling cartridge tubes; this is followed by automatable thermal desorption onto a chiral gas chromatography (GC) column, followed by detection with mass spectrometry (MS).
Zara S. Mir, Matthew Jamieson, Nicholas R. Greenall, Paul W. Seakins, Mark A. Blitz, and Daniel Stone
Atmos. Meas. Tech., 15, 2875–2887, https://doi.org/10.5194/amt-15-2875-2022, https://doi.org/10.5194/amt-15-2875-2022, 2022
Short summary
Short summary
In this work we describe the development and characterisation of an experiment using laser flash photolysis coupled with time-resolved mid-infrared (mid-IR) quantum cascade laser (QCL) absorption spectroscopy, with initial results reported for measurements of the infrared spectrum, kinetics, and product yields for the reaction of the CH2OO Criegee intermediate with SO2. This work has significance for the identification and measurement of reactive trace species in complex systems.
Tatiana Macé, Maitane Iturrate-Garcia, Céline Pascale, Bernhard Niederhauser, Sophie Vaslin-Reimann, and Christophe Sutour
Atmos. Meas. Tech., 15, 2703–2718, https://doi.org/10.5194/amt-15-2703-2022, https://doi.org/10.5194/amt-15-2703-2022, 2022
Short summary
Short summary
LNE developed, with the company 2M PROCESS, a gas reference generator to dynamically generate NH3 reference gas mixtures in the air at very low fractions between 1 and 400 nmol/mol. The procedure defined by LNE for calibrating NH3 analyzers used for monitoring air quality guarantees relative expanded uncertainties lower than 2 % for this measurement range. The results of a comparison organized between METAS and LNE allowed the validation of LNE's reference generator and calibration procedure.
Antonia G. Zogka, Manolis N. Romanias, and Frederic Thevenet
Atmos. Meas. Tech., 15, 2001–2019, https://doi.org/10.5194/amt-15-2001-2022, https://doi.org/10.5194/amt-15-2001-2022, 2022
Short summary
Short summary
We emphasize the application of SIFT-MS to detect two important atmospheric pollutants, i.e., formaldehyde (FM) and glyoxal (GL). FM and GL are secondary products formed by volatile organic compound oxidation in indoor and outdoor environments and play a key role in air quality and climate. We show that SIFT-MS is able to monitor these species selectively and in real time, overcoming the limitations of other, classical analytical techniques used to monitor these species in the atmosphere.
Haiyan Li, Thomas Golin Almeida, Yuanyuan Luo, Jian Zhao, Brett B. Palm, Christopher D. Daub, Wei Huang, Claudia Mohr, Jordan E. Krechmer, Theo Kurtén, and Mikael Ehn
Atmos. Meas. Tech., 15, 1811–1827, https://doi.org/10.5194/amt-15-1811-2022, https://doi.org/10.5194/amt-15-1811-2022, 2022
Short summary
Short summary
This work evaluated the potential for PTR-based mass spectrometers to detect ROOR and ROOH peroxides both experimentally and through computations. Laboratory experiments using a Vocus PTR observed only noisy signals of potential dimers during α-pinene ozonolysis and a few small signals of dimeric compounds during cyclohexene ozonolysis. Quantum chemical calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation.
Jean Decker, Éric Fertein, Jonas Bruckhuisen, Nicolas Houzel, Pierre Kulinski, Bo Fang, Weixiong Zhao, Francis Hindle, Guillaume Dhont, Robin Bocquet, Gaël Mouret, Cécile Coeur, and Arnaud Cuisset
Atmos. Meas. Tech., 15, 1201–1215, https://doi.org/10.5194/amt-15-1201-2022, https://doi.org/10.5194/amt-15-1201-2022, 2022
Short summary
Short summary
We present a multiple pass system developed for the CHamber for Atmospheric Reactivity and Metrology of the Environment. This multi-pass cell allows monitoring of atmospheric species at trace levels by high-resolution spectroscopy with long interaction path lengths in the IR and for the first time in the terahertz range. Interesting prospects are highlighted in this frequency domain, such as a high degree of selectivity or the possibility to monitor in real-time atmospheric processes.
