Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1253-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-1253-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Water vapor density and turbulent fluxes from three generations of infrared gas analyzers
Seth Kutikoff
Department of Agronomy, Kansas State University, Throckmorton Plant
Sciences Center, Manhattan, KS 66506, USA
Xiaomao Lin
CORRESPONDING AUTHOR
Department of Agronomy, Kansas State University, Throckmorton Plant
Sciences Center, Manhattan, KS 66506, USA
Steven R. Evett
USDA-ARS Conservation & Production Research Lab, P.O. Drawer 10, Bushland, TX 79012, USA
Prasanna Gowda
USDA-ARS 141 Experiment Station Road, Stoneville, MS 38776, USA
David Brauer
USDA-ARS Conservation & Production Research Lab, P.O. Drawer 10, Bushland, TX 79012, USA
Jerry Moorhead
USDA-ARS Conservation & Production Research Lab, P.O. Drawer 10, Bushland, TX 79012, USA
Gary Marek
USDA-ARS Conservation & Production Research Lab, P.O. Drawer 10, Bushland, TX 79012, USA
Paul Colaizzi
USDA-ARS Conservation & Production Research Lab, P.O. Drawer 10, Bushland, TX 79012, USA
Robert Aiken
Department of Agronomy, Kansas State University, Throckmorton Plant
Sciences Center, Manhattan, KS 66506, USA
Liukang Xu
LI-COR Bioscience, 4647 Superior Street, Lincoln, NE 68504, USA
Clenton Owensby
Department of Agronomy, Kansas State University, Throckmorton Plant
Sciences Center, Manhattan, KS 66506, USA
Related authors
No articles found.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Chinthaka Weerasekara, Lindsay C. Morris, Nathan A. Malarich, Fabrizio R. Giorgetta, Daniel I. Herman, Kevin C. Cossel, Nathan R. Newbury, Clenton E. Owensby, Stephen M. Welch, Cosmin Blaga, Brett D. DePaola, Ian Coddington, Brian R. Washburn, and Eduardo A. Santos
Atmos. Meas. Tech., 17, 6107–6117, https://doi.org/10.5194/amt-17-6107-2024, https://doi.org/10.5194/amt-17-6107-2024, 2024
Short summary
Short summary
Most methane emissions during the life cycle of beef cattle occur during the grazing phase. Measuring methane in grazing systems is difficult due to the high mobility and low density of animals. This work investigates if dual-comb spectroscopy can measure methane emissions from small cattle herds. An enhancement of 10 nmol mol-1 methane above the atmospheric background was measured, equivalent to 20 head located 60 m away. The calculated methane flux was within 5 % of the actual release rate.
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024, https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Short summary
Global warming occurs at a rate of 0.21 K per decade, resulting in about 9.5 % K−1 of water vapor response to temperature from 1993 to 2021. Terrestrial areas experienced greater warming than the ocean, with a ratio of 2 : 1. The total precipitable water change in response to surface temperature changes showed a variation around 6 % K−1–8 % K−1 in the 15–55° N latitude band. Further studies are needed to identify the mechanisms leading to different water vapor responses.
Nenghan Wan, Xiaozhen Xiong, Gerard J. Kluitenberg, J. M. Shawn Hutchinson, Robert Aiken, Haidong Zhao, and Xiaomao Lin
Atmos. Chem. Phys., 23, 711–724, https://doi.org/10.5194/acp-23-711-2023, https://doi.org/10.5194/acp-23-711-2023, 2023
Short summary
Short summary
This study used new TROPOMI measurements of NO2 and CO to characterize regional biomass burning characteristics and efficiency. We found that the NO2 / CO emission ratio was consistent with recent studies over temperate forest fires but slightly lower in savanna vegetation fires. Our results can help identify the relative contribution of smoldering and flaming activities as well as their impacts on the regional atmospheric composition and air quality.
Haidong Zhao, Gretchen F. Sassenrath, Mary Beth Kirkham, Nenghan Wan, and Xiaomao Lin
Hydrol. Earth Syst. Sci., 25, 4357–4372, https://doi.org/10.5194/hess-25-4357-2021, https://doi.org/10.5194/hess-25-4357-2021, 2021
Short summary
Short summary
This study was done to develop an improved soil temperature model for the USA Great Plains by using common weather station variables as inputs. After incorporating knowledge of estimated soil moisture and observed daily snow depth, the improved model showed a near 50 % gain in performance compared to the original model. We conclude that our improved model can better estimate soil temperature at the surface soil layer where most hydrological and biological processes occur.
Cited articles
Alfieri, J. G., Kustas, W. P., Prueger, J. H., Hipps, L. E., Chávez, J.
L., French, A. N., and Evett, S. R.: Intercomparison of nine
micrometeorological stations during the BEAREX08 field campaign,
J. Atmos. Ocean. Tech., 28, 1390–1406, 2011.
Alfieri, J. G., Kustas, W. P., Prueger, J. H., Hipps, L. E., Evett, S. R.,
Basara, J. B., Neale, C. M. U., French, A. N., Colaizzi, P., Agam, N., Cosh,
M. H., Chavez, J. L., and Howell, T. A.: On the discrepancy between eddy
covariance and lysimetry-based surface flux measurements under strongly
advective conditions, Adv. Water Resour., 50, 62–78, 2012.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., and Fuentes, J.: FLUXNET: A
new tool to study the temporal and spatial variability of ecosystem-scale
carbon dioxide, water vapor, and energy flux densities,
B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Blanken, P. D., Rouse, W. R., and Schertzer, W. M.: Enhancement of
evaporation from a large northern lake by the entrainment of warm, dry air,
J. Hydrometeorol., 4, 680–693, 2003.
Burba, G. G., Begashaw, I., and Kathilankal, J.: New open-path low-power
standardized automated CO H2O flux measurement system,
European Geosciences Union, Vienna, Austria, 2018.
Ding, R., Kang, S., Vargas, R., Zhang, Y., and Hao, X.: Multiscale spectral
analysis of temporal variability in evapotranspiration over irrigated
cropland in an arid region, Agr. Water Manage., 130, 79–89, 2013.
Evett, S. R., Agam, N., Kustas, W. P., Colaizzi, P. D., and Schwartz, R. C.:
Soil profile method for soil thermal diffusivity, conductivity and heat
flux: Comparison to soil heat flux plates, Adv. Water Resour., 50,
41–54, 2012a.
Evett, S. R., Schwartz, R. C., Casanova, J. J., and Heng, L. K.: Soil water
sensing for water balance ET and WUE, Agr. Water Manage., 104,
1–9, 2012b.
Evett, S. R., Marek, G. W., Copeland, K. S., and Colaizzi, P. D.: Quality
management for research weather data: USDA-ARS, Bushland, Texas, USA, Agrosystems, Geosciences & Environment, 1, 180036, https://doi.org/10.2134/age2018.09.0036, 2018.
Evett, S. R., Brauer, D. K., Colaizzi, P. D., Tolk, J. A., Marek, G. W., and
O'Shaughnessy, S. A.: Corn and sorghum ET, E, Yield and CWP as affected by
irrigation application method: SDI versus mid-elevation spray irrigation,
T. ASABE, 62, 1377–1393, https://doi.org/10.13031/trans.13314, 2019.
Finkelstein, P. L. and Sims, P. F.: Sampling error in eddy correlation flux
measurements, J. Geophys. Res.-Atmos., 106, 3503–3509, 2001.
Fratini, G. and Mauder, M.: Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3, Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014, 2014.
Fratini, G., McDermitt, D. K., and Papale, D.: Eddy-covariance flux errors due to biases in gas concentration measurements: origins, quantification and correction, Biogeosciences, 11, 1037–1051, https://doi.org/10.5194/bg-11-1037-2014, 2014.
Gowda, P. H., Senay, G. B., Howell, T. A., and Marek, T. H.: Lysimetric
evaluation of simplified surface energy balance approach in the Texas High
Plains, Appl. Eng. Agric., 25, 665–669, 2009.
Haslwanter, A., Hammerle, A., and Wohlfahrt, G.: Open- vs. closed-path eddy
covariance measurements of the net ecosystem carbon dioxide and water vapour
exchange: a long-term perspective, Agr. Forest Meteorol., 149, 291–302, 2009.
Heusinkveld, B., Jacob, A., and Hotslag, A.: Effect of open-path gas analyzer
wetness on eddy covariance flux measurements: A proposed solution,
Agr. Forest Meteorol., 148, 1563–1573, 2008.
Hirschi, M., Michel, D., Lehner, I., and Seneviratne, S. I.: A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration, Hydrol. Earth Syst. Sci., 21, 1809–1825, https://doi.org/10.5194/hess-21-1809-2017, 2017.
Honkanen, M., Tuovinen, J.-P., Laurila, T., Mäkelä, T., Hatakka, J., Kielosto, S., and Laakso, L.: Measuring turbulent CO2 fluxes with a closed-path gas analyzer in a marine environment, Atmos. Meas. Tech., 11, 5335–5350, https://doi.org/10.5194/amt-11-5335-2018, 2018.
Horst, T. W. and Lenschow, D. H.: Attenuation of scalar fluxes measured with
spatially-displaced sensors, Bound.-Lay. Meteorol., 130, 275–300, 2009.
Irmak, S., Payero, J. O., Kilic, A., Odhiambo, L. O., Rudnick, D., Sharma,
V., and Billesbach, D.: On the magnitude and dynamics of eddy covariance
system residual energy (energy balance closure error) in subsurface
drip-irrigated maize field during growing and non-growing (dormant) seasons,
Irrigation Sci., 32, 471–483, 2014.
Iwata, H., Harazono, Y., and Ueyama, M.: Sensitivity and offset changes of a
fast-response open-path infrared gas analyzer during long-term observations
in an Arctic environment, J. Agric. Meteorol., 68, 175–181, 2012.
Kaimal, J. C. and Finnigan, J. J.: Atmospheric Boundary Layer Flows: Their
Structure and Measurement, Oxford University Press, Oxford, UK, 1994.
Kim, W., Miyata, A., Ashraf, A., Maruyama, A., Chidthaisong, A., Jaikaeo,
C., Komori, D., Ikoma, E., Sakurai, G., Seoh, H.-H., Son, I. C., Cho, J.,
Kim, J., Ono, K., Nusit, K., Moon, K. H., Mano, M., Yokozawa, M., Baten, M.
A., Sanwangsri, M., Toda, M., Chaun, N., Polsan, P., Yonemura, S., Kim,
S.-D., Miyazaki, S., Kanae, S., Phonkasi, S., Kammales, S., Takimoto, T.,
Nakai, T., Iizumi, T., Surapipith, V., Sonklin, W., Lee, Y., Inoue, Y., Kim,
Y., and Oki, T.: FluxPro as a realtime monitoring and surveilling system for
eddy covariance flux measurement, J. Agr. Meteorol., 71,
32–50, 2015.
Kochendorfer, J. and Paw, U.: Field estimates of scalar advection across a
canopy edge, Agr. Forest Meteorol., 151, 585–594, 2011.
Kutikoff, S., Lin, X., Evett, S., Gowda, P., Moorhead, J., Marek, G.,
Colaizzi, P., Aiken, R., and Brauer, D.: Heat storage and its effect on the
surface energy balance closure under advective conditions, Agr. Forest Meteorol., 265, 56–69, 2019.
Martínez-Cob, A. and Suvočarev, K.: Uncertainty due to hygrometer
sensor in eddy covariance latent heat flux measurements, Agr. Forest Meteorol., 200, 92–96, 2015.
Massman, W. J.: A simple method for estimating frequency response
corrections for eddy covariance systems, Agr. Forest Meteorol., 104, 185–198, 2000.
Mauder, M. and Foken, T.: Documentation and instruction manual of the eddy covariance software package TK2, Work report vol. 26, Dept. of Micrometeorology, University of Bayreuth, Bayreuth, Germany, ISSN 1614-8926, 45 pp., 2004.
Mauder, M., Oncley, S. P., Vogt, R., Weidinger, T., Ribeiro, L., Bernhofer,
C., Foken, T., Kohsiek, W., De Bruin, H. A. R., and Liu, H.: The energy
balance experiment EBEX-2000, Part II: Intercomparison of eddy-covariance
sensors and post-field data processing methods, Bound.-Lay. Meteorol.,
123, 29–54, 2006.
Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H. P.,
Schmidt, M., and Steinbrecher, R.: A strategy for quality and uncertainty
assessment of long-term eddy-covariance measurements, Agr. Forest Meteorol., 169, 122–135, 2013.
Miloshevich, L. M., Vömel, H., Whiteman, D. N., and Leblanc, T.: Accuracy
assessment and correction of Vaisala RS92 radiosonde water vapor
measurements, J. Geophys. Res.-Atmos., 114, D11305, https://doi.org/10.1029/2008JD011565, 2009.
Moncrieff, J., Massheder, J. M., De Bruin, H. A. R., Elbers, J., Friborg,
T., Heusinkveld, B. G., Kabat, P., Scott, S. L., Soegaard, H., and Verhoef,
A.: A system to measure surface fluxes of momentum, sensible heat, water
vapour and carbon dioxide, J. Hydrol., 188–189, 589–611, 1997.
Moncrieff, J., Clement, R., Finnigan, J. J., and Meyers, T.: Averaging,
detrending and filtering of eddy covariance time series, in: Handbook of
micrometeorology: a guide for surface flux measurements, edited by: Lee, X., Massman, W. J., and Law, B. E., Kluwer Academic, Dordrecht, the Netherlands, 2004.
Moorhead, J. E., Marek, G. W., Colaizzi, P. D., Gowda, P. H., Evett, S. R.,
Brauer, D. K., Marek, T. H., and Porter, D. O.: Evaluation of sensible heat
flux and evapotranspiration estimates using a surface layer scintillometer
and a large weighing lysimeter, Sensors-Basel, 17, 2316–2350, https://doi.org/10.3390/s17102350, 2017.
Moorhead, J. E., Marek, G. W., Gowda, P. H., Lin, X., Colaizzi, P. D., Evett,
S. R., and Kutikoff, S: Evaluation of evapotranspiration from eddy covariance
using large weighing lysimeters, Agronomy, 9, 99, https://doi.org/10.3390/agronomy9020099, 2019.
Novick, K. A., Walker, J., Chan, W. S., Schmidt, A., Sobek, C., and Vose, J.
M.: Eddy covariance measurements with a new fast-response, enclosed-path
analyzer: Spectral characteristics and cross-system comparisons,
Agr. Forest Meteorol., 181, 17–32, 2013.
Oncley, S. P., Foken, T., Vogt, R., Kohsiek, W., De Bruin, H. A., Bernhofer,
C., Christen, A., Van Gorsel, E., Grantz, D., Feigenwinter, C., and Lehner,
I.: The energy balance experiment EBEX-2000, Part I: overview and energy
balance, Bound.-Lay. Meteorol., 123, 1–28, 2007.
O'Shaughnessy, S. A., Evett, S. R., Andrade, M. A., Workneh, F., Price, J.
A., and Rush, C. M.: Site-specific variable-rate irrigation as a means to
enhance water use efficiency, T. ASABE, 59, 239–249, 2016.
Polonik, P., Chan, W. S., Billesbach, D. P., Burba, G., Li, J., Nottrott,
A., Bogoev, I., Conrad, B., and Biraud, S. C.: Comparison of gas analyzers
for eddy covariance: Effects of analyzer type and spectral corrections on
fluxes, Agr. Forest Meteorol., 272–273, 128–142, 2019.
Prajapati, P. and Santos, E. A.: Measurements of methane emissions from a beef
cattle feedlot using the eddy covariance technique, Agr. Forest Meteorol., 232, 349–358, 2017.
Prueger, J. H., Alfieri, J. G., Hipps, L. E., Kustas, W. P., Chavez, J. L.,
Evett, S. R., Anderson, M. C., French, A. N., Neale, C. M. U., McKee, L. G.,
Hatfield, J. L., Howell, T. A., and Agam, N.: Patch scale turbulence over
dryland and irrigated surfaces in a semi-arid landscape under advective
conditions during BEAREX08, Adv. Water Resour., 50, 106–119, 2012.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., and
Grünwald, T.: On the separation of net ecosystem exchange into
assimilation and ecosystem respiration: review and improved
algorithm, Global Change Biol., 11, 1424–1439, 2005.
Runkle, B. R., Rigby, J. R., Reba, M. L., Anapalli, S. S., Bhattacharjee, J.,
Krauss, K. W., Liang, L., Locke, M. A., Novick, K. A., Sui, R., and
Suvočarev, K.: Delta-Flux: An eddy covariance network for a
climate-smart lower Mississippi basin,
Agricultural & Environmental Letters, 2, 1–5, 2017.
Takahashi, S., Kondo, F., Tsukamoto, O., Ito, Y., Hirayama, S., and Ishida,
H.: On-board automated eddy flux measurement system over open ocean,
Scientific Online Letters on the Atmosphere, 1, 37–40, 2005.
Tolk, J. A., Howell, T. A., and Miller, F. R.: Yield component analysis of
grain sorghum grown under water stress, Field Crop. Res., 145, 44–51,
2013.
Van Dijk, A. I. J. M., Moene, A. F., and De Bruin, H. A. R.: The principles
of surface flux physics: theory, practice and description of the ECPACK
library, Wageningen University, Wageningen, the Netherlands, 99 pp., 2004.
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for
tower and aircraft data, J. Atmos. Ocean. Tech., 14, 512–526, 1997.
Wolf, A. and Laca, E. A.: Cospectral analysis of high frequency signal loss in eddy covariance measurements, Atmos. Chem. Phys. Discuss., 7, 13151–13173, https://doi.org/10.5194/acpd-7-13151-2007, 2007.
Wu, J. B., Zhou, X. Y., Wang, A. Z., and Yuan, F. H.: Comparative measurements of water vapor fluxes over a tall forest using open- and closed-path eddy covariance system, Atmos. Meas. Tech., 8, 4123–4131, https://doi.org/10.5194/amt-8-4123-2015, 2015.
Xue, Q., Marek, T. H., Xu, W., and Bell, J.: Irrigated corn production and
management in the Texas high plains,
Journal of Contemporary Water Research & Education, 162, 31–41, 2017.
Zhang, X., Jin, C., Guan, D., Wang, A., Wu, J., and Yuan, F.: Long-term eddy
covariance monitoring of evapotranspiration and Its environmental factors in
a temperate mixed forest in northeast China,
J. Hydrol. Eng., 17, 965–974, 2012.
Zhang, Y., Liu, H., Foken, T., Williams, Q. L., Liu, S., Mauder, M., and
Liebethal, C.: Turbulence spectra and cospectra under the influence of large
eddies in the Energy Balance EXperiment (EBEX), Bound.-Lay. Meteorol.,
136, 235–251, 2010.
Short summary
Fast-response infrared gas sensors have been used over 3 decades for long-term monitoring of water vapor fluxes. As optically improved infrared gas sensors are newly employed, we evaluated the performance of water vapor density and water vapor flux from three generations of infrared gas sensors in Bushland, Texas, USA. From our experiments, fluxes from the old sensors were best representative of evapotranspiration based on a world-class lysimeter reference measurement.
Fast-response infrared gas sensors have been used over 3 decades for long-term monitoring of...