Articles | Volume 15, issue 8
https://doi.org/10.5194/amt-15-2465-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-2465-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrieval of UVB aerosol extinction profiles from the ground-based Langley Mobile Ozone Lidar (LMOL) system
Liqiao Lei
CORRESPONDING AUTHOR
Universities Space Research Association, 7178 Columbia Gateway Drive,
Columbia, MD 21046, USA
NASA Langley Research Center, 1 Nasa Dr, Hampton, VA 23666, USA
Timothy A. Berkoff
NASA Langley Research Center, 1 Nasa Dr, Hampton, VA 23666, USA
Guillaume Gronoff
NASA Langley Research Center, 1 Nasa Dr, Hampton, VA 23666, USA
Science Systems and Applications, 1 Enterprise Pkwy, Hampton, VA
23666, USA
Jia Su
Center for Atmospheric Sciences, Department of Atmospheric and Planetary Sciences, Hampton University, 100 E Queen St, Hampton, VA 23669, USA
Amin R. Nehrir
NASA Langley Research Center, 1 Nasa Dr, Hampton, VA 23666, USA
Yonghua Wu
Optical Remote Sensing Lab, City College of New York (CCNY), 160 Convent Avenue, New York, NY 10031,
USA
NOAA–CESSRST (Cooperative Science Center for Earth System Sciences and
Remote Sensing Technologies), 140th Street at Convent Avenue, New York, NY
10031, USA
Fred Moshary
Optical Remote Sensing Lab, City College of New York (CCNY), 160 Convent Avenue, New York, NY 10031,
USA
NOAA–CESSRST (Cooperative Science Center for Earth System Sciences and
Remote Sensing Technologies), 140th Street at Convent Avenue, New York, NY
10031, USA
Shi Kuang
Earth System Science Center, The University of Alabama in Huntsville,
320 Sparkman Drive, Huntsville, AL 35805, USA
Related authors
No articles found.
Richard Ferrare, Johnathan Hair, Taylor Shingler, Chris Hostetler, Amin Nehrir, Marta Fenn, Amy Jo Scarino, Sharon Burton, Marian Clayton, James Collins, Laura Judd, James Crawford, Katherine Travis, Travis Toth, Pablo Saide, Jose Luis Jimenez, Pedro Campuzano-Jost, Guy Symonds, Richard Moore, Luke Ziemba, Michael Shook, Glenn Diskin, Joshua P. DiGangi, Ryan Bennett, Chia-hsiang Ho, Lim-seok Chang, Adisak Aiampisanuvong, and Ittipol Pawarmart
EGUsphere, https://doi.org/10.5194/egusphere-2025-4812, https://doi.org/10.5194/egusphere-2025-4812, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present a new method to retrieve atmospheric particulate matter concentrations using only airborne High Spectral Resolution Lidar measurements in machine learning algorithms. Retrieved concentrations agree well with surface measurements. These concentrations and our estimates of the particle mass extinction efficiency are also consistent with those retrieved from airborne in situ measurements. This methodology can also be applied to the Atmosphere Lidar on the EarthCARE satellite.
Dimitri Trapon, Holger Baars, Athena Augusta Floutsi, Sebastian Bley, Moritz Haarig, Adrien Lacour, Thomas Flament, Alain Dabas, Amin R. Nehrir, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 18, 3873–3896, https://doi.org/10.5194/amt-18-3873-2025, https://doi.org/10.5194/amt-18-3873-2025, 2025
Short summary
Short summary
The study highlights how aerosol measurements from aircraft can be used in synergy with ground-based observations to validate the European Space Agency's Aeolus satellite aerosol product above the tropical Atlantic. For the first time, collocated sections of the troposphere up to 626 km long are crossed. Combining measurements from satellite, aircraft, and ground-based instruments allows characterization of the optical properties of the observed dust particles emitted from the Sahara.
Ewan Crosbie, Johnathan W. Hair, Amin R. Nehrir, Richard A. Ferrare, Chris Hostetler, Taylor Shingler, David Harper, Marta Fenn, James Collins, Rory Barton-Grimley, Brian Collister, K. Lee Thornhill, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
Atmos. Meas. Tech., 18, 2639–2658, https://doi.org/10.5194/amt-18-2639-2025, https://doi.org/10.5194/amt-18-2639-2025, 2025
Short summary
Short summary
A method was developed to extract information from airborne lidar observations about the distribution of ice and liquid water within clouds. The method specifically targets signatures of horizontal and vertical gradients in ice and water that appear in the polarization of the lidar signals. The method was tested against direct measurements of the cloud properties collected by a second aircraft.
