Articles | Volume 14, issue 7
Atmos. Meas. Tech., 14, 4893–4913, 2021
https://doi.org/10.5194/amt-14-4893-2021
Atmos. Meas. Tech., 14, 4893–4913, 2021
https://doi.org/10.5194/amt-14-4893-2021
Research article
12 Jul 2021
Research article | 12 Jul 2021

Analysis of the microphysical properties of snowfall using scanning polarimetric and vertically pointing multi-frequency Doppler radars

Mariko Oue et al.

Related authors

Optimizing radar scan strategies for tracking isolated deep convection using observing system simulation experiments
Mariko Oue, Stephen M. Saleeby, Peter J. Marinescu, Pavlos Kollias, and Susan C. van den Heever
Atmos. Meas. Tech., 15, 4931–4950, https://doi.org/10.5194/amt-15-4931-2022,https://doi.org/10.5194/amt-15-4931-2022, 2022
Short summary
Multifrequency radar observations of clouds and precipitation including the G-band
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021,https://doi.org/10.5194/amt-14-3615-2021, 2021
Short summary
The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: description and applications of a virtual observatory
Mariko Oue, Aleksandra Tatarevic, Pavlos Kollias, Dié Wang, Kwangmin Yu, and Andrew M. Vogelmann
Geosci. Model Dev., 13, 1975–1998, https://doi.org/10.5194/gmd-13-1975-2020,https://doi.org/10.5194/gmd-13-1975-2020, 2020
Short summary
Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals
Mariko Oue, Pavlos Kollias, Alan Shapiro, Aleksandra Tatarevic, and Toshihisa Matsui
Atmos. Meas. Tech., 12, 1999–2018, https://doi.org/10.5194/amt-12-1999-2019,https://doi.org/10.5194/amt-12-1999-2019, 2019
Short summary
Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E
Kirk W. North, Mariko Oue, Pavlos Kollias, Scott E. Giangrande, Scott M. Collis, and Corey K. Potvin
Atmos. Meas. Tech., 10, 2785–2806, https://doi.org/10.5194/amt-10-2785-2017,https://doi.org/10.5194/amt-10-2785-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Image muting of mixed precipitation to improve identification of regions of heavy snow in radar data
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022,https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Extending water vapor measurement capability of photon-limited differential absorption lidars through simultaneous denoising and inversion
Willem J. Marais and Matthew Hayman
Atmos. Meas. Tech., 15, 5159–5180, https://doi.org/10.5194/amt-15-5159-2022,https://doi.org/10.5194/amt-15-5159-2022, 2022
Short summary
GPROF-NN: a neural-network-based implementation of the Goddard Profiling Algorithm
Simon Pfreundschuh, Paula J. Brown, Christian D. Kummerow, Patrick Eriksson, and Teodor Norrestad​​​​​​​
Atmos. Meas. Tech., 15, 5033–5060, https://doi.org/10.5194/amt-15-5033-2022,https://doi.org/10.5194/amt-15-5033-2022, 2022
Short summary
Sensitivity analysis of DSD retrievals from polarimetric radar in stratiform rain based on the μ–Λ relationship
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 15, 4951–4969, https://doi.org/10.5194/amt-15-4951-2022,https://doi.org/10.5194/amt-15-4951-2022, 2022
Short summary
RF-interference detection and mitigation in the DWD C-Band weather radar network
Maximilian Schaper, Michael Frech, David Michaelis, Cornelius Hald, and Benjamin Rohrdantz
EGUsphere, https://doi.org/10.5194/egusphere-2022-692,https://doi.org/10.5194/egusphere-2022-692, 2022
Short summary

Cited articles

Andrić, J., Kumjian, M. R., Zrnić, D., Straka, J. M., and Melnikov, V.: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study, J. Appl. Meteorol. Climatol., 52, 682–700, https://doi.org/10.1175/JAMC-D-12-028.1, 2013. 
Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.: PARSIVEL Snow Observations: A Critical Assessment, J. Atmos. Ocean. Tech., 27, 333–344, https://doi.org/10.1175/2009JTECHA1332.1, 2010. 
Battaglia, A., Mroz, K., T., Tridon, F., Tanelli, S., Tian, L., and Heymsfield, G. M.: Using a multiwavelength suite of microwave instruments to investigate the microphysical structure of deep convective cores, J. Geophys. Res.-Atmos., 121, 9356–9381, https://doi.org/10.1002/2016JD025269, 2016. 
Battaglia, A., Kollias, P., Dhillon, R., Roy, R., Tanelli, S., Lebsock, M., Grecu, M., Lamer, K., Watters, D., Mroz, K., Heymsfield, G., Li, L., and Furukawa, K.: Space-borne cloud and precipitation radars: status, challenges and ways forward, Rev. Geophys., 58, e2019RG000686, https://doi.org/10.1029/2019RG000686, 2020. 
Bechini, R., Baldini, L., and Chandrasekar, V.: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies, Appl. Meteorol. Clim., 52, 1147–1169, https://doi.org/10.1175/JAMC-D-12-055.1, 2013. 
Download
Short summary
Multi-wavelength radar measurements provide capabilities to identify ice particle types and growth processes in clouds beyond the capabilities of single-frequency radar measurements. This study introduces Doppler velocity and polarimetric radar observables into the multi-wavelength radar reflectivity measurement to improve identification analysis. The analysis clearly discerns snowflake aggregation and riming processes and even early stages of riming.