Articles | Volume 15, issue 8
https://doi.org/10.5194/amt-15-2345-2022
https://doi.org/10.5194/amt-15-2345-2022
Research article
 | 
20 Apr 2022
Research article |  | 20 Apr 2022

The Aerosol Research Observation Station (AEROS)

Karin Ardon-Dryer, Mary C. Kelley, Xia Xueting, and Yuval Dryer

Related authors

Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024,https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Particle size distribution and particulate matter concentrations during synoptic and convective dust events in West Texas
Karin Ardon-Dryer and Mary C. Kelley
Atmos. Chem. Phys., 22, 9161–9173, https://doi.org/10.5194/acp-22-9161-2022,https://doi.org/10.5194/acp-22-9161-2022, 2022
Short summary
Measurements of PM2.5 with PurpleAir under atmospheric conditions
Karin Ardon-Dryer, Yuval Dryer, Jake N. Williams, and Nastaran Moghimi
Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020,https://doi.org/10.5194/amt-13-5441-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Instruments and Platforms
Performance evaluation of an online monitor based on X-ray fluorescence for detecting elemental concentrations in ambient particulate matter
Ivonne Trebs, Céline Lett, Andreas Krein, Erika Matsumoto Kawaguchi, and Jürgen Junk
Atmos. Meas. Tech., 17, 6791–6805, https://doi.org/10.5194/amt-17-6791-2024,https://doi.org/10.5194/amt-17-6791-2024, 2024
Short summary
Deriving the hygroscopicity of ambient particles using low-cost optical particle counters
Wei-Chieh Huang, Hui-Ming Hung, Ching-Wei Chu, Wei-Chun Hwang, and Shih-Chun Candice Lung
Atmos. Meas. Tech., 17, 6073–6084, https://doi.org/10.5194/amt-17-6073-2024,https://doi.org/10.5194/amt-17-6073-2024, 2024
Short summary
Fast and sensitive measurements of sub-3 nm particles using Condensation Particle Counters For Atmospheric Rapid Measurements (CPC FARM)
Darren Cheng, Stavros Amanatidis, Gregory S. Lewis, and Coty N. Jen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-157,https://doi.org/10.5194/amt-2024-157, 2024
Revised manuscript accepted for AMT
Short summary
Simulations of the collection of mesospheric dust particles with a rocket instrument
Adrien Pineau, Henriette Trollvik, Herman Greaker, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann
Atmos. Meas. Tech., 17, 3843–3861, https://doi.org/10.5194/amt-17-3843-2024,https://doi.org/10.5194/amt-17-3843-2024, 2024
Short summary
Characterisation of particle single-scattering albedo with a modified airborne dual-wavelength CAPS monitor
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024,https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary

Cited articles

Alghamdi, M. A., Almazroui, M., Shamy, M., Redal, M. A., Alkhalaf, A. K., Hussein, M. A., and Khoder, M. I.: Characterization and elemental composition of atmospheric aerosol loads during springtime dust storm in western Saudi Arabia, Aerosol Air Qual. Res., 15, 440–453, https://doi.org/10.4209/aaqr.2014.06.0110, 2015. 
Ardon-Dryer, K. and Levin, Z.: Ground-based measurements of immersion freezing in the eastern Mediterranean, Atmos. Chem. Phys., 14, 5217–5231, https://doi.org/10.5194/acp-14-5217-2014, 2014. 
Ardon-Dryer, K., Garimella, S., Huang, Y.-W., Christopoulos, C., and Cziczo, D.: Evaluation of DMA size selection of dry dispersed mineral dust particles, Aerosol Sci. Technol., 49, 828–841, https://doi.org/10.1080/02786826.2015.1077927, 2015. 
Ardon-Dryer, K., Dryer, Y., Williams, J. N., and Moghimi, N.: Measurements of PM2.5 with PurpleAir under atmospheric conditions, Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020, 2020. 
Download
Short summary
The Aerosol Research Observation Station (AEROS) located in West Texas was designed to continuously measure atmospheric particles, including different particulate matter sizes, total particle number concentration, and size distribution. This article provides a description of AEROS as well as an intercomparison of the different instruments using laboratory and atmospheric particles, showing similar concentration as well to distinguish between various pollution events (natural vs. anthropogenic).