Robert F. Berg, Nicola Chiodo, and Eric Georgin
Atmos. Meas. Tech., 15, 819–832, https://doi.org/10.5194/amt-15-819-2022, https://doi.org/10.5194/amt-15-819-2022, 2022
Short summary
Short summary
We made a humidity generator that adds water vapor to a flowing gas. Its range of humidity is useful for calibrating balloon-borne probes to the Earth's stratosphere. The generator’s novel feature is a saturator that comprises 5 m of silicone tubing immersed in water. The length was enough to ensure that the saturator’s output was independent of the dimensions and permeability of the tube. This simple, low-cost design provides an accuracy that is acceptable for many applications.
Guillermo Villena and Jörg Kleffmann
Atmos. Meas. Tech., 15, 627–637, https://doi.org/10.5194/amt-15-627-2022, https://doi.org/10.5194/amt-15-627-2022, 2022
Short summary
Short summary
A continuous source for the generation of pure HONO mixtures was developed and characterized, which is based on the Henry's law solubility of HONO in acidic aqueous solutions. The source shows a fast time response and an excellent long-term stability and can be easily adjusted to HONO mixing ratios in the range 0.05–500 ppb. A general equation based on Henry's law is developed, whereby the HONO concentration of the source can be absolutely calculated with an accuracy of better than 10 %.
Merve Polat, Jesper Baldtzer Liisberg, Morten Krogsbøll, Thomas Blunier, and Matthew S. Johnson
Atmos. Meas. Tech., 14, 8041–8067, https://doi.org/10.5194/amt-14-8041-2021, https://doi.org/10.5194/amt-14-8041-2021, 2021
Short summary
Short summary
We have designed a process for removing methane from a gas stream so that nitrous oxide can be measured without interference. These are both key long-lived greenhouse gases frequently studied in relation to ice cores, plants, water treatment and so on. However, many researchers are not aware of the problem of methane interference, and in addition there have not been good methods available for solving the problem. Here we present and evaluate such a method.
Marcel Snels, Stefania Stefani, Angelo Boccaccini, David Biondi, and Giuseppe Piccioni
Atmos. Meas. Tech., 14, 7187–7197, https://doi.org/10.5194/amt-14-7187-2021, https://doi.org/10.5194/amt-14-7187-2021, 2021
Short summary
Short summary
A novel simulation chamber, PASSxS (Planetary Atmosphere Simulation System for Spectroscopy), has been developed for absorption measurements with a Fourier transform spectrometer (FTS) and possibly a cavity ring-down (CRD) spectrometer, with a sample temperature ranging from 100 K up to 550 K, while the pressure of the gas can be varied up to 60 bar. These temperature and pressure ranges cover a significant part of the planetary atmospheres in the solar system and possibly extrasolar planets.
Lukas Kohl, Markku Koskinen, Tatu Polvinen, Salla Tenhovirta, Kaisa Rissanen, Marjo Patama, Alessandro Zanetti, and Mari Pihlatie
Atmos. Meas. Tech., 14, 4445–4460, https://doi.org/10.5194/amt-14-4445-2021, https://doi.org/10.5194/amt-14-4445-2021, 2021
Short summary
Short summary
We present ShoTGa-FluMS, a measurement system designed for continuous and automated measurements of trace gas and volatile organic compound (VOC) fluxes from plant shoots. ShoTGa-FluMS uses transparent shoot enclosures equipped with cooling elements, automatically replaces fixated CO2, and removes transpired water from the enclosure, thus solving multiple technical problems that have so far prevented automated plant shoot trace gas flux measurements.
Pharahilda M. Steur, Hubertus A. Scheeren, Dave D. Nelson, J. Barry McManus, and Harro A. J. Meijer
Atmos. Meas. Tech., 14, 4279–4304, https://doi.org/10.5194/amt-14-4279-2021, https://doi.org/10.5194/amt-14-4279-2021, 2021
Short summary
Short summary
For understanding the sources and sinks of atmospheric CO2, measurement of stable isotopes has proven to be highly valuable. We present a new method using laser absorption spectroscopy to simultaneously conduct measurements of three CO2 isotopes, directly on dry-air samples. This new method reduces sample preparation time significantly, compared to the conventional method in which measurements are conducted on pure CO2, and avoids measurement biases introduced by CO2 extraction.
Mingyi Wang, Xu-Cheng He, Henning Finkenzeller, Siddharth Iyer, Dexian Chen, Jiali Shen, Mario Simon, Victoria Hofbauer, Jasper Kirkby, Joachim Curtius, Norbert Maier, Theo Kurtén, Douglas R. Worsnop, Markku Kulmala, Matti Rissanen, Rainer Volkamer, Yee Jun Tham, Neil M. Donahue, and Mikko Sipilä
Atmos. Meas. Tech., 14, 4187–4202, https://doi.org/10.5194/amt-14-4187-2021, https://doi.org/10.5194/amt-14-4187-2021, 2021
Short summary
Short summary
Atmospheric iodine species are often short-lived with low abundance and have thus been challenging to measure. We show that the bromide chemical ionization mass spectrometry, compatible with both the atmospheric pressure and reduced pressure interfaces, can simultaneously detect various gas-phase iodine species. Combining calibration experiments and quantum chemical calculations, we quantify detection sensitivities to HOI, HIO3, I2, and H2SO4, giving detection limits down to < 106 molec. cm-3.
Benjamin Birner, William Paplawsky, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Meas. Tech., 14, 2515–2527, https://doi.org/10.5194/amt-14-2515-2021, https://doi.org/10.5194/amt-14-2515-2021, 2021
Short summary
Short summary
The atmospheric helium-to-nitrogen ratio is a promising indicator for circulation changes in the upper atmosphere and fossil fuel burning by humans. We present a very precise analysis method to determine changes in the helium-to-nitrogen ratio of air samples. The method relies on stabilizing the gas flow to a mass spectrometer and continuous removal of reactive gases. These advances enable new insights and monitoring possibilities for anthropogenic and natural processes.
Alexander Zaytsev, Martin Breitenlechner, Anna Novelli, Hendrik Fuchs, Daniel A. Knopf, Jesse H. Kroll, and Frank N. Keutsch
Atmos. Meas. Tech., 14, 2501–2513, https://doi.org/10.5194/amt-14-2501-2021, https://doi.org/10.5194/amt-14-2501-2021, 2021
Short summary
Short summary
We have developed an online method for speciated measurements of organic peroxy radicals and stabilized Criegee intermediates using chemical derivatization combined with chemical ionization mass spectrometry. Chemical derivatization prevents secondary radical reactions and eliminates potential interferences. Comparison between our measurements and results from numeric modeling shows that the method can be used for the quantification of a wide range of atmospheric radicals and intermediates.
Einar Karu, Mengze Li, Lisa Ernle, Carl A. M. Brenninkmeijer, Jos Lelieveld, and Jonathan Williams
Atmos. Meas. Tech., 14, 1817–1831, https://doi.org/10.5194/amt-14-1817-2021, https://doi.org/10.5194/amt-14-1817-2021, 2021
Short summary
Short summary
A gas measurement device was developed to measure trace gases (ppt level) in the air based on an atomic emission detector. It combines a cryogenic pre-concentrator (CryoTrap), a gas chromatograph (GC), and a new high-resolution atomic emission detector (AED). The CryoTrap–GC–AED instrumental setup, limits of detection, and elemental performance are presented and discussed. Two measurement case studies are reported: one in a Finnish boreal forest and the other based on an aircraft campaign.
Ikumi Oyabu, Kenji Kawamura, Kyotaro Kitamura, Remi Dallmayr, Akihiro Kitamura, Chikako Sawada, Jeffrey P. Severinghaus, Ross Beaudette, Anaïs Orsi, Satoshi Sugawara, Shigeyuki Ishidoya, Dorthe Dahl-Jensen, Kumiko Goto-Azuma, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Meas. Tech., 13, 6703–6731, https://doi.org/10.5194/amt-13-6703-2020, https://doi.org/10.5194/amt-13-6703-2020, 2020
Short summary
Short summary
Air in polar ice cores provides information on past atmosphere and climate. We present a new method for simultaneously measuring eight gases (CH4, N2O and CO2 concentrations; isotopic ratios of N2 and O2; elemental ratios between N2, O2 and Ar; and total air content) from single ice-core samples with high precision.
Bernhard Bereiter, Béla Tuzson, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Lars Mächler, Daniel Baggenstos, Jochen Schmitt, Hubertus Fischer, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 6391–6406, https://doi.org/10.5194/amt-13-6391-2020, https://doi.org/10.5194/amt-13-6391-2020, 2020
Short summary
Short summary
The record of past greenhouse gas composition from ice cores is crucial for our understanding of global climate change. Deciphering this archive requires highly accurate and spatially resolved analysis of the very small amount of gas that is trapped in the ice. This is achieved with a mid-IR laser absorption spectrometer that provides simultaneous, high-precision measurements of CH4, N2O, CO2, and δ13C(CO2) and which will be coupled to a quantitative sublimation extraction method.
Natalie I. Keehan, Bellamy Brownwood, Andrey Marsavin, Douglas A. Day, and Juliane L. Fry
Atmos. Meas. Tech., 13, 6255–6269, https://doi.org/10.5194/amt-13-6255-2020, https://doi.org/10.5194/amt-13-6255-2020, 2020
Short summary
Short summary
This paper describes a new instrument (a thermal-dissociation–cavity ring-down spectrometer, TD-CRDS) for the measurement of key atmospheric gaseous and particle-phase molecules containing the nitrate functional group. Several operational considerations affecting the measurements are described, as well as several characterization experiments comparing the TD-CRDS measurements to analogous measurements from other instruments. Examples are given using a TD-CRDS for ambient and laboratory studies.
Mohammed S. Alam, Leigh R. Crilley, James D. Lee, Louisa J. Kramer, Christian Pfrang, Mónica Vázquez-Moreno, Milagros Ródenas, Amalia Muñoz, and William J. Bloss
Atmos. Meas. Tech., 13, 5977–5991, https://doi.org/10.5194/amt-13-5977-2020, https://doi.org/10.5194/amt-13-5977-2020, 2020
Short summary
Short summary
We report on the interference arising in measurements of nitrogen oxides (NOx) from the presence of a range of alkenes in sampled air when using the most widespread air quality monitoring technique for chemiluminescence detection. Interferences of up to 11 % are reported, depending upon the alkene present and conditions used. Such interferences may be of substantial importance for the interpretation of ambient NOx data, particularly for high volatile organic compound and low NOx environments.
Daniel Marno, Cheryl Ernest, Korbinian Hens, Umar Javed, Thomas Klimach, Monica Martinez, Markus Rudolf, Jos Lelieveld, and Hartwig Harder
Atmos. Meas. Tech., 13, 2711–2731, https://doi.org/10.5194/amt-13-2711-2020, https://doi.org/10.5194/amt-13-2711-2020, 2020
Short summary
Short summary
In this study, a calibration device for OH and HO2 instruments is characterized at pressures of 275 to 1000 mbar, allowing instrument pressure sensitivity to be quantified to an accuracy of 22 % (1σ). Computational fluid dynamic simulations supporting the understanding of interactions between generated HOx and the instrument inlet led to enhanced determination of factors affecting instrument sensitivity.
Joschka Pfeifer, Mario Simon, Martin Heinritzi, Felix Piel, Lena Weitz, Dongyu Wang, Manuel Granzin, Tatjana Müller, Steffen Bräkling, Jasper Kirkby, Joachim Curtius, and Andreas Kürten
Atmos. Meas. Tech., 13, 2501–2522, https://doi.org/10.5194/amt-13-2501-2020, https://doi.org/10.5194/amt-13-2501-2020, 2020
Short summary
Short summary
Ammonia is an important atmospheric trace gas that affects secondary aerosol formation and, together with sulfuric acid, the formation of new particles. A measurement technique is presented that uses high-resolution mass spectrometry and protonated water clusters for the ultrasensitive detection of ammonia at single-digit parts per trillion by volume levels. The instrument is further capable of measuring amines and a suite of iodine compounds at sub-parts per trillion by volume levels.
Roberto Sommariva, Louisa J. Kramer, Leigh R. Crilley, Mohammed S. Alam, and William J. Bloss
Atmos. Meas. Tech., 13, 1655–1670, https://doi.org/10.5194/amt-13-1655-2020, https://doi.org/10.5194/amt-13-1655-2020, 2020
Short summary
Short summary
Ozone is a key atmospheric pollutant formed through chemical processing of natural and anthropogenic emissions and removed by reaction with organic compounds emitted by plants. We describe a new instrument – the
Total Ozone Reactivity Systemor TORS – that measures the total loss of ozone in the troposphere. The objective of the TORS instrument is to provide an estimate of the organic compounds emitted by plants which are not measured and thus to improve our understanding of the ozone budget.
Thomas H. Speak, Mark A. Blitz, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 13, 839–852, https://doi.org/10.5194/amt-13-839-2020, https://doi.org/10.5194/amt-13-839-2020, 2020
Short summary
Short summary
OH and HO2 radicals are important trace constituents of the atmosphere that are closely coupled via several types of reaction. This paper describes a new laboratory method to simultaneously determine OH kinetics and HO2 yields from chemical processes. The instrument also provides some time resolution on HO2 detection allowing one to separate HO2 produced from the target reaction from HO2 arising from secondary chemistry. Examples of applications are presented.
Ece Satar, Peter Nyfeler, Bernhard Bereiter, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 101–117, https://doi.org/10.5194/amt-13-101-2020, https://doi.org/10.5194/amt-13-101-2020, 2020
Short summary
Short summary
Good-quality measurements of atmospheric trace gases are only possible with regular calibrations and stable measurements from the standard cylinders. This study investigates instabilities due to surface effects on newly built aluminum and steel cylinders. We present measurements over a set of temperature and pressure ranges for the amount fractions of CO2, CO, CH4 and H2O using a commercial and a novel laser spectroscopic analyzer.
Ece Satar, Peter Nyfeler, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 119–130, https://doi.org/10.5194/amt-13-119-2020, https://doi.org/10.5194/amt-13-119-2020, 2020
Short summary
Short summary
To ensure the best preparation and measurement conditions for trace gases, usage of coated materials is in demand in gas metrology and atmospheric measurement communities. In this article, the previously introduced aluminum measurement chamber is used to investigate materials such as glass, aluminum, copper, brass, steel and three different commercially available coatings. Our measurements focus on temperature and pressure dependencies for the species CO2, CO, CH4 and H2O using a CRDS analyzer.
Tanja J. Schuck, Ann-Katrin Blank, Elisa Rittmeier, Jonathan Williams, Carl A. M. Brenninkmeijer, Andreas Engel, and Andreas Zahn
Atmos. Meas. Tech., 13, 73–84, https://doi.org/10.5194/amt-13-73-2020, https://doi.org/10.5194/amt-13-73-2020, 2020
Short summary
Short summary
Air sample collection aboard aircraft is a tool to measure atmospheric trace gas mixing ratios at altitude. We present results on the stability of 28 halocarbons during storage of air samples collected in stainless-steel flasks inside an automated air sampling unit which is part of the CARIBIC instrument package. Selected fluorinated compounds grew during the experiments while short-lived compounds were depleted. Individual substances were additionally influenced by high mixing ratios of ozone.
Tesfaye A. Berhanu, John Hoffnagle, Chris Rella, David Kimhak, Peter Nyfeler, and Markus Leuenberger
Atmos. Meas. Tech., 12, 6803–6826, https://doi.org/10.5194/amt-12-6803-2019, https://doi.org/10.5194/amt-12-6803-2019, 2019
Short summary
Short summary
Accurate measurement of variations in atmospheric O2 can provide useful information about atmospheric, biospheric, and oceanic processes, which is a challenge for existing measurement techniques. Here, we introduce a newly built high-precision, stable CRDS analyzer (Picarro G2207) that can measure O2 mixing ratios with a short-term precision of < 1 ppm and only requires calibration every 12 h. Measurements from tower and mountain sites are also presented.
Markus Leiminger, Stefan Feil, Paul Mutschlechner, Arttu Ylisirniö, Daniel Gunsch, Lukas Fischer, Alfons Jordan, Siegfried Schobesberger, Armin Hansel, and Gerhard Steiner
Atmos. Meas. Tech., 12, 5231–5246, https://doi.org/10.5194/amt-12-5231-2019, https://doi.org/10.5194/amt-12-5231-2019, 2019
Short summary
Short summary
We introduce an alternative type of atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF) with the main difference of using hexapole instead of quadrupole ion guides. The transfer of cluster ions through the hexapoles was characterised with focus on transmission efficiency, mass range and fragmentation of cluster ions. At the CERN CLOUD experiment we compared the performance of the ioniAPi-TOF with a standard quadrupole APi-TOF under controlled conditions.
Michal Lacko, Nijing Wang, Kristýna Sovová, Pavel Pásztor, and Patrik Španěl
Atmos. Meas. Tech., 12, 4965–4982, https://doi.org/10.5194/amt-12-4965-2019, https://doi.org/10.5194/amt-12-4965-2019, 2019
Short summary
Short summary
The soft chemical ionization analytical technique of selected ion flow tube mass spectrometry, SIFT-MS, was enhanced by a fast GC pre-separation unit to identify individual isomers. Experiments were carried out with two GC columns, MXT-1 and MXT-Volatiles, using two reagent ions, H3O+ and NO+, on monoterpene samples (an artificial mixture and coniferous needles). Analyses of product ion ratios allowed for quantification of multiple monoterpenes in partially separated chromatograms.
Benjamin L. Deming, Demetrios Pagonis, Xiaoxi Liu, Douglas A. Day, Ranajit Talukdar, Jordan E. Krechmer, Joost A. de Gouw, Jose L. Jimenez, and Paul J. Ziemann
Atmos. Meas. Tech., 12, 3453–3461, https://doi.org/10.5194/amt-12-3453-2019, https://doi.org/10.5194/amt-12-3453-2019, 2019
Short summary
Short summary
Losses or measurement delays of gas-phase compounds sampled through tubing are important to atmospheric science. Here we characterize 14 tubing materials by measuring the effects on step changes in organic compound concentration. We find that polymeric tubings exhibit absorptive partitioning behaviour while glass and metal tubings show adsorptive partitioning. Adsorptive materials impart complex humidity, concentration, and VOC–VOC interaction dependencies that absorptive tubings do not.
Cited articles
Abman, S. H.: Inhaled nitric oxide for the treatment of pulmonary arterial
hypertension, Handbook of Experimental Pharmacology, Vol. 218, Springer, Berlin, 257–276, 2013.
Andersen, P. C., Williford, C. J., and Birks, J. W.: Method to Produce a
Calibration Reagent or Therapeutic Gas by Exposing a Precursor Gas to
Ultraviolet Light, U.S. Patent No. US 10,207,927 B2, 19 February 2019, U.S.
Patent and Trademark Office, Washington, DC, USA, 2019.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Bertram, T. H., Cohen, R. C., Thorn III, W. J., and Chou, P. M.: Consistency of
ozone and nitrogen oxides standards at tropospherically relevant mixing
ratios, J. Air Waste Manage. Assoc., 55, 1473–1479,
doi10.1080/10473289.2005.10464740, 2005.
doi10.1080/10473289.2005.10464740, 2005.
Birks, J. W. and Bollinger, M. J.: Method and Apparatus to Detect a Gas by
Measuring Ozone Depletion, U.S. Patent No. 7,045,359 B2, 16 May 2006, U.S.
Patent and Trademark Office, Washington, DC, USA, 2006.
Birks, J. W., Andersen, P. C., Williford, C. J., Turnipseed, A. A., Strunk, S. E., Ennis, C. A., and Mattson, E.: Folded tubular photometer for atmospheric measurements of NO2 and NO, Atmos. Meas. Tech., 11, 2821–2835, https://doi.org/10.5194/amt-11-2821-2018, 2018a.
Birks, J. W., Williford, C. J., Andersen, P. C., Turnipseed, A. A., Strunk, S., and Ennis, C. A.: Portable ozone calibration source independent of changes in temperature, pressure and humidity for research and regulatory applications, Atmos. Meas. Tech., 11, 4797–4807, https://doi.org/10.5194/amt-11-4797-2018, 2018b.
Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Huie, R. E.,
Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.:
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 18, JPL Publication, NASA, 15–10, 2015.
Cantrell, C. A., Zimmer, A., and Tyndall, G. S.: Absorption cross sections for
water vapor from 183 to 193 nm, Geophys. Res. Lett., 24, 2195–2198, https://doi.org/10.1029/97GL02100,
1997.
Chilton, J. E., Timko, R. J., and Chuhta, E. J.: Nitrogen Dioxide Calibration
Standards for Portable Monitors, Information Circular 9482, DHHS (NIOSH)
Publication No. 2006-104, 2005.
Clark, R. H., Kueser, T. J., Walker, M. W., Southgate, W. M., Huckaby, J. L.,
Perez, J. A., Roy, B. J., Keszler, M., and Kinsella, J. P.: Low-dose nitric
oxide therapy for persistent pulmonary hypertension of the newborn, N. Engl. J. Med., 342,
469–474, 2000.
Clyne, M. A. A., Thrush, B. A., and Wayne, R. P.: Kinetics of the chemiluminescent
reaction between nitric oxide and ozone, T. Faraday Soc., 60, 359–370,
1964.
Creasey, D. J., Heard, D. E., and Lee, J. D.: Absorption cross-section
measurements of water vapour and oxygen at 185 nm, Implications for the
calibration of field instruments to measure OH, HO2 and RO2
radicals, Geophys. Res. Lett. 27, 1651–1654, https://doi.org/10.1029/1999GL011014, 2000.
Demerjian, K. L: A review of national monitoring networks in North America,
Atmos. Environ., 34, 1861–1884, 2000.
Ellis, E. C.: Technical Assistance Document for the Chemiluminescent
Measurement of Nitrogen Dioxide, Environmental Monitoring Series Report
#EPA-600/4-75-003, 1975.
Fontijn, A., Sabadell, A. J., and Ronco, R. J.: Homogeneous chemiluminescent
measurement of nitric oxide with ozone, Implications for continuous
selective monitoring of gaseous air pollutants, Anal. Chem., 42, 575–579, 1970.
Haagen-Smit, A. J.: Chemistry and physiology of Los Angeles smog, Ind. Eng. Chem., 44,
1342–1346, 1952.
Iida, Y., Carnovale, F., Daviel, S., and Brion, C. E.: Absolute
oscillator-strengths for photoabsorption and the molecular and dissociative
photoionization of nitric oxide, Chem. Phys., 105, 211–225, 1986.
Kebabian, P. L, Herndon, S. C., and Freedman, A.: Detection of nitrogen dioxide
by cavity attenuated phase shift spectroscopy, Anal. Chem., 77, 724–728, 2005.
Kebabian, P. L., Wood, E. C., Herndon, S. C., and Freedman, A.: A practical
alternative to chemiluminescence-based detection of nitrogen dioxide: Cavity
attenuated phase shift spectroscopy, Environ. Sci. Technol., 42, 6040–6045, 2008.
Kley, D. and McFarland, M.: Chemiluminescence detector for NO and NO2,
Atmos. Technol., 12, 63–69, 1980.
Nishida, S., Takahashi, K., Matsumi, Y., Taniguchi, N., and Hayashida, S.:
Formation of O(3P) atoms in the photolysis of N2O at 193 nm and
O(3P)+N2O product channel in the reaction of O(1D)+N2O, J. Phys. Chem. A, 108, 2451–2456, https://doi.org/10.1021/jp0370340, 2004.
Paldus, B. A. and Kachanov, A. A.: Spectroscopic Techniques: Cavity-Enhanced
Methods, in: Handbook of Atomic, Molecular, and Optical Physics, Part C: Molecules, edited by: Drake, G. W. F., Springer, Berlin, 633–640, 2006.
Pätz, H.-W., Corsmeier, U., Glaser, K., Vogt, U., Kalthoff, N., Klemp,
D., Kolahgar, B., Lerner, A., Neininger, B., Schmitz, T., Schultz, M. G.,
Slemr, J., and Volz-Thomas, A.: Measurements of trace gases and photolysis
frequencies during SLOPE96 and coarse estimate of the local OH concentration
from HNO3 formation, J. Geophys. Res., 105, 1563–1583, 2000.
Ridley, B. A. and Howlett, L. C.: An instrument for nitric oxide measurements
in the stratosphere, Rev. Sci. Instrum., 45, 742–746, 1974.
Robertson, D. J., Groth, R. H., Gardner, D. G., and Glastris, G.: Stability and
analyses of nitric oxide in nitrogen, J. Air Pollut. Control Assoc., 27, 779–780, https://doi.org/10.1080/00022470.1977.10470491, 1977.
Steffenson, D. M. and Stedman, D. H.: Optimization of the operating parameters
of chemiluminescent nitric oxide detectors, Anal. Chem., 46, 1704–1709, 1974.
U.S. EPA: Measurement Principle and Calibration Procedure for the
Measurement of Nitrogen Dioxide in the Atmosphere (Gas Phase
Chemiluminescence), U.S. Environmental Protection Agency, 40 CFR, Part 50,
Appendix F, as amended 20 January 1983.
U.S. EPA: Reference Method for the Determination of Nitrogen Dioxide in the
Atmosphere (Chemiluminescence), Quality Assurance Guidance Document 2.3, 58 pp., 2002.
U.S. EPA: Transfer Standards for Calibration of Air Monitoring Analyzers for
Ozone, Technical Assistance Document, Ozone Transfer Standard Guidance
Document 10/2013, Publication No. EPA-454/B-13-004, Office of Air Quality
Planning and Standards, Air Quality Assessment Division, available at: https://www3.epa.gov/ttn/amtic/files/ambient/qaqc/OzoneTransferStandardGuidance.pdf (last access: October 2019), Research Triangle
Park, North Carolina, 68 pp., 2013.
U.S. EPA: NO2 cylinder guidance for state-local agencies and gas
producers, available at: https://www.epa.gov/air-research/no2-cylinder-guidance-state-local-agencies-and-gas-producers, last access: 5 September 2019.
Vranckx, S., Peeters, J., and Carl, S. A.: Absolute rate constant and O(3P) yield for theO(1D)+N2O reaction in the temperature range 227 K to 719 K, Atmos. Chem. Phys., 8, 6261–6272, https://doi.org/10.5194/acp-8-6261-2008, 2008.
Yoshino, K., Esmond, J. R., Cheung, A. S. C., Freeman, D. E., and Parkinson,
W. H.: High resolution absorption cross sections in the transmission window
region of the Schumann-Runge bands and Herzberg continuum of O2,
Planet. Space Sci., 40, 185–192, 1992.
Short summary
We describe a portable calibration source of nitric oxide (NO) based on the photolysis of nitrous oxide. Combining this with a previous photolytic ozone (O3) source yields a calibrator that produces known mixing ratios of NO, O3, and nitrogen dioxide (NO2); NO2 is produced by the reaction of NO with O3. This portable
NO2/NO/O3 calibration source requires no external gas cylinders and can be used as a standard to calibrate O3 and NOx air pollution monitors in the field.
We describe a portable calibration source of nitric oxide (NO) based on the photolysis of...