Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 2
Atmos. Meas. Tech., 13, 969–983, 2020
https://doi.org/10.5194/amt-13-969-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 13, 969–983, 2020
https://doi.org/10.5194/amt-13-969-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 02 Mar 2020

Research article | 02 Mar 2020

Comparison of turbulence measurements by a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar

Matthias Mauder et al.

Related authors

Development of an atmospheric chemistry model coupled to the PALM model system 6.0: Implementation and first applications
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-286,https://doi.org/10.5194/gmd-2020-286, 2020
Preprint under review for GMD
Short summary
High-resolution fully coupled atmospheric–hydrological modeling: a cross-compartment regional water and energy cycle evaluation
Benjamin Fersch, Alfonso Senatore, Bianca Adler, Joël Arnault, Matthias Mauder, Katrin Schneider, Ingo Völksch, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020,https://doi.org/10.5194/hess-24-2457-2020, 2020
Overview of the PALM model system 6.0
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020,https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Wintertime grassland dynamics may influence belowground biomass under climate change: a model analysis
Genki Katata, Rüdiger Grote, Matthias Mauder, Matthias J. Zeeman, and Masakazu Ota
Biogeosciences, 17, 1071–1085, https://doi.org/10.5194/bg-17-1071-2020,https://doi.org/10.5194/bg-17-1071-2020, 2020
Short summary
Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019,https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Automated precipitation monitoring with the Thies disdrometer: biases and ways for improvement
Michael Fehlmann, Mario Rohrer, Annakaisa von Lerber, and Markus Stoffel
Atmos. Meas. Tech., 13, 4683–4698, https://doi.org/10.5194/amt-13-4683-2020,https://doi.org/10.5194/amt-13-4683-2020, 2020
Short summary
More science with less: evaluation of a 3D-printed weather station
Adam Theisen, Max Ungar, Bryan Sheridan, and Bradley G. Illston
Atmos. Meas. Tech., 13, 4699–4713, https://doi.org/10.5194/amt-13-4699-2020,https://doi.org/10.5194/amt-13-4699-2020, 2020
Short summary
Characteristics and performance of wind profiles as observed by the radar wind profiler network of China
Boming Liu, Jianping Guo, Wei Gong, Lijuan Shi, Yong Zhang, and Yingying Ma
Atmos. Meas. Tech., 13, 4589–4600, https://doi.org/10.5194/amt-13-4589-2020,https://doi.org/10.5194/amt-13-4589-2020, 2020
Short summary
Confronting the boundary layer data gap: evaluating new and existing methodologies of probing the lower atmosphere
Tyler M. Bell, Brian R. Greene, Petra M. Klein, Matthew Carney, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 3855–3872, https://doi.org/10.5194/amt-13-3855-2020,https://doi.org/10.5194/amt-13-3855-2020, 2020
Short summary
On the estimation of vertical air velocity and detection of atmospheric turbulence from the ascent rate of balloon soundings
Hubert Luce and Hiroyuki Hashiguchi
Atmos. Meas. Tech., 13, 1989–1999, https://doi.org/10.5194/amt-13-1989-2020,https://doi.org/10.5194/amt-13-1989-2020, 2020
Short summary

Cited articles

Aubinet, M., Vesala, T., and Papale, D. (eds.): Eddy Covariance – A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, 2012. 
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, https://doi.org/10.1127/0941-2948/2009/0368, 2009. 
Bradley, S.: Wind speed errors for LIDARs and SODARs in complex terrain, IOP Conf. Ser. Earth Environ. Sci., 1, 012061, https://doi.org/10.1088/1755-1307/1/1/012061, 2008. 
Brugger, P., Träumner, K., and Jung, C.: Evaluation of a procedure to correct spatial averaging in turbulence statistics from a doppler lidar by comparing time series with an ultrasonic anemometer, J. Atmos. Ocean. Technol., 33, 2135–2144, https://doi.org/10.1175/JTECH-D-15-0136.1, 2016. 
Publications Copernicus
Download
Short summary
Sonic anemometers are prone to probe-induced flow distortion effects. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of flow distortion. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with comparabilities of 0.082 and 0.020 m s−1, respectively. Friction velocity is underestimated by the CSAT3B by 3 %.
Sonic anemometers are prone to probe-induced flow distortion effects. Here, we present the...
Citation