Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-945-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-945-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying fugitive gas emissions from an oil sands tailings pond with open-path Fourier transform infrared measurements
Air Quality Research Division, Environment and Climate Change
Canada (ECCC), Toronto, M3H 5T4, Canada
now at: Department of Physics, University of Toronto,
Toronto, M5S 1A7, Canada
Samar G. Moussa
Air Quality Research Division, Environment and Climate Change
Canada (ECCC), Toronto, M3H 5T4, Canada
Lucas Zhang
Alberta Environment and Parks, Edmonton, T5J, 5C6, Canada
Long Fu
Alberta Environment and Parks, Edmonton, T5J, 5C6, Canada
James Beck
Suncor Energy Inc., Calgary, T2P 3Y7, Canada
Air Quality Research Division, Environment and Climate Change
Canada (ECCC), Toronto, M3H 5T4, Canada
Related authors
Yuan You, Ralf M. Staebler, Samar G. Moussa, James Beck, and Richard L. Mittermeier
Atmos. Meas. Tech., 14, 1879–1892, https://doi.org/10.5194/amt-14-1879-2021, https://doi.org/10.5194/amt-14-1879-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands can be significant sources of methane, an important greenhouse gas. This paper describes a 1-month study conducted in 2017 to measure methane emissions from a pond using a variety of micrometeorological flux methods and demonstrates some advantages of these methods over flux chambers.
Mijung Song, Suhan Ham, Ryan J. Andrews, Yuan You, and Allan K. Bertram
Atmos. Chem. Phys., 18, 12075–12084, https://doi.org/10.5194/acp-18-12075-2018, https://doi.org/10.5194/acp-18-12075-2018, 2018
Yuan You, Ralf M. Staebler, Samar G. Moussa, Yushan Su, Tony Munoz, Craig Stroud, Junhua Zhang, and Michael D. Moran
Atmos. Chem. Phys., 17, 14119–14143, https://doi.org/10.5194/acp-17-14119-2017, https://doi.org/10.5194/acp-17-14119-2017, 2017
Short summary
Short summary
A novel approach for traffic emission measurements is shown to have the capacity to provide high-time-resolution accurate concentrations of key air pollutants. A top-down method for quantifying real-world emission rates produced vehicular emission factor estimates for carbon monoxide that agreed well with bottom-up values. Significant ammonia and hydrogen cyanide emissions were observed. The main factors modulating the concentrations were turbulent mixing and traffic density.
Mijung Song, Pengfei F. Liu, Sarah J. Hanna, Rahul A. Zaveri, Katie Potter, Yuan You, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 8817–8830, https://doi.org/10.5194/acp-16-8817-2016, https://doi.org/10.5194/acp-16-8817-2016, 2016
Y. You and A. K. Bertram
Atmos. Chem. Phys., 15, 1351–1365, https://doi.org/10.5194/acp-15-1351-2015, https://doi.org/10.5194/acp-15-1351-2015, 2015
Short summary
Short summary
The first set of studies illustrates that the liquid/liquid phase separation relative humidity (SRH) does not depend strongly on molecular weight. The second set of studies shows that for most particle types and temperature range studied, SRH does not depend strongly on temperature. SRH did depend strongly on temperature for particles containing α,4-dihydroxy-3-methoxybenzeneacetic acid mixed with ammonium bisulfate due to a combination of low temperature and low water content.
Y. You, L. Renbaum-Wolff, and A. K. Bertram
Atmos. Chem. Phys., 13, 11723–11734, https://doi.org/10.5194/acp-13-11723-2013, https://doi.org/10.5194/acp-13-11723-2013, 2013
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-27, https://doi.org/10.5194/amt-2024-27, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study explores differences between remote sensing and in situ instruments in terms of their vertical, horizontal, and temporal sampling differences. Understanding and resolving these differences are critical for future analyses linking satellite, ground-based remote sensing, and in situ observations in air quality monitoring. It shows the meteorological conditions (wind directions, speed, and boundary layer conditions) will strongly affect the agreement between the two measurements.
Mark Gordon, Dane Blanchard, Timothy Jiang, Paul A. Makar, Ralf M. Staebler, Julian Aherne, Cris Mihele, and Xuanyi Zhang
Atmos. Chem. Phys., 23, 7241–7255, https://doi.org/10.5194/acp-23-7241-2023, https://doi.org/10.5194/acp-23-7241-2023, 2023
Short summary
Short summary
Measurements of the gas sulfur dioxide (SO2) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us the rate at which SO2 is absorbed by the forest. The measured rate is much higher than what is currently used by air quality models, which is supported by a previous study in this region. This suggests that SO2 may have a much shorter lifetime in the atmosphere at this location than currently predicted by models.
Timothy Jiang, Mark Gordon, Paul A. Makar, Ralf M. Staebler, and Michael Wheeler
Atmos. Chem. Phys., 23, 4361–4372, https://doi.org/10.5194/acp-23-4361-2023, https://doi.org/10.5194/acp-23-4361-2023, 2023
Short summary
Short summary
Measurements of submicron aerosols (particles smaller than 1 / 1000 of a millimeter) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us how quickly aerosols are absorbed by the forest (known as deposition rate) and how the deposition rate depends on the size of the aerosol. The measurements show good agreement with a parameterization developed from a recent study for deposition of aerosols to a similar pine forest.
Katherine L. Hayden, Shao-Meng Li, John Liggio, Michael J. Wheeler, Jeremy J. B. Wentzell, Amy Leithead, Peter Brickell, Richard L. Mittermeier, Zachary Oldham, Cristian M. Mihele, Ralf M. Staebler, Samar G. Moussa, Andrea Darlington, Mengistu Wolde, Daniel Thompson, Jack Chen, Debora Griffin, Ellen Eckert, Jenna C. Ditto, Megan He, and Drew R. Gentner
Atmos. Chem. Phys., 22, 12493–12523, https://doi.org/10.5194/acp-22-12493-2022, https://doi.org/10.5194/acp-22-12493-2022, 2022
Short summary
Short summary
In this study, airborne measurements provided the most detailed characterization, to date, of boreal forest wildfire emissions. Measurements showed a large diversity of air pollutants expanding the volatility range typically reported. A large portion of organic species was unidentified, likely comprised of complex organic compounds. Aircraft-derived emissions improve wildfire chemical speciation and can support reliable model predictions of pollution from boreal forest wildfires.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Yuan You, Ralf M. Staebler, Samar G. Moussa, James Beck, and Richard L. Mittermeier
Atmos. Meas. Tech., 14, 1879–1892, https://doi.org/10.5194/amt-14-1879-2021, https://doi.org/10.5194/amt-14-1879-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands can be significant sources of methane, an important greenhouse gas. This paper describes a 1-month study conducted in 2017 to measure methane emissions from a pond using a variety of micrometeorological flux methods and demonstrates some advantages of these methods over flux chambers.
Jenna C. Ditto, Megan He, Tori N. Hass-Mitchell, Samar G. Moussa, Katherine Hayden, Shao-Meng Li, John Liggio, Amy Leithead, Patrick Lee, Michael J. Wheeler, Jeremy J. B. Wentzell, and Drew R. Gentner
Atmos. Chem. Phys., 21, 255–267, https://doi.org/10.5194/acp-21-255-2021, https://doi.org/10.5194/acp-21-255-2021, 2021
Short summary
Short summary
Forest fires are an important source of reactive organic gases and aerosols to the atmosphere. We analyzed organic aerosols collected from an aircraft above a boreal forest fire and reported an increasing contribution from compounds containing oxygen, nitrogen, and sulfur as the plume aged, with sulfide and ring-bound nitrogen functionality. Our results demonstrated chemistry that is important in biomass burning but also in urban/developing regions with high local nitrogen and sulfur emissions.
Mark Gordon, Paul A. Makar, Ralf M. Staebler, Junhua Zhang, Ayodeji Akingunola, Wanmin Gong, and Shao-Meng Li
Atmos. Chem. Phys., 18, 14695–14714, https://doi.org/10.5194/acp-18-14695-2018, https://doi.org/10.5194/acp-18-14695-2018, 2018
Short summary
Short summary
This work uses aircraft-based measurements of smokestack plumes carried out in northern Alberta in 2013. These measurements are used to test equations used to predict how high in the air smokestack plumes rise. It is important to predict plume rise height accurately as it tells us how far downwind pollutants are carried and what air quality can be expected at the surface. We found that the equations that are typically used significantly underestimate the plume rise at this location.
Mijung Song, Suhan Ham, Ryan J. Andrews, Yuan You, and Allan K. Bertram
Atmos. Chem. Phys., 18, 12075–12084, https://doi.org/10.5194/acp-18-12075-2018, https://doi.org/10.5194/acp-18-12075-2018, 2018
Sabour Baray, Andrea Darlington, Mark Gordon, Katherine L. Hayden, Amy Leithead, Shao-Meng Li, Peter S. K. Liu, Richard L. Mittermeier, Samar G. Moussa, Jason O'Brien, Ralph Staebler, Mengistu Wolde, Doug Worthy, and Robert McLaren
Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, https://doi.org/10.5194/acp-18-7361-2018, 2018
Short summary
Short summary
Methane emissions from major oil sands facilities in the Athabasca Oil Sands Region (AOSR) of Alberta were measured in the summer of 2013 using two related aircraft mass-balance approaches. Tailings ponds and fugitive emissions of methane from open pit mines were found to be the major sources of methane in the region. Total methane emissions in the AOSR were measured to be ~ 20 tonnes of CH4 per hour, which is 48 % higher than the Canadian Greenhouse Gas Reporting Program Emissions Inventory.
Yuan You, Ralf M. Staebler, Samar G. Moussa, Yushan Su, Tony Munoz, Craig Stroud, Junhua Zhang, and Michael D. Moran
Atmos. Chem. Phys., 17, 14119–14143, https://doi.org/10.5194/acp-17-14119-2017, https://doi.org/10.5194/acp-17-14119-2017, 2017
Short summary
Short summary
A novel approach for traffic emission measurements is shown to have the capacity to provide high-time-resolution accurate concentrations of key air pollutants. A top-down method for quantifying real-world emission rates produced vehicular emission factor estimates for carbon monoxide that agreed well with bottom-up values. Significant ammonia and hydrogen cyanide emissions were observed. The main factors modulating the concentrations were turbulent mixing and traffic density.
Roya Ghahreman, Ann-Lise Norman, Betty Croft, Randall V. Martin, Jeffrey R. Pierce, Julia Burkart, Ofelia Rempillo, Heiko Bozem, Daniel Kunkel, Jennie L. Thomas, Amir A. Aliabadi, Gregory R. Wentworth, Maurice Levasseur, Ralf M. Staebler, Sangeeta Sharma, and W. Richard Leaitch
Atmos. Chem. Phys., 17, 8757–8770, https://doi.org/10.5194/acp-17-8757-2017, https://doi.org/10.5194/acp-17-8757-2017, 2017
Short summary
Short summary
We present spring and summertime vertical profile measurements of Arctic dimethyl sulfide (DMS), together with model simulations to consider what these profiles indicate about DMS sources and lifetimes in the Arctic. Our results highlight the role of local open water as the source of DMS(g) during July 2014 and the influence of long-range transport of DMS(g) from further afield in the Arctic during April 2015.
John Liggio, Samar G. Moussa, Jeremy Wentzell, Andrea Darlington, Peter Liu, Amy Leithead, Katherine Hayden, Jason O'Brien, Richard L. Mittermeier, Ralf Staebler, Mengistu Wolde, and Shao-Meng Li
Atmos. Chem. Phys., 17, 8411–8427, https://doi.org/10.5194/acp-17-8411-2017, https://doi.org/10.5194/acp-17-8411-2017, 2017
Short summary
Short summary
The emission and formation of gaseous organic acids from the oil sands industry in Canada is explored through aircraft measurements directly over and downwind wind of industrial facilities. Results demonstrated that the formation of organic acids through atmospheric chemical reactions dominated over the direct emissions from mining activities but could not be explicitly modeled. The results highlight the need for improved understanding of photochemical mechanisms leading to these species.
Mijung Song, Pengfei F. Liu, Sarah J. Hanna, Rahul A. Zaveri, Katie Potter, Yuan You, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 8817–8830, https://doi.org/10.5194/acp-16-8817-2016, https://doi.org/10.5194/acp-16-8817-2016, 2016
Amir A. Aliabadi, Jennie L. Thomas, Andreas B. Herber, Ralf M. Staebler, W. Richard Leaitch, Hannes Schulz, Kathy S. Law, Louis Marelle, Julia Burkart, Megan D. Willis, Heiko Bozem, Peter M. Hoor, Franziska Köllner, Johannes Schneider, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 7899–7916, https://doi.org/10.5194/acp-16-7899-2016, https://doi.org/10.5194/acp-16-7899-2016, 2016
Short summary
Short summary
For the first time, ship emissions of an ice-breaker, the Amundsen, is characterized while breaking ice in the Canadian Arctic using the plume intercepts by the Polar 6 aircraft. The study is novel, estimating lower plume expansion rates over the stable Arctic marine boundary layer and different emissions factors for oxides of nitrogen, black carbon, and carbon monoxide, compared to plume intercept studies in mid latitudes. These results can inform policy making and emission inventory datasets.
M. W. Shephard, C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, P. Lehr, J. Zhang, D. K. Henze, D. B. Millet, J. O. Bash, L. Zhu, K. C. Wells, S. L. Capps, S. Chaliyakunnel, M. Gordon, K. Hayden, J. R. Brook, M. Wolde, and S.-M. Li
Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, https://doi.org/10.5194/amt-8-5189-2015, 2015
Short summary
Short summary
This study provides direct validations of Tropospheric Emission Spectrometer (TES) satellite retrieved profiles against coincident aircraft profiles of carbon monoxide, ammonia, methanol, and formic acid, all of which are of interest for air quality. The comparisons are performed over the Canadian oil sands region during an intensive field campaign in support of the Joint Canada-Alberta Implementation Plan for the Oil Sands Monitoring (JOSM). Initial model evaluations are also provided.
Y. Liu, J. Liggio, R. Staebler, and S.-M. Li
Atmos. Chem. Phys., 15, 13569–13584, https://doi.org/10.5194/acp-15-13569-2015, https://doi.org/10.5194/acp-15-13569-2015, 2015
Short summary
Short summary
This work for the first time demonstrated that organonitrogen compounds (NOC) can be formed efficiently via the uptake of ammonia by newly formed secondary organic aerosol using a smog chamber equipped with a HR-ToF-AMS. Based on the measured kinetics, this study suggests that light absorption by NOC in atmospheric particles may be important in regions where the BC contribution is minimal and NOC from ammonia should be considered with respect to overall deposition of nitrogen to ecosystems.
M. Gordon, S.-M. Li, R. Staebler, A. Darlington, K. Hayden, J. O'Brien, and M. Wolde
Atmos. Meas. Tech., 8, 3745–3765, https://doi.org/10.5194/amt-8-3745-2015, https://doi.org/10.5194/amt-8-3745-2015, 2015
Short summary
Short summary
Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made during a summer intensive field campaign in 2013. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples. Uncertainty of the emission rates estimated with TERRA is estimated as less than 30%, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.
A. A. Aliabadi, R. M. Staebler, and S. Sharma
Atmos. Chem. Phys., 15, 2651–2673, https://doi.org/10.5194/acp-15-2651-2015, https://doi.org/10.5194/acp-15-2651-2015, 2015
Short summary
Short summary
In an effort to characterize the effect of shipping on Arctic air quality during the 2013 shipping season, air-quality monitoring stations were installed in Cape Dorset and Resolute, Nunavut, Canada, to measure NOx, SO2, PM2.5, O3, and BC. Results indicate that on the order of 5--25% of local cumulative exposure to these pollutants is due to ship emissions. This approach is complementary to pollution measurements at the source and has wider applications for the impact of traffic on air quality.
Y. You and A. K. Bertram
Atmos. Chem. Phys., 15, 1351–1365, https://doi.org/10.5194/acp-15-1351-2015, https://doi.org/10.5194/acp-15-1351-2015, 2015
Short summary
Short summary
The first set of studies illustrates that the liquid/liquid phase separation relative humidity (SRH) does not depend strongly on molecular weight. The second set of studies shows that for most particle types and temperature range studied, SRH does not depend strongly on temperature. SRH did depend strongly on temperature for particles containing α,4-dihydroxy-3-methoxybenzeneacetic acid mixed with ammonium bisulfate due to a combination of low temperature and low water content.
L. Huang, S. L. Gong, M. Gordon, J. Liggio, R. Staebler, C. A. Stroud, G. Lu, C. Mihele, J. R. Brook, and C. Q. Jia
Atmos. Chem. Phys., 14, 12631–12648, https://doi.org/10.5194/acp-14-12631-2014, https://doi.org/10.5194/acp-14-12631-2014, 2014
M. Gordon, A. Vlasenko, R. M. Staebler, C. Stroud, P. A. Makar, J. Liggio, S.-M. Li, and S. Brown
Atmos. Chem. Phys., 14, 9087–9097, https://doi.org/10.5194/acp-14-9087-2014, https://doi.org/10.5194/acp-14-9087-2014, 2014
K. Toyota, J. C. McConnell, R. M. Staebler, and A. P. Dastoor
Atmos. Chem. Phys., 14, 4101–4133, https://doi.org/10.5194/acp-14-4101-2014, https://doi.org/10.5194/acp-14-4101-2014, 2014
N. A. Saliba, S. G. Moussa, and G. El Tayyar
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-4827-2014, https://doi.org/10.5194/acpd-14-4827-2014, 2014
Revised manuscript not accepted
Y. You, L. Renbaum-Wolff, and A. K. Bertram
Atmos. Chem. Phys., 13, 11723–11734, https://doi.org/10.5194/acp-13-11723-2013, https://doi.org/10.5194/acp-13-11723-2013, 2013
A. Steffen, J. Bottenheim, A. Cole, T. A. Douglas, R. Ebinghaus, U. Friess, S. Netcheva, S. Nghiem, H. Sihler, and R. Staebler
Atmos. Chem. Phys., 13, 7007–7021, https://doi.org/10.5194/acp-13-7007-2013, https://doi.org/10.5194/acp-13-7007-2013, 2013
J. A. Seabrook, J. A. Whiteway, L. H. Gray, R. Staebler, and A. Herber
Atmos. Chem. Phys., 13, 6023–6029, https://doi.org/10.5194/acp-13-6023-2013, https://doi.org/10.5194/acp-13-6023-2013, 2013
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Evaluation of optimized flux chamber design for measurement of ammonia emission after field application of slurry with full-scale farm machinery
Preparation of low-concentration H2 test gas mixtures in ambient air for calibration of H2 sensors
Alternate materials for the capture and quantification of gaseous oxidized mercury in the atmosphere
Pico-Light H2O: intercomparison of in situ water vapour measurements during the AsA 2022 campaign
Mobile air quality monitoring and comparison to fixed monitoring sites for instrument performance assessment
Validation of formaldehyde products from three satellite retrievals (OMI SAO, OMPS-NPP SAO, and OMI BIRA) in the marine atmosphere with four seasons of ATom aircraft observations
Intercomparison of eddy-covariance software for urban tall-tower sites
Assessment of current methane emission quantification techniques for natural gas midstream applications
Lower-cost eddy covariance for CO2 and H2O fluxes over grassland and agroforestry
Performance assessment of state-of-the-art and novel methods for remote compliance monitoring of sulfur emissions from shipping
Intercomparison of detection and quantification methods for methane emissions from the natural gas distribution network in Hamburg, Germany
Comparison of photoacoustic spectroscopy and cavity ring-down spectroscopy for ambient methane monitoring at Hohenpeißenberg
Comparison of atmospheric CO, CO2 and CH4 measurements at the Schneefernerhaus and the mountain ridge at Zugspitze
Intercomparison of commercial analyzers for atmospheric ethane and methane observations
Real-time measurement of phase partitioning of organic compounds using a proton-transfer-reaction time-of-flight mass spectrometer coupled to a CHARON inlet
A quantitative comparison of methods used to measure smaller methane emissions typically observed from superannuated oil and gas infrastructure
Comparing airborne algorithms for greenhouse gas flux measurements over the Alberta oil sands
Characterization of inexpensive metal oxide sensor performance for trace methane detection
Intercomparison of upper tropospheric and lower stratospheric water vapor measurements over the Asian Summer Monsoon during the StratoClim campaign
Air pollution measurement errors: is your data fit for purpose?
Performance characterization of low-cost air quality sensors for off-grid deployment in rural Malawi
Comment on “Comparison of ozone measurement methods in biomass burning smoke: an evaluation under field and laboratory conditions” by Long et al. (2021)
Homogenization of the Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data record: comparison with lidar and satellite observations
Long-term behavior and stability of calibration models for NO and NO2 low-cost sensors
Controlled-release experiment to investigate uncertainties in UAV-based emission quantification for methane point sources
Ozone formation sensitivity study using machine learning coupled with the reactivity of volatile organic compound species
Evaluating uncertainty in sensor networks for urban air pollution insights
Estimating oil sands emissions using horizontal path-integrated column measurements
Global evaluation of the precipitable-water-vapor product from MERSI-II (Medium Resolution Spectral Imager) on board the Fengyun-3D satellite
Field testing two flux footprint models
Validation of a new cavity ring-down spectrometer for measuring tropospheric gaseous hydrogen chloride
Comparison of formaldehyde measurements by Hantzsch, CRDS and DOAS in the SAPHIR chamber
A field intercomparison of three passive air samplers for gaseous mercury in ambient air
Beef cattle methane emissions measured with tracer-ratio and inverse dispersion modelling techniques
Methane emissions from an oil sands tailings pond: a quantitative comparison of fluxes derived by different methods
Performance of open-path GasFinder3 devices for CH4 concentration measurements close to ambient levels
Water vapor density and turbulent fluxes from three generations of infrared gas analyzers
Robust statistical calibration and characterization of portable low-cost air quality monitoring sensors to quantify real-time O3 and NO2 concentrations in diverse environments
A miniature Portable Emissions Measurement System (PEMS) for real-driving monitoring of motorcycles
In situ measurement of CO2 and CH4 from aircraft over northeast China and comparison with OCO-2 data
Mobile-platform measurement of air pollutant concentrations in California: performance assessment, statistical methods for evaluating spatial variations, and spatial representativeness
Continuous methane concentration measurements at the Greenland ice sheet–atmosphere interface using a low-cost, low-power metal oxide sensor system
The development of the Atmospheric Measurements by Ultra-Light Spectrometer (AMULSE) greenhouse gas profiling system and application for satellite retrieval validation
Atmospheric observations of the water vapour continuum in the near-infrared windows between 2500 and 6600 cm−1
Intercomparison study of atmospheric 222Rn and 222Rn progeny monitors
Sources of error in open-path FTIR measurements of N2O and CO2 emitted from agricultural fields
Constraining the accuracy of flux estimates using OTM 33A
Evaluating the measurement interference of wet rotating-denuder–ion chromatography in measuring atmospheric HONO in a highly polluted area
Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing)
Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS
Johanna Pedersen, Sasha D. Hafner, Andreas Pacholski, Valthor I. Karlsson, Li Rong, Rodrigo Labouriau, and Jesper N. Kamp
Atmos. Meas. Tech., 17, 4493–4505, https://doi.org/10.5194/amt-17-4493-2024, https://doi.org/10.5194/amt-17-4493-2024, 2024
Short summary
Short summary
Field-applied animal slurry is a significant source of NH3 emission. A new system of dynamic flux chambers for NH3 measurements was developed and validated using three field trials in order to assess the variability after application with a trailing hose at different scales: manual (handheld) application, a 3 m slurry boom, and a 30 m slurry boom. The system facilitates NH3 emission measurement with replication after both manual and farm-scale slurry application with relatively high precision.
Niklas Karbach, Lisa Höhler, Peter Hoor, Heiko Bozem, Nicole Bobrowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 17, 4081–4086, https://doi.org/10.5194/amt-17-4081-2024, https://doi.org/10.5194/amt-17-4081-2024, 2024
Short summary
Short summary
The system presented here can accurately generate and reproduce a stable flow of gas mixtures of known concentrations over several days using ambient air as a dilution medium. In combination with the small size and low weight of the system, this enables the calibration of hydrogen sensors in the field, reducing the influence of matrix effects on the accuracy of the sensor. The system is inexpensive to assemble and easy to maintain, which is the key to reliable measurement results.
Livia Lown, Sarrah M. Dunham-Cheatham, Seth N. Lyman, and Mae S. Gustin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-50, https://doi.org/10.5194/amt-2024-50, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
New sorbent materials are needed to preconcentrate atmospheric oxidized mercury for analysis by developing mass spectrometry methods. Chitosan, α-Al2O3, and γ-Al2O3 were tested for quantitative gaseous oxidized mercury sorption in ambient air under laboratory and field conditions. Although these materials sorbed gaseous oxidized mercury without sorbing elemental mercury, less oxidized mercury was recovered from these materials compared to cation exchange membranes.
Mélanie Ghysels, Georges Durry, Nadir Amarouche, Dale Hurst, Emrys Hall, Kensy Xiong, Jean-Charles Dupont, Jean-Christophe Samake, Fabien Frérot, Raghed Bejjani, and Emmanuel D. Riviere
Atmos. Meas. Tech., 17, 3495–3513, https://doi.org/10.5194/amt-17-3495-2024, https://doi.org/10.5194/amt-17-3495-2024, 2024
Short summary
Short summary
A tunable diode laser hygrometer, “Pico-Light H2O”, is presented and its performances are evaluated during the AsA 2022 balloon-borne intercomparison campaign from Aire-sur-l'Adour (France) in September 2022. A total of 15 balloons were launched within the framework of the EU-funded HEMERA project. Pico-Light H2O has been compared in situ with the NOAA Frost Point Hygrometer in the upper troposphere and stratosphere, as well as with meteorological sondes (iMet-4 and M20) in the troposphere.
Andrew R. Whitehill, Melissa Lunden, Brian LaFranchi, Surender Kaushik, and Paul A. Solomon
Atmos. Meas. Tech., 17, 2991–3009, https://doi.org/10.5194/amt-17-2991-2024, https://doi.org/10.5194/amt-17-2991-2024, 2024
Short summary
Short summary
We present an analysis from two large-scale mobile air quality monitoring campaigns in Colorado and California. We compare mobile measurements of air quality to measurements from nearby regulatory sites. The goal of this paper is to explore how fixed-site measurements (such as regulatory site measurements) can be used for ongoing instrument performance assessment of mobile monitoring platforms over extended measurement campaigns.
Jin Liao, Glenn M. Wolfe, Alex E. Kotsakis, Julie M. Nicely, Jason M. St. Clair, Thomas F. Hanisco, Gonzalo Gonzalez Abad, Caroline R. Nowlan, Zolal Ayazpour, Isabelle De Smedt, Eric C. Apel, and Rebecca S. Hornbrook
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-72, https://doi.org/10.5194/amt-2024-72, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Validation of satellite HCHO over the remote marine regions is relatively few and modeled HCHO in these regions is usually added as a global satellite HCHO background. This paper intercompares three satellite HCHO retrievals and validates them against in situ observations from the NASA ATom mission. All retrievals are correlated with ATom integrated columns over remote oceans, with OMI SAO (v004) showing the best agreement. A persistent low bias is found in all retrievals at high latitudes.
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024, https://doi.org/10.5194/amt-17-2649-2024, 2024
Short summary
Short summary
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of discrepancies in flux estimations from different software packages. One crucial finding is the impact of low-frequency spectral loss corrections on tall-tower flux estimations. Our findings emphasize the significance of a standardized measurement setup and consistent postprocessing configurations in minimizing the systematic flux uncertainty resulting from the usage of different software packages.
Yunsong Liu, Jean-Daniel Paris, Gregoire Broquet, Violeta Bescós Roy, Tania Meixus Fernandez, Rasmus Andersen, Andrés Russu Berlanga, Emil Christensen, Yann Courtois, Sebastian Dominok, Corentin Dussenne, Travis Eckert, Andrew Finlayson, Aurora Fernández de la Fuente, Catlin Gunn, Ram Hashmonay, Juliano Grigoleto Hayashi, Jonathan Helmore, Soeren Honsel, Fabrizio Innocenti, Matti Irjala, Torgrim Log, Cristina Lopez, Francisco Cortés Martínez, Jonathan Martinez, Adrien Massardier, Helle Gottschalk Nygaard, Paula Agregan Reboredo, Elodie Rousset, Axel Scherello, Matthias Ulbricht, Damien Weidmann, Oliver Williams, Nigel Yarrow, Murès Zarea, Robert Ziegler, Jean Sciare, Mihalis Vrekoussis, and Philippe Bousquet
Atmos. Meas. Tech., 17, 1633–1649, https://doi.org/10.5194/amt-17-1633-2024, https://doi.org/10.5194/amt-17-1633-2024, 2024
Short summary
Short summary
We investigated the performance of 10 methane emission quantification techniques in a blind controlled-release experiment at an inerted natural gas compressor station. We reported their respective strengths, weaknesses, and potential complementarity depending on the emission rates and atmospheric conditions. Additionally, we assess the dependence of emission quantification performance on key parameters such as wind speed, deployment constraints, and measurement duration.
Justus G. V. van Ramshorst, Alexander Knohl, José Ángel Callejas-Rodelas, Robert Clement, Timothy C. Hill, Lukas Siebicke, and Christian Markwitz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-30, https://doi.org/10.5194/amt-2024-30, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In this work we present experimental field results of a lower-cost eddy covariance (LC-EC) system, which can measure the ecosystem exchange of carbon dioxide and water vapour with the atmosphere. During three field campaigns on a grassland and agroforestry grassland we compared the LC-EC with a conventional eddy covariance (CON-EC) system. Our results show that LC-EC has the potential to measure EC fluxes for only approximately 25 % of the costs of a CON-EC system.
Jörg Beecken, Andreas Weigelt, Simone Griesel, Johan Mellqvist, Alexander V. Conde Jacobo, Daniëlle van Dinther, Jan Duyzer, Jon Knudsen, Bettina Knudsen, and Leonidas Ntziachristos
Atmos. Meas. Tech., 16, 5883–5895, https://doi.org/10.5194/amt-16-5883-2023, https://doi.org/10.5194/amt-16-5883-2023, 2023
Short summary
Short summary
Air pollution from shipping is a debated topic in science and politics. We compare different monitoring systems currently used in different European countries for the enforcement of emission limits regarding air pollution from ships according to regulation. The system performances were individually assessed in the field by comparison with true values. Non-compliant vessels with actual fuel sulfur contents > 0.15–0.19 % Sm/m can be detected by the compared systems with 95 % confidence.
Hossein Maazallahi, Antonio Delre, Charlotte Scheutz, Anders M. Fredenslund, Stefan Schwietzke, Hugo Denier van der Gon, and Thomas Röckmann
Atmos. Meas. Tech., 16, 5051–5073, https://doi.org/10.5194/amt-16-5051-2023, https://doi.org/10.5194/amt-16-5051-2023, 2023
Short summary
Short summary
Measurement methods are increasingly deployed to verify reported methane emissions of gas leaks. This study describes unique advantages and limitations of three methods. Two methods are rapidly deployed, but uncertainties and biases exist for some leak locations. In contrast, the suction method could accurately determine leak rates in principle. However, this method, which provides data for the German emission inventory, creates an overall low bias in our study due to non-random site selection.
Max Müller, Stefan Weigl, Jennifer Müller-Williams, Matthias Lindauer, Thomas Rück, Simon Jobst, Rudolf Bierl, and Frank-Michael Matysik
Atmos. Meas. Tech., 16, 4263–4270, https://doi.org/10.5194/amt-16-4263-2023, https://doi.org/10.5194/amt-16-4263-2023, 2023
Short summary
Short summary
Over a period of 5 d, a photoacoustic methane sensor was compared with a Picarro cavity ring-down (G2301) spectrometer. Both devices measured the ambient methane concentration at the meteorological observatory Hohenpeißenberg. Cross-sensitivities on the photoacoustic signal, due to fluctuating ambient humidity, were compensated by applying the CoNRad algorithm. The results show that photoacoustic sensors have the potential for accurate and precise greenhouse gas monitoring.
Antje Hoheisel, Cedric Couret, Bryan Hellack, and Martina Schmidt
Atmos. Meas. Tech., 16, 2399–2413, https://doi.org/10.5194/amt-16-2399-2023, https://doi.org/10.5194/amt-16-2399-2023, 2023
Short summary
Short summary
High-precision CO2, CH4 and CO measurements have been carried out at Zugspitze for decades. New technologies make it possible to analyse these gases with high temporal resolution. This allows the detection of local pollution. To this end, measurements have been performed on the mountain ridge (ZGR) and are compared to routine measurements at the Schneefernerhaus (ZSF). Careful manual flagging of pollution events in the ZSF data leads to consistency with the little influenced ZGR time series.
Róisín Commane, Andrew Hallward-Driemeier, and Lee T. Murray
Atmos. Meas. Tech., 16, 1431–1441, https://doi.org/10.5194/amt-16-1431-2023, https://doi.org/10.5194/amt-16-1431-2023, 2023
Short summary
Short summary
Methane / ethane ratios can be used to identify and partition the different sources of methane, especially in areas with natural gas mixed with biogenic methane emissions, such as cities. We tested three commercially available laser-based analyzers for sensitivity, precision, size, power requirement, ease of use on mobile platforms, and expertise needed to operate the instrument, and we make recommendations for use in various situations.
Yarong Peng, Hongli Wang, Yaqin Gao, Shengao Jing, Shuhui Zhu, Dandan Huang, Peizhi Hao, Shengrong Lou, Tiantao Cheng, Cheng Huang, and Xuan Zhang
Atmos. Meas. Tech., 16, 15–28, https://doi.org/10.5194/amt-16-15-2023, https://doi.org/10.5194/amt-16-15-2023, 2023
Short summary
Short summary
This work examined the phase partitioning behaviors of organic compounds at hourly resolution in ambient conditions with the use of the CHemical Analysis of aeRosols ONline (CHARON) inlet coupled to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS). Properly accounting for the neutral losses of small moieties during the molecular feature extraction from PTR mass spectra could significantly reduce uncertainties associated with the gas–particle partitioning measurements.
Stuart N. Riddick, Riley Ancona, Mercy Mbua, Clay S. Bell, Aidan Duggan, Timothy L. Vaughn, Kristine Bennett, and Daniel J. Zimmerle
Atmos. Meas. Tech., 15, 6285–6296, https://doi.org/10.5194/amt-15-6285-2022, https://doi.org/10.5194/amt-15-6285-2022, 2022
Short summary
Short summary
This describes controlled release experiments at the METEC facility in Fort Collins, USA, that investigates the accuracy and precision of five methods commonly used to measure methane emissions. Methods include static/dynamic chambers, hi flow sampling, a backward Lagrangian stochastic method, and a Gaussian plume method. This is the first time that methods for measuring CH4 emissions from point sources less than 200 g CH4 h−1 have been quantitively assessed against references and each other.
Broghan M. Erland, Cristen Adams, Andrea Darlington, Mackenzie L. Smith, Andrew K. Thorpe, Gregory R. Wentworth, Steve Conley, John Liggio, Shao-Meng Li, Charles E. Miller, and John A. Gamon
Atmos. Meas. Tech., 15, 5841–5859, https://doi.org/10.5194/amt-15-5841-2022, https://doi.org/10.5194/amt-15-5841-2022, 2022
Short summary
Short summary
Accurately estimating greenhouse gas (GHG) emissions is essential to reaching net-zero goals to combat the climate crisis. Airborne box-flights are ideal for assessing regional GHG emissions, as they can attain small error. We compare two box-flight algorithms and found they produce similar results, but daily variability must be considered when deriving emissions inventories. Increasing the consistency and agreement between airborne methods moves us closer to achieving more accurate estimates.
Daniel Furuta, Tofigh Sayahi, Jinsheng Li, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 15, 5117–5128, https://doi.org/10.5194/amt-15-5117-2022, https://doi.org/10.5194/amt-15-5117-2022, 2022
Short summary
Short summary
Methane is a major greenhouse gas and contributor to climate change with various human-caused and natural sources. Currently, atmospheric methane is expensive to sense. We investigate repurposing cheap methane safety sensors for atmospheric sensing, finding several promising sensors and identifying some of the challenges in this approach. This work will help in developing inexpensive sensor networks for methane monitoring, which will aid in reducing methane leaks and emissions.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Sebastian Diez, Stuart E. Lacy, Thomas J. Bannan, Michael Flynn, Tom Gardiner, David Harrison, Nicholas Marsden, Nicholas A. Martin, Katie Read, and Pete M. Edwards
Atmos. Meas. Tech., 15, 4091–4105, https://doi.org/10.5194/amt-15-4091-2022, https://doi.org/10.5194/amt-15-4091-2022, 2022
Short summary
Short summary
Regardless of the cost of the measuring instrument, there are no perfect measurements. For this reason, we compare the quality of the information provided by cheap devices when they are used to measure air pollutants and we try to emphasise that before judging the potential usefulness of the devices, the user must specify his own needs. Since commonly used performance indices/metrics can be misleading in qualifying this, we propose complementary visual analysis to the more commonly used metrics.
Ashley S. Bittner, Eben S. Cross, David H. Hagan, Carl Malings, Eric Lipsky, and Andrew P. Grieshop
Atmos. Meas. Tech., 15, 3353–3376, https://doi.org/10.5194/amt-15-3353-2022, https://doi.org/10.5194/amt-15-3353-2022, 2022
Short summary
Short summary
We present findings from a 1-year pilot deployment of low-cost integrated air quality sensor packages in rural Malawi using calibration models developed during collocation with US regulatory monitors. We compare the results with data from remote sensing products and previous field studies. We conclude that while the remote calibration approach can help extract useful data, great care is needed when assessing low-cost sensor data collected in regions without reference instrumentation.
Noah Bernays, Daniel A. Jaffe, Irina Petropavlovskikh, and Peter Effertz
Atmos. Meas. Tech., 15, 3189–3192, https://doi.org/10.5194/amt-15-3189-2022, https://doi.org/10.5194/amt-15-3189-2022, 2022
Short summary
Short summary
Ozone is an important pollutant that impacts millions of people worldwide. It is therefore important to ensure accurate measurements. A recent surge in wildfire activity in the USA has resulted in significant enhancements in ozone concentration. However given the nature of wildfire smoke, there are questions about our ability to accurately measure ozone. In this comment, we discuss possible biases in the UV measurements of ozone in the presence of smoke.
Gérard Ancellet, Sophie Godin-Beekmann, Herman G. J. Smit, Ryan M. Stauffer, Roeland Van Malderen, Renaud Bodichon, and Andrea Pazmiño
Atmos. Meas. Tech., 15, 3105–3120, https://doi.org/10.5194/amt-15-3105-2022, https://doi.org/10.5194/amt-15-3105-2022, 2022
Short summary
Short summary
The 1991–2021 Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data have been homogenized according to the recommendations of the Ozonesonde Data Quality Assessment panel. Comparisons with ground-based instruments also measuring ozone at the same station (lidar, surface measurements) and with colocated satellite observations show the benefits of this homogenization. Remaining differences between ECC and other observations in the stratosphere are also discussed.
Horim Kim, Michael Müller, Stephan Henne, and Christoph Hüglin
Atmos. Meas. Tech., 15, 2979–2992, https://doi.org/10.5194/amt-15-2979-2022, https://doi.org/10.5194/amt-15-2979-2022, 2022
Short summary
Short summary
In this study, the performance of electrochemical sensors for NO and NO2 for measuring air quality was determined over a longer operating period. The performance of NO sensors remained reliable for more than 18 months. However, the NO2 sensors showed decreasing performance over time. During deployment, we found that the NO2 sensors can distinguish general pollution levels, but they proved unsuitable for accurate measurements due to significant biases.
Randulph Morales, Jonas Ravelid, Katarina Vinkovic, Piotr Korbeń, Béla Tuzson, Lukas Emmenegger, Huilin Chen, Martina Schmidt, Sebastian Humbel, and Dominik Brunner
Atmos. Meas. Tech., 15, 2177–2198, https://doi.org/10.5194/amt-15-2177-2022, https://doi.org/10.5194/amt-15-2177-2022, 2022
Short summary
Short summary
Mapping trace gas emission plumes using in situ measurements from unmanned aerial vehicles (UAVs) is an emerging and attractive possibility to quantify emissions from localized sources. We performed an extensive controlled-release experiment to develop an optimal quantification method and to determine the related uncertainties under various environmental and sampling conditions. Our approach was successful in quantifying local methane sources from drone-based measurements.
Junlei Zhan, Yongchun Liu, Wei Ma, Xin Zhang, Xuezhong Wang, Fang Bi, Yujie Zhang, Zhenhai Wu, and Hong Li
Atmos. Meas. Tech., 15, 1511–1520, https://doi.org/10.5194/amt-15-1511-2022, https://doi.org/10.5194/amt-15-1511-2022, 2022
Short summary
Short summary
Our study investigated the O3 formation sensitivity in Beijing using a random forest model coupled with the reactivity of volatile organic
compound (VOC) species. Results found that random forest accurately predicted O3 concentration when initial VOCs were considered, and relative importance correlated well with O3 formation potential. The O3 isopleth curves calculated by the random forest model were generally comparable with those calculated by the box model.
Daniel R. Peters, Olalekan A. M. Popoola, Roderic L. Jones, Nicholas A. Martin, Jim Mills, Elizabeth R. Fonseca, Amy Stidworthy, Ella Forsyth, David Carruthers, Megan Dupuy-Todd, Felicia Douglas, Katie Moore, Rishabh U. Shah, Lauren E. Padilla, and Ramón A. Alvarez
Atmos. Meas. Tech., 15, 321–334, https://doi.org/10.5194/amt-15-321-2022, https://doi.org/10.5194/amt-15-321-2022, 2022
Short summary
Short summary
We present more than 2 years of NO2 pollution measurements from a sensor network in Greater London and compare results to an extensive network of expensive reference-grade monitors. We show the ability of our lower-cost network to generate robust insights about local air pollution. We also show how irregularities in sensor performance lead to some uncertainty in results and demonstrate ways that future users can characterize and mitigate uncertainties to get the most value from sensor data.
Timothy G. Pernini, T. Scott Zaccheo, Jeremy Dobler, and Nathan Blume
Atmos. Meas. Tech., 15, 225–240, https://doi.org/10.5194/amt-15-225-2022, https://doi.org/10.5194/amt-15-225-2022, 2022
Short summary
Short summary
We demonstrate a novel approach to estimating emissions from oil sands operations that utilizes the GreenLITE™ gas concentration measurement system and an atmospheric model. While deployed at a facility in the Athabasca region of Alberta, Canada, CH4 emissions from a tailings pond were estimated to be 7.2 t/d for July–October 2019, and 5.1 t/d for March–July 2020. CH4 emissions from an open-pit mine were estimated to be 24.6 t/d for September–October 2019.
Wengang Zhang, Ling Wang, Yang Yu, Guirong Xu, Xiuqing Hu, Zhikang Fu, and Chunguang Cui
Atmos. Meas. Tech., 14, 7821–7834, https://doi.org/10.5194/amt-14-7821-2021, https://doi.org/10.5194/amt-14-7821-2021, 2021
Short summary
Short summary
Global precipitable water vapor (PWV) derived from MERSI-II (Medium Resolution Spectral Imager) is compared with PWV from the Integrated Global Radiosonde Archive (IGRA). Our results show a good agreement between PWV from MERSI-II and IGRA and that MERSI-II PWV is slightly underestimated on the whole, especially in summer. The bias between MERSI-II and IGRA grows with a larger spatial distance between the footprint of the satellite and the IGRA station, as well as increasing PWV.
Trevor W. Coates, Monzurul Alam, Thomas K. Flesch, and Guillermo Hernandez-Ramirez
Atmos. Meas. Tech., 14, 7147–7152, https://doi.org/10.5194/amt-14-7147-2021, https://doi.org/10.5194/amt-14-7147-2021, 2021
Short summary
Short summary
A field study tested two footprint models for calculating surface emissions from downwind flux measurements. Emission rates from a 10 × 10 m synthetic source were estimated with the simple Kormann–Meixner model and a sophisticated Lagrangian stochastic model. Both models underestimated emissions by approximately 30 %, and no statistical differences were observed between the models. Footprint models are critically important for interpreting eddy covariance measurements.
Teles C. Furlani, Patrick R. Veres, Kathryn E. R. Dawe, J. Andrew Neuman, Steven S. Brown, Trevor C. VandenBoer, and Cora J. Young
Atmos. Meas. Tech., 14, 5859–5871, https://doi.org/10.5194/amt-14-5859-2021, https://doi.org/10.5194/amt-14-5859-2021, 2021
Short summary
Short summary
This study characterized and validated a commercial spectroscopic instrument for the measurement of hydrogen chloride (HCl) in the atmosphere. Near the Earth’s surface, HCl acts as the dominant reservoir for other chlorine-containing reactive chemicals that play an important role in atmospheric chemistry. The properties of HCl make it challenging to measure. This instrument can overcome many of these challenges, enabling reliable HCl measurements.
Marvin Glowania, Franz Rohrer, Hans-Peter Dorn, Andreas Hofzumahaus, Frank Holland, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Meas. Tech., 14, 4239–4253, https://doi.org/10.5194/amt-14-4239-2021, https://doi.org/10.5194/amt-14-4239-2021, 2021
Short summary
Short summary
Three instruments that use different techniques to measure gaseous formaldehyde concentrations were compared in experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich. The results demonstrated the need to correct the baseline in measurements by instruments that use the Hantzsch reaction or make use of cavity ring-down spectroscopy. After applying corrections, all three methods gave accurate and precise measurements within their specifications.
Attilio Naccarato, Antonella Tassone, Maria Martino, Sacha Moretti, Antonella Macagnano, Emiliano Zampetti, Paolo Papa, Joshua Avossa, Nicola Pirrone, Michelle Nerentorp, John Munthe, Ingvar Wängberg, Geoff W. Stupple, Carl P. J. Mitchell, Adam R. Martin, Alexandra Steffen, Diana Babi, Eric M. Prestbo, Francesca Sprovieri, and Frank Wania
Atmos. Meas. Tech., 14, 3657–3672, https://doi.org/10.5194/amt-14-3657-2021, https://doi.org/10.5194/amt-14-3657-2021, 2021
Short summary
Short summary
Mercury monitoring in support of the Minamata Convention requires effective and reliable analytical tools. Passive sampling is a promising approach for creating a sustainable long-term network for atmospheric mercury with improved spatial resolution and global coverage. In this study the analytical performance of three passive air samplers (CNR-PAS, IVL-PAS, and MerPAS) was assessed over extended deployment periods and the accuracy of concentrations was judged by comparison with active sampling.
Mei Bai, José I. Velazco, Trevor W. Coates, Frances A. Phillips, Thomas K. Flesch, Julian Hill, David G. Mayer, Nigel W. Tomkins, Roger S. Hegarty, and Deli Chen
Atmos. Meas. Tech., 14, 3469–3479, https://doi.org/10.5194/amt-14-3469-2021, https://doi.org/10.5194/amt-14-3469-2021, 2021
Short summary
Short summary
The development and validation of management practices to mitigate methane (CH4) emissions from livestock require accurate emission measurements. We compared the inverse dispersion modelling (IDM) and tracer-ratio techniques to measure CH4 emissions from cattle. Both measurements agreed well but were higher than IPCC estimates. We suggest that the IDM approach can provide an accurate method of estimating cattle emissions, and IPCC estimates may have larger uncertainties.
Yuan You, Ralf M. Staebler, Samar G. Moussa, James Beck, and Richard L. Mittermeier
Atmos. Meas. Tech., 14, 1879–1892, https://doi.org/10.5194/amt-14-1879-2021, https://doi.org/10.5194/amt-14-1879-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands can be significant sources of methane, an important greenhouse gas. This paper describes a 1-month study conducted in 2017 to measure methane emissions from a pond using a variety of micrometeorological flux methods and demonstrates some advantages of these methods over flux chambers.
Christoph Häni, Marcel Bühler, Albrecht Neftel, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 14, 1733–1741, https://doi.org/10.5194/amt-14-1733-2021, https://doi.org/10.5194/amt-14-1733-2021, 2021
Seth Kutikoff, Xiaomao Lin, Steven R. Evett, Prasanna Gowda, David Brauer, Jerry Moorhead, Gary Marek, Paul Colaizzi, Robert Aiken, Liukang Xu, and Clenton Owensby
Atmos. Meas. Tech., 14, 1253–1266, https://doi.org/10.5194/amt-14-1253-2021, https://doi.org/10.5194/amt-14-1253-2021, 2021
Short summary
Short summary
Fast-response infrared gas sensors have been used over 3 decades for long-term monitoring of water vapor fluxes. As optically improved infrared gas sensors are newly employed, we evaluated the performance of water vapor density and water vapor flux from three generations of infrared gas sensors in Bushland, Texas, USA. From our experiments, fluxes from the old sensors were best representative of evapotranspiration based on a world-class lysimeter reference measurement.
Ravi Sahu, Ayush Nagal, Kuldeep Kumar Dixit, Harshavardhan Unnibhavi, Srikanth Mantravadi, Srijith Nair, Yogesh Simmhan, Brijesh Mishra, Rajesh Zele, Ronak Sutaria, Vidyanand Motiram Motghare, Purushottam Kar, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 14, 37–52, https://doi.org/10.5194/amt-14-37-2021, https://doi.org/10.5194/amt-14-37-2021, 2021
Short summary
Short summary
A unique feature of our low-cost sensor deployment is a swap-out experiment wherein four of the six sensors were relocated to different sites in the two phases. The swap-out experiment is crucial in investigating the efficacy of calibration models when applied to weather and air quality conditions vastly different from those present during calibration. We developed a novel local calibration algorithm based on metric learning that offers stable and accurate calibration performance.
Michal Vojtisek-Lom, Alessandro A. Zardini, Martin Pechout, Lubos Dittrich, Fausto Forni, François Montigny, Massimo Carriero, Barouch Giechaskiel, and Giorgio Martini
Atmos. Meas. Tech., 13, 5827–5843, https://doi.org/10.5194/amt-13-5827-2020, https://doi.org/10.5194/amt-13-5827-2020, 2020
Short summary
Short summary
The feasibility of monitoring on-road emissions from small motorcycles with two highly compact portable emissions monitoring systems was evaluated on three motorcycles, with positive results. Mass emissions measured on the road were consistent among repeated runs, with differences between laboratory and on-road tests much larger than those between portable and laboratory systems, which were, on the average, within units of percent over standard test cycles.
Xiaoyu Sun, Minzheng Duan, Yang Gao, Rui Han, Denghui Ji, Wenxing Zhang, Nong Chen, Xiangao Xia, Hailei Liu, and Yanfeng Huo
Atmos. Meas. Tech., 13, 3595–3607, https://doi.org/10.5194/amt-13-3595-2020, https://doi.org/10.5194/amt-13-3595-2020, 2020
Short summary
Short summary
The accurate measurement of greenhouse gases and their vertical distribution in the atmosphere is significant to the study of climate change and satellite remote sensing. Carbon dioxide and methane between 0.6 and 7 km were measured by the aircraft King Air 350ER in Jiansanjiang, northeast China, on 7–11 August 2018. The profiles show strong variation with the altitude and time, so the vertical structure of gases should be taken into account in the current satellite retrieval algorithm.
Paul A. Solomon, Dena Vallano, Melissa Lunden, Brian LaFranchi, Charles L. Blanchard, and Stephanie L. Shaw
Atmos. Meas. Tech., 13, 3277–3301, https://doi.org/10.5194/amt-13-3277-2020, https://doi.org/10.5194/amt-13-3277-2020, 2020
Short summary
Short summary
Analyzing street-level air pollutants (2016–2017), this assessment indicates that mobile measurement is precise and accurate (5 % to 25 % bias) relative to regulatory sites, with higher spatial resolution. Collocated sensor measurements in California showed differences less than 20 %, suggesting that greater differences represent spatial variability. Mobile data confirm regulatory-site spatial representation and that pollutant levels can also be 6 to 8 times higher just blocks apart.
Christian Juncher Jørgensen, Jacob Mønster, Karsten Fuglsang, and Jesper Riis Christiansen
Atmos. Meas. Tech., 13, 3319–3328, https://doi.org/10.5194/amt-13-3319-2020, https://doi.org/10.5194/amt-13-3319-2020, 2020
Short summary
Short summary
Recent discoveries have shown large emissions of methane (CH4) to the atmosphere from meltwater at the Greenland ice sheet (GrIS). Low-cost and low-power gas sensor technology offers great potential to supplement CH4 measurements using very expensive reference analyzers under harsh and remote conditions. In this paper we evaluate the in situ performance at the GrIS of a low-cost CH4 sensor to a state-of-the-art analyzer and find very excellent agreement between the two methods.
Lilian Joly, Olivier Coopmann, Vincent Guidard, Thomas Decarpenterie, Nicolas Dumelié, Julien Cousin, Jérémie Burgalat, Nicolas Chauvin, Grégory Albora, Rabih Maamary, Zineb Miftah El Khair, Diane Tzanos, Joël Barrié, Éric Moulin, Patrick Aressy, and Anne Belleudy
Atmos. Meas. Tech., 13, 3099–3118, https://doi.org/10.5194/amt-13-3099-2020, https://doi.org/10.5194/amt-13-3099-2020, 2020
Short summary
Short summary
This article presents an instrument weighing less than 3 kg for accurate and rapid measurement of greenhouse gases between 0 and 30 km altitude using a meteorological balloon. This article shows the interest of these measurements for the validation of simulations of infrared satellite observations.
Jonathan Elsey, Marc D. Coleman, Tom D. Gardiner, Kaah P. Menang, and Keith P. Shine
Atmos. Meas. Tech., 13, 2335–2361, https://doi.org/10.5194/amt-13-2335-2020, https://doi.org/10.5194/amt-13-2335-2020, 2020
Short summary
Short summary
Water vapour is an important component in trying to understand the flows of energy between the Sun and Earth, since it is opaque to radiation emitted by both the surface and the Sun. In this paper, we study how it absorbs sunlight by way of its
continuum, a property which is poorly understood and with few measurements. Our results indicate that this continuum absorption may be more significant than previously thought, potentially impacting satellite observations and climate studies.
Claudia Grossi, Scott D. Chambers, Olivier Llido, Felix R. Vogel, Victor Kazan, Alessandro Capuana, Sylvester Werczynski, Roger Curcoll, Marc Delmotte, Arturo Vargas, Josep-Anton Morguí, Ingeborg Levin, and Michel Ramonet
Atmos. Meas. Tech., 13, 2241–2255, https://doi.org/10.5194/amt-13-2241-2020, https://doi.org/10.5194/amt-13-2241-2020, 2020
Short summary
Short summary
The sustainable support of radon metrology at the environmental level offers new scientific possibilities for the quantification of greenhouse gas (GHG) emissions and the determination of their source terms as well as for the identification of radioactive sources for the assessment of radiation exposure. This study helps to harmonize the techniques commonly used for atmospheric radon and radon progeny activity concentration measurements.
Cheng-Hsien Lin, Richard H. Grant, Albert J. Heber, and Cliff T. Johnston
Atmos. Meas. Tech., 13, 2001–2013, https://doi.org/10.5194/amt-13-2001-2020, https://doi.org/10.5194/amt-13-2001-2020, 2020
Short summary
Short summary
Gas quantification using the open-path Fourier transform infrared spectrometer (OP-FTIR) is subject to interferences of environmental variables, leading to errors in gas concentration calculations. This study investigated the effects of ambient water vapour content, temperature, path lengths, and wind speed on the quantification of N2O and CO2 concentrations, which can help the OP-FTIR users to avoid these errors and improve the precision and accuracy of the atmospheric gas quantification.
Rachel Edie, Anna M. Robertson, Robert A. Field, Jeffrey Soltis, Dustin A. Snare, Daniel Zimmerle, Clay S. Bell, Timothy L. Vaughn, and Shane M. Murphy
Atmos. Meas. Tech., 13, 341–353, https://doi.org/10.5194/amt-13-341-2020, https://doi.org/10.5194/amt-13-341-2020, 2020
Short summary
Short summary
Ground-based measurements of emissions from oil and natural gas production are important for understanding emission distributions and improving emission inventories. Here, measurement technique Other Test Method 33A (OTM 33A) is validated through several test releases staged at the Methane Emissions Technology Evaluation Center. These tests suggest OTM 33A has no inherent bias and that a group of OTM measurements is within 5 % of the known mean emission rate.
Zheng Xu, Yuliang Liu, Wei Nie, Peng Sun, Xuguang Chi, and Aijun Ding
Atmos. Meas. Tech., 12, 6737–6748, https://doi.org/10.5194/amt-12-6737-2019, https://doi.org/10.5194/amt-12-6737-2019, 2019
Short summary
Short summary
We evaluated the performance of HONO measurement by a wet-denuder--ion0chromatography system (WD/IC, MARGA). We found significant artificial HONO formed from the reaction of NO2 oxidizing SO2 in the denuder solution. High ambient NH3 would elevate the pH of the denuder solution and promote the overestimation of HONO. A method was established to correct the HONO measurement by WD/IC instruments.
Leigh R. Crilley, Louisa J. Kramer, Bin Ouyang, Jun Duan, Wenqian Zhang, Shengrui Tong, Maofa Ge, Ke Tang, Min Qin, Pinhua Xie, Marvin D. Shaw, Alastair C. Lewis, Archit Mehra, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Hugh Coe, James Allan, Carl J. Percival, Olalekan A. M. Popoola, Roderic L. Jones, and William J. Bloss
Atmos. Meas. Tech., 12, 6449–6463, https://doi.org/10.5194/amt-12-6449-2019, https://doi.org/10.5194/amt-12-6449-2019, 2019
Short summary
Short summary
Nitrous acid (HONO) is key species for understanding tropospheric chemistry, yet accurate and precise measurements are challenging. Here we report an inter–comparison exercise of a number of instruments that measured HONO in a highly polluted location (Beijing). All instruments agreed on the temporal trends yet displayed divergence in absolute concentrations. The cause of this divergence was unclear, but it may in part be due to spatial variability in instrument location.
Rupert Holzinger, W. Joe F. Acton, William J. Bloss, Martin Breitenlechner, Leigh R. Crilley, Sébastien Dusanter, Marc Gonin, Valerie Gros, Frank N. Keutsch, Astrid Kiendler-Scharr, Louisa J. Kramer, Jordan E. Krechmer, Baptiste Languille, Nadine Locoge, Felipe Lopez-Hilfiker, Dušan Materić, Sergi Moreno, Eiko Nemitz, Lauriane L. J. Quéléver, Roland Sarda Esteve, Stéphane Sauvage, Simon Schallhart, Roberto Sommariva, Ralf Tillmann, Sergej Wedel, David R. Worton, Kangming Xu, and Alexander Zaytsev
Atmos. Meas. Tech., 12, 6193–6208, https://doi.org/10.5194/amt-12-6193-2019, https://doi.org/10.5194/amt-12-6193-2019, 2019
Cited articles
Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and Weise, D. R.: Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, 2013.
Akagi, S. K., Burling, I. R., Mendoza, A., Johnson, T. J., Cameron, M., Griffith, D. W. T., Paton-Walsh, C., Weise, D. R., Reardon, J., and Yokelson, R. J.: Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system, Atmos. Chem. Phys., 14, 199–215, https://doi.org/10.5194/acp-14-199-2014, 2014.
Alberta Environment and Parks: Total Area of the Oil Sands Tailings Ponds
over Time, available at: http://osip.alberta.ca/library/Dataset/Details/542 (last access: 22 September 2019), 2016.
Allen, E. W.: Process water treatment in Canada's oil sands industry: I.
Target pollutants and treatment objectives, J. Environ. Eng. Sci., 7,
123–138, https://doi.org/10.1139/S07-038, 2008.
Bai, M., Suter, H., Lam, S. K., Sun, J., and Chen, D.: Use of open-path FTIR
and inverse dispersion technique to quantify gaseous nitrogen loss from an
intensive vegetable production site, Atmos. Environ., 94, 687–691,
https://doi.org/10.1016/j.atmosenv.2014.06.013, 2014.
Bai, M., Suter, H., Lam, S. K., Davies, R., Flesch, T. K., and Chen, D.:
Gaseous emissions from an intensive vegetable farm measured with slant-path
FTIR technique, Agr. Forest Meterol., 258, 50–55,
https://doi.org/10.1016/j.agrformet.2018.03.001, 2018.
Bai, M., Suter, H., Lam, S. K., Flesch, T. K., and Chen, D.: Comparison of slant open-path flux gradient and static closed chamber techniques to measure soil N2O emissions, Atmos. Meas. Tech., 12, 1095–1102, https://doi.org/10.5194/amt-12-1095-2019, 2019.
Bari, M. A. and Kindzierski, W. B.: Ambient volatile organic compounds
(VOCs) in communities of the Athabasca oil sands region: Sources and
screening health risk assessment, Environ. Pollut., 235, 602–614,
https://doi.org/10.1016/j.envpol.2017.12.065, 2018.
Barton, L. L. and Fauque, G. D.: Chapter 2: Biochemistry, physiology and biotechnology of sulfate-reducing bacteria, Adv. Appl. Microbiol., 68, 41–98, https://doi.org/10.1016/S0065-2164(09)01202-7, 2009.
Bolinius, D. J., Jahnke, A., and MacLeod, M.: Comparison of eddy covariance and modified Bowen ratio methods for measuring gas fluxes and implications for measuring fluxes of persistent organic pollutants, Atmos. Chem. Phys., 16, 5315–5322, https://doi.org/10.5194/acp-16-5315-2016, 2016.
Bradley, K. S., Brooks, K. B., Hubbard, L. K., Popp, P. J., and Stedman, D.
H.: Motor vehicle fleet emissions by OP-FTIR, Environ. Sci. Tech., 34,
897–899, https://doi.org/10.1021/es9909226, 2000.
Burling, I. R., Yokelson, R. J., Griffith, D. W. T., Johnson, T. J., Veres, P., Roberts, J. M., Warneke, C., Urbanski, S. P., Reardon, J., Weise, D. R., Hao, W. M., and de Gouw, J.: Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States, Atmos. Chem. Phys., 10, 11115–11130, https://doi.org/10.5194/acp-10-11115-2010, 2010.
Bytnerowicz, A., Fraczek, W., Schilling, S., and Alexander, D.: Spatial and
temporal distribution of ambient nitric acid and ammonia in the Athabasca
Oil Sands Region, Alberta, J. Limnol., 69, 11–21, https://doi.org/10.3274/JL10-69-S1-03,
2010.
Collins, C. E. V., Foght, J. M., and Siddique, T.: Co-occurrence of
methanogenesis and N2 fixation in oil sands tailings, Sci. Total
Environ., 565, 306–312, https://doi.org/10.1016/j.scitotenv.2016.04.154,
2016.
Cumulative Environmental Management Association: Protocol for Updating and
Preparing a Modelling Emission Inventory, available at:
http://library.cemaonline.ca/ckan/dataset/4cbfe171-aab8-49f8-8d67-118e6840d974/resource/8f449c5d-3129-4d6f-a530-46ec33a46208/download/protocolforupdatingandpreparingamodelling.pdf (last access: 26 February 2020), 2011.
Environment and Climate Change Canada: Emissions from tailings ponds to the atmosphere, oil sands region, available at: http://data.ec.gc.ca/data/air/monitor/source-emissions-monitoring- oil-sands-region/emissions-from-tailings-ponds-to-the-atmosphere-oil-sands-region/, last access: 26 January 2021.
Field, R. A., Soltis, J., McCarthy, M. C., Murphy, S., and Montague, D. C.: Influence of oil and gas field operations on spatial and temporal distributions of atmospheric non-methane hydrocarbons and their effect on ozone formation in winter, Atmos. Chem. Phys., 15, 3527–3542, https://doi.org/10.5194/acp-15-3527-2015, 2015.
Flesch, T. K., Wilson, J. D., and Yee, E.: Backward-time Lagrangian
stochastic dispersion models and their application to estimate gaseous
emissions, J. Appl. Meteorol., 34, 1320–1332,
https://doi.org/10.1175/1520-0450(1995)034<1320:BTLSDM>2.0.CO;2, 1995.
Flesch, T. K., Wilson, J. D., Harper, L. A., Crenna, B. P., and Sharpe, R.
R.: Deducing ground-to-air emissions from observed trace gas concentrations:
A field trial, J. Appl. Meteorol., 43, 487–502,
https://doi.org/10.1175/1520-0450(2004)043<0487:DGEFOT>2.0.CO;2, 2004.
Flesch, T. K., Wilson, J., Harper, L., and Crenna, B.: Estimating gas emissions
from a farm with an inverse-dispersion technique, Atmos. Environ., 39,
4863–4874, https://doi.org/10.1016/j.atmosenv.2005.04.032, 2005.
Flesch, T. K., Baron, V. S., Wilson, J. D., Griffith, D. W. T., Basarab, J.
A., and Carlson, P. J.: Agricultural gas emissions during the spring thaw:
Applying a new measurement technique, Agr. Forest Meterol., 221, 111–121,
https://doi.org/10.1016/j.agrformet.2016.02.010, 2016.
Foght, J. M., Gieg, L. M., and Siddique, T.: The microbiology of oil sands
tailings: Past, present, future, FEMS Microbiol. Ecol., 93, fix034,
https://doi.org/10.1093/femsec/fix034, 2017.
Galarneau, E., Hollebone, B. P., Yang, Z., and Schuster, J.: Preliminary
measurement-based estimates of PAH emissions from oil sands tailings ponds,
Atmos. Environ., 97, 332–335,
https://doi.org/10.1016/j.atmosenv.2014.08.038, 2014.
Goode, J. G., Yokelson, R. J., Susott, R. A., and Ward, D. E.: Trace gas
emissions from laboratory biomass fires measured by open-path Fourier
transform infrared spectroscopy: Fires in grass and surface fuels, J.
Geophys. Res., 104, 21237–21245, https://doi.org/10.1029/1999JD900360, 1999.
Government of Canada National Pollutant Release Inventory:
https://pollution-waste.canada.ca/national-release-inventory/archives/index.cfm?do=facility_substance_summary&lang=en&opt_npri_id=0000002230&opt_report_year=2017, last access: 7 January 2020.
Griffith, D. W. T., Mankin, W. G., Coffey, M. T., Ward, D. E., and Riebau,
A.: “FTIR remote sensing of biomass burning emissions of CO2, CO,
CH4, CH2O, NO, NO2, NH3, and N2O.” Global biomass
burning: atmospheric, alimate, and biospheric implications, MIT Press,
Cambridge, MA, USA, 1991.
Grutter, M., Flores, E., Basaldud, R., and Ruiz-Suarez, L. G.: Open-path
FTIR spectroscopic studies of the trace gases over Mexico City, Atmos.
Ocean. Opt., 16, 232–236, 2003.
Horrocks, L., Burton, M., Francis, P., and Oppenheimer, C.: Stable gas plume
composition measured by OP-FTIR spectroscopy at Masaya Volcano, Nicaragua,
1998–1999, Geophys. Res. Lett,, 26, 3497–3500,
https://doi.org/10.1029/1999GL008383, 1999.
Horst, T. W.: The footprint for estimation of atmosphere-surface exchange
fluxes by profile techniques, Bound.-Lay. Meteorol., 90, 171–188,
https://doi.org/10.1023/A:1001774726067, 1999.
Hu, N., Flesch, T. K., Wilson, J. D., Baron, V. S., and Basarab, J. A.:
Refining an inverse dispersion method to quantify gas sources on rolling
terrain, Agr. Forest Meterol., 225, 1–7,
https://doi.org/10.1016/j.agrformet.2016.05.007, 2016.
Johnson, T. J., Profeta, L. T. M., Sams, R. L., Griffith, D. W. T., and
Yokelson, R. L.: An infrared spectral database for detection of gases
emitted by biomass burning, Vib. Spectrosc., 53, 97–102,
https://doi.org/10.1016/j.vibspec.2010.02.010, 2010.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Kroll, J. and Seinfeld, J. H.: Chemistry of secondary organic aerosol:
Formation and evolution of low-volatility organics in the atmosphere, Atmos.
Environ., 42, 3593–3624, https://doi.org/10.1016/j.atmosenv.2008.01.003, 2008.
Kürten, A., Bianchi, F., Almeida, J., Kupiainen-Määttä, O.,
Dunne, E. M., Duplissy, J., Williamson, C., Barmet, P., Breitenlechner, M.,
Dommen, J., Donahue, N. M., Flagan, R. C., Franchin, A., Gordon, H., Hakala,
J., Hansel, A., Heinritzi, M., Ickes, L., Jokinen, T., Kangasluoma, J., Kim,
J., Kirkby, J., Kupc, A., Lehtipalo, K., Leiminger, M., Makhmutov, V.,
Onnela, A., Ortega, I. K., Petäjä, T., Praplan, A. P., Riccobono,
F., Rissanen, M. P., Rondo, L., Schnitzhofer, R., Schobesberger, S., Smith,
J. N., Steiner, G., Stozhkov, Y., Tomé, A., Tröstl, J.,
Tsagkogeorgas, G., Wagner, P. E., Wimmer, D., Ye, P., Baltensperger, U.,
Carslaw, K., Kulmala, M., and Curtius, J.: Experimental particle formation
rates spanning tropospheric sulfuric acid and ammonia abundances, ion
production rates, and temperatures, J. Geophys. Res., 121, 12377–12400,
https://doi.org/10.1002/2015JD023908, 2016.
Li, S. M., Leithead, A., Moussa, S. G., Liggio, J., Moran, M. D., Wang, D.,
Hayden, K., Darlington, A., Gordon, M., Staebler, R., Makar, P. A., Stroud,
C. A., McLaren, R., Liu, P. S. K., O'Brien, J., Mittermeier, R. L., Zhang,
J., Marson, G., Cober, S. G., Wolde, M., and Wentzell, J. J. B.: Differences
between measured and reported volatile organic compound emissions from oil
sands facilities in Alberta, Canada, P. Natl. Acad. Sci. USA., 114,
E3756–E3765, https://doi.org/10.1073/pnas.1617862114, 2017.
Makar, P. A., Akingunola, A., Aherne, J., Cole, A. S., Aklilu, Y.-A., Zhang, J., Wong, I., Hayden, K., Li, S.-M., Kirk, J., Scott, K., Moran, M. D., Robichaud, A., Cathcart, H., Baratzedah, P., Pabla, B., Cheung, P., Zheng, Q., and Jeffries, D. S.: Estimates of exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan, Atmos. Chem. Phys., 18, 9897–9927, https://doi.org/10.5194/acp-18-9897-2018, 2018.
Marshall, T. L., Chaffin, C. T., Hammaker, R. M., and Fateley, W. G.: An
introduction to open-path FT-IR atmospheric monitoring, Environ. Sci.
Technol., 28, 224–232, https://doi.org/10.1021/es00054a715, 1994.
Meyers, T. P., Hall, M. E., Lindberg, S. E., and Kim, K.: Use of the
modified bowen-ratio technique to measure fluxes of trace gases, Atmos.
Environ., 30, 3321–3329, https://doi.org/10.1016/1352-2310(96)00082-9, 1996.
Millet, D. B., Jacob, D. J., Custer, T. G., de Gouw, J. A., Goldstein, A. H., Karl, T., Singh, H. B., Sive, B. C., Talbot, R. W., Warneke, C., and Williams, J.: New constraints on terrestrial and oceanic sources of atmospheric methanol, Atmos. Chem. Phys., 8, 6887–6905, https://doi.org/10.5194/acp-8-6887-2008, 2008.
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the
surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR,
24, 163–187, 1954.
Oppenheimer, C. and Kyle, P. R.: Probing the magma plumbing of Erebus
volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions, J.
Volcanol. Geotherm. Res., 177, 743–754,
https://doi.org/10.1016/j.jvolgeores.2007.08.022, 2008.
Paton-Walsh, C., Smith, T. E. L., Young, E. L., Griffith, D. W. T., and Guérette, É.-A.: New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 1: Methods and Australian temperate forest fires, Atmos. Chem. Phys., 14, 11313–11333, https://doi.org/10.5194/acp-14-11313-2014, 2014.
Penner, T. J. and Foght, J. M.: Mature fine tailings from oil sands
processing harbour diverse methanogenic communities, Can. J. Microbiol., 56,
459–470, https://doi.org/10.1139/W10-029, 2010.
Risacher, F. F., Morris, P. K., Arriaga, D., Goad, C., Nelson, T. C.,
Slater, G. F., and Warren, L. A.: The interplay of methane and ammonia as
key oxygen consuming constituents in early stage development of Base Mine
Lake, the first demonstration oil sands pit lake, Appl. Geochem., 93, 49–59,
https://doi.org/10.1016/j.apgeochem.2018.03.013, 2018.
Rogers, T. M., Grimsrud, E. P., Herndon, S. C., Jayne, J. T., Kolb, C. E.,
Allwine, E., Westberg, H., Lamb, B. K., Zavala, M., Molina, L. T., Molina,
M. J., and Knighton, W. B.: On-road measurements of volatile organic
compounds in the Mexico City metropolitan area using proton transfer
reaction mass spectrometry, Int. J. Mass Soectrom., 252, 26–37,
https://doi.org/10.1016/j.ijms.2006.01.027, 2006.
Schäfer, K., Grant, R. H., Emeis, S., Raabe, A., von der Heide, C., and Schmid, H. P.: Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions, Atmos. Meas. Tech., 5, 1571–1583, https://doi.org/10.5194/amt-5-1571-2012, 2012.
Schmid, H. P.: Source areas for scalars and scalar fluxes. Bound.-Lay.
Meteorol., 67, 293–318, https://doi.org/10.1007/BF00713146, 1994.
Shephard, M. W., McLinden, C. A., Cady-Pereira, K. E., Luo, M., Moussa, S. G., Leithead, A., Liggio, J., Staebler, R. M., Akingunola, A., Makar, P., Lehr, P., Zhang, J., Henze, D. K., Millet, D. B., Bash, J. O., Zhu, L., Wells, K. C., Capps, S. L., Chaliyakunnel, S., Gordon, M., Hayden, K., Brook, J. R., Wolde, M., and Li, S.-M.: Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: validation and model evaluation, Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, 2015.
Shonkwiler, K. B. and Ham, J. M.: Ammonia emissions from a beef feedlot:
Comparison of inverse modeling techniques using long-path and point
measurements of fenceline NH3, Agr. Forest Meterol., 258, 29–42,
https://doi.org/10.1016/j.agrformet.2017.10.031, 2018.
Siddique, T., Fedorak, P. M., MacKinnon, M. D., and Foght, J. M.: Metabolism
of BTEX and Naphtha Compounds to Methane in Oil Sands Tailings,
Environ. Sci. Tech., 41, 2350–2356, https://doi.org/10.1021/es062852q, 2007.
Siddique, T., Penner, T., Semple, K., and Foght, J. M.: Anaerobic
biodegradation of longer-chain n-alkanes coupled to methane production in
oil sands tailings, Environ. Sci. Tech., 45, 5892–5899,
https://doi.org/10.1021/es200649t, 2011.
Siddique, T., Penner, T., Klassen, J., Nesbø, C., and Foght, J. M.:
Microbial communities involved in methane production from hydrocarbons in
oil sands tailings, Environ. Sci. Tech., 46, 9802–9810,
https://doi.org/10.1021/es302202c, 2012.
Simpson, I. J., Blake, N. J., Barletta, B., Diskin, G. S., Fuelberg, H. E., Gorham, K., Huey, L. G., Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Yang, M., and Blake, D. R.: Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2–C10 volatile organic compounds (VOCs), C2–C10 volatile organic compounds (VOCs), CO2, CH4, CO,
NO, NO2, NOy, O3 and SO2, , Atmos. Chem. Phys., 10, 11931–11954, https://doi.org/10.5194/acp-10-11931-2010, 2010.
Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., Fried, A., Fuelberg, H. E., Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler, A., Yang, M., Yokelson, R. J., and Blake, D. R.: Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs),
CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem. Phys., 11, 6445–6463, https://doi.org/10.5194/acp-11-6445-2011, 2011.
Small, C. C., Cho, S., Hashisho, Z., and Ulrich, A. C.: Emissions from oil
sands tailings ponds: Review of tailings pond parameters and emission
estimates, J. Petrol. Sci. Eng., 127, 490–501,
https://doi.org/10.1016/j.petrol.2014.11.020, 2015.
Smith, T. E. L., Paton-Walsh, C., Meyer, C. P., Cook, G. D., Maier, S. W., Russell-Smith, J., Wooster, M. J., and Yates, C. P.: New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 2: Australian tropical savanna fires, Atmos. Chem. Phys., 14, 11335–11352, https://doi.org/10.5194/acp-14-11335-2014, 2014.
Thoma, E. D., Green, R. B., Hater, G. R., Goldsmith, C. D., Swan, N. D.,
Chase, M. J., and Hashmonay, R. A.: Development of EPA OTM 10 for landfill
applications, J. Environ. Eng., 136, 769–776,
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000157, 2010.
Whaley, C. H., Makar, P. A., Shephard, M. W., Zhang, L., Zhang, J., Zheng, Q., Akingunola, A., Wentworth, G. R., Murphy, J. G., Kharol, S. K., and Cady-Pereira, K. E.: Contributions of natural and anthropogenic sources to ambient ammonia in the Athabasca Oil Sands and north-western Canada, Atmos. Chem. Phys., 18, 2011–2034, https://doi.org/10.5194/acp-18-2011-2018, 2018.
Wiacek, A., Li, L., Tobin, K., and Mitchell, M.: Characterization of trace gas emissions at an intermediate port, Atmos. Chem. Phys., 18, 13787–13812, https://doi.org/10.5194/acp-18-13787-2018, 2018.
Wu, R. T., Chang, S.-Y., Chung, Y. W., Tzou, H. C., and Tso, T.-L.: FTIR
remote sensor measurements of air pollutants in the petrochemical industrial
park, Proc. SPIE 2552, SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, 9–14 July 1995, San Diego, USA, 719–727, https://doi.org/10.1117/12.218271, 1995.
Yeh, S., Jordaan, S. M., Brandt, A. R., Turetsky, M. R., Spatari, S., and
Keith, D. W.: Land use greenhouse gas emissions from conventional oil
production and oil sands, Environ. Sci. Tech., 44, 8766–8772,
https://doi.org/10.1021/es1013278, 2010.
Yokelson, R. J.: Emissions of formaldehyde, acetic acid, methanol, and other
trace gases from biomass fires in North Carolina measured by airborne
Fourier Transform Infrared spectroscopy, J. Geophys. Res.-Atmos., 104,
30109–30125, https://doi.org/10.1029/1999JD900817, 1999.
Yokelson, R. J., Griffith, D. W. T., and Ward, D. E.: Open-path Fourier
Transform Infrared studies of large-scale laboratory biomass fires, J.
Geophys. Res.-Atmos., 101, 21067–21080, https://doi.org/10.1029/96JD01800,
1996.
Yokelson, R. J., Susott, R., Ward, D. E., Reardon, J., and Griffith, D. W.
T.: Emissions from smoldering combustion of biomass measured by open-path
Fourier Transform Infrared spectroscopy, J. Geophys. Res.-Atmos., 102,
18865–18877, https://doi.org/10.1029/97JD00852, 1997.
Yokelson, R. J., Karl, T., Artaxo, P., Blake, D. R., Christian, T. J., Griffith, D. W. T., Guenther, A., and Hao, W. M.: The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements, Atmos. Chem. Phys., 7, 5175–5196, https://doi.org/10.5194/acp-7-5175-2007, 2007.
Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., de Gouw, J., Akagi, S. K., Urbanski, S. P., Veres, P., Roberts, J. M., Kuster, W. C., Reardon, J., Griffith, D. W. T., Johnson, T. J., Hosseini, S., Miller, J. W., Cocker III, D. R., Jung, H., and Weise, D. R.: Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires, Atmos. Chem. Phys., 13, 89–116, https://doi.org/10.5194/acp-13-89-2013, 2013.
You, Y., Staebler, R. M., Moussa, S. G., Su, Y., Munoz, T., Stroud, C., Zhang, J., and Moran, M. D.: Long-path measurements of pollutants and micrometeorology over Highway 401 in Toronto, Atmos. Chem. Phys., 17, 14119–14143, https://doi.org/10.5194/acp-17-14119-2017, 2017.
You, Y., Staebler, R. M., Moussa, S. G., Beck, J., and Mittermeier, R. L.: Methane emissions from an oil sands tailings pond: A quantitative comparison of fluxes derived by different methods, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2020-116, in review, 2020.
Zhang, L., Cho, S., Hashisho, Z., and Brown, C.: Quantification of fugitive
emissions from an oil sands tailings pond by eddy covariance, Fuel, 237,
457–464, https://doi.org/10.1016/j.fuel.2018.09.104, 2019.
Short summary
Tailings ponds in the Alberta oil sands represent an insufficiently characterized source of fugitive emissions of pollutants to the atmosphere. In this study, a novel approach of using a Fourier transform infrared spectrometer along with measurements of atmospheric turbulence is shown to present a practical, non-intrusive method of quantifying emission rates for ammonia, alkanes, and methane. Results from a 1-month field study are presented and discussed.
Tailings ponds in the Alberta oil sands represent an insufficiently characterized source of...