Akinleye Folorunsho, Jimy Dudhia, John Sullivan, Paul Walter, James Flynn, Travis Griggs, Rebecca Sheesley, Sascha Usenko, Guillaume Gronoff, Mark Estes, and Yang Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1190, https://doi.org/10.5194/egusphere-2024-1190, 2024
Preprint archived
Short summary
Short summary
Our study investigates the factors driving high ozone levels over the Houston urban area. Using advanced modeling techniques and real-world measurements, we found vehicle and industrial emissions especially of highly reactive organic compounds play a key role in ozone formation. Our study highlights spatial and temporal changes in ozone sensitivity and variability of atmosphere's self-cleaning capacity to emissions, signifying effective ways of controlling emissions to mitigate urban ozone.
Matthew S. Johnson, Alexei Rozanov, Mark Weber, Nora Mettig, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, Fernando Chouza, Timothy A. Berkoff, Guillaume Gronoff, Kevin B. Strawbridge, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Brandi McCarty, and Larry Twigg
Atmos. Meas. Tech., 17, 2559–2582, https://doi.org/10.5194/amt-17-2559-2024, https://doi.org/10.5194/amt-17-2559-2024, 2024
Short summary
Short summary
Monitoring tropospheric ozone (O3), a harmful pollutant negatively impacting human health, is primarily done using ground-based measurements and ozonesondes. However, these observation types lack the coverage to fully understand tropospheric O3. Satellites can retrieve tropospheric ozone with near-daily global coverage; however, they are known to have biases and errors. This study uses ground-based lidars to validate multiple satellites' ability to observe tropospheric O3.
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024, https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Short summary
In this study, we describe and validate a new technique in which three radar tones are used to estimate the water vapor inside clouds and precipitation. This instrument flew on board NASA's P-3 aircraft during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign and the Synergies Of Active optical and Active microwave Remote Sensing Experiment (SOA2RSE) campaign.
Peiyang Cheng, Arastoo Pour-Biazar, Yuling Wu, Shi Kuang, Richard T. McNider, and William J. Koshak
Atmos. Chem. Phys., 24, 41–63, https://doi.org/10.5194/acp-24-41-2024, https://doi.org/10.5194/acp-24-41-2024, 2024
Short summary
Short summary
Lightning-induced nitrogen monoxide (LNO) emission can be estimated from geostationary satellite observations. The present study uses the LNO emission estimates derived from geostationary satellite observations in an air quality modeling system to investigate the impact of LNO on air quality. Results indicate that significant ozone increase could be due to long-distance chemical transport, lightning activity in the upwind direction, and the mixing of high LNO (or ozone) plumes.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
Geosci. Model Dev., 16, 5493–5514, https://doi.org/10.5194/gmd-16-5493-2023, https://doi.org/10.5194/gmd-16-5493-2023, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Claudia Bernier, Yuxuan Wang, Guillaume Gronoff, Timothy Berkoff, K. Emma Knowland, John T. Sullivan, Ruben Delgado, Vanessa Caicedo, and Brian Carroll
Atmos. Chem. Phys., 22, 15313–15331, https://doi.org/10.5194/acp-22-15313-2022, https://doi.org/10.5194/acp-22-15313-2022, 2022
Short summary
Short summary
Coastal regions are susceptible to variable and high ozone which is difficult to simulate. We developed a method to characterize large datasets of multi-dimensional measurements from lidar instruments taken in coastal regions. Using the clustered ozone groups, we evaluated model performance in simulating the coastal ozone variability vertically and diurnally. The approach allowed us to pinpoint areas where the models succeed in simulating coastal ozone and areas where there are still gaps.
Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, and Kenneth J. Davis
Atmos. Meas. Tech., 15, 4623–4650, https://doi.org/10.5194/amt-15-4623-2022, https://doi.org/10.5194/amt-15-4623-2022, 2022
Short summary
Short summary
HALO is a multi-functional lidar that measures CH4 columns and profiles of H2O mixing ratio and aerosol/cloud optical properties. HALO supports carbon cycle, weather dynamics, and radiation science suborbital research and is a technology testbed for future space-based differential absorption lidar missions. In 2019 HALO collected CH4 columns and aerosol/cloud profiles during the ACT-America campaign. Here we assess HALO's CH4 accuracy and precision compared to co-located in situ observations.
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Gerard Ancellet, Michael J. Newchurch, Shi Kuang, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, https://doi.org/10.5194/amt-15-2955-2022, 2022
Short summary
Short summary
Vertical ozone profiles from combined spectral measurements in the UV and IR spectral ranges were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP. The vertical resolution and accuracy of the ozone profiles are improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The advancement of our TOPAS algorithm for combined measurements is required because in the UV-only retrieval the vertical resolution in the troposphere is very limited.
Brian J. Carroll, Amin R. Nehrir, Susan A. Kooi, James E. Collins, Rory A. Barton-Grimley, Anthony Notari, David B. Harper, and Joseph Lee
Atmos. Meas. Tech., 15, 605–626, https://doi.org/10.5194/amt-15-605-2022, https://doi.org/10.5194/amt-15-605-2022, 2022
Short summary
Short summary
HALO is a recently developed lidar system that demonstrates new technologies and advanced algorithms for profiling water vapor as well as aerosol and cloud properties. The high-resolution, high-accuracy measurements have unique advantages within the suite of atmospheric instrumentation, such as directly trading water vapor measurement resolution for precision. This paper provides the methodology and first water vapor results, showing agreement with in situ and spaceborne sounder measurements.
Siqi Ma, Daniel Tong, Lok Lamsal, Julian Wang, Xuelei Zhang, Youhua Tang, Rick Saylor, Tianfeng Chai, Pius Lee, Patrick Campbell, Barry Baker, Shobha Kondragunta, Laura Judd, Timothy A. Berkoff, Scott J. Janz, and Ivanka Stajner
Atmos. Chem. Phys., 21, 16531–16553, https://doi.org/10.5194/acp-21-16531-2021, https://doi.org/10.5194/acp-21-16531-2021, 2021
Short summary
Short summary
Predicting high ozone gets more challenging as urban emissions decrease. How can different techniques be used to foretell the quality of air to better protect human health? We tested four techniques with the CMAQ model against observations during a field campaign over New York City. The new system proves to better predict the magnitude and timing of high ozone. These approaches can be extended to other regions to improve the predictability of high-O3 episodes in contemporary urban environments.
Kristopher M. Bedka, Amin R. Nehrir, Michael Kavaya, Rory Barton-Grimley, Mark Beaubien, Brian Carroll, James Collins, John Cooney, G. David Emmitt, Steven Greco, Susan Kooi, Tsengdar Lee, Zhaoyan Liu, Sharon Rodier, and Gail Skofronick-Jackson
Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, https://doi.org/10.5194/amt-14-4305-2021, 2021
Short summary
Short summary
This paper demonstrates the Doppler Aerosol WiNd (DAWN) lidar and High Altitude Lidar Observatory (HALO) measurement capabilities across a range of atmospheric conditions, compares DAWN and HALO measurements with Aeolus satellite Doppler wind lidar to gain an initial perspective of Aeolus performance, and discusses how atmospheric dynamic processes can be resolved and better understood through simultaneous observations of wind, water vapour, and aerosol profile observations.
Jia Su, M. Patrick McCormick, Matthew S. Johnson, John T. Sullivan, Michael J. Newchurch, Timothy A. Berkoff, Shi Kuang, and Guillaume P. Gronoff
Atmos. Meas. Tech., 14, 4069–4082, https://doi.org/10.5194/amt-14-4069-2021, https://doi.org/10.5194/amt-14-4069-2021, 2021
Short summary
Short summary
A new technique using a three-wavelength differential absorption lidar (DIAL) technique based on an optical parametric oscillator (OPO) laser is proposed to obtain more accurate measurements of NO2. The retrieval uncertainties in aerosol extinction using the three-wavelength DIAL technique are reduced to less than 2 % of those when using the two-wavelength DIAL technique. Hampton University (HU) lidar NO2 profiles are compared with simulated data from the WRF-Chem model, and they agree well.
Laura M. Judd, Jassim A. Al-Saadi, James J. Szykman, Lukas C. Valin, Scott J. Janz, Matthew G. Kowalewski, Henk J. Eskes, J. Pepijn Veefkind, Alexander Cede, Moritz Mueller, Manuel Gebetsberger, Robert Swap, R. Bradley Pierce, Caroline R. Nowlan, Gonzalo González Abad, Amin Nehrir, and David Williams
Atmos. Meas. Tech., 13, 6113–6140, https://doi.org/10.5194/amt-13-6113-2020, https://doi.org/10.5194/amt-13-6113-2020, 2020
Short summary
Short summary
This paper evaluates Sentinel-5P TROPOMI v1.2 NO2 tropospheric columns over New York City using data from airborne mapping spectrometers and a network of ground-based spectrometers (Pandora) collected in 2018. These evaluations consider impacts due to cloud parameters, a priori profile assumptions, and spatial and temporal variability. Overall, TROPOMI tropospheric NO2 columns appear to have a low bias in this region.
Cited articles
Aggarwal, M., Whiteway, J., Seabrook, J., Gray, L., Strawbridge, K., Liu, P., O'Brien, J., Li, S.-M., and McLaren, R.: Airborne lidar measurements of aerosol and ozone above the Canadian oil sands region, Atmos. Meas. Tech., 11, 3829–3849, https://doi.org/10.5194/amt-11-3829-2018, 2018.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15,
955–966, https://doi.org/10.1029/2000GB001382, 2001.
Bais, A. F., Zerefos, C. S., Meleti, C., Ziomas, I. C., and Tourpali, K.:
Spectral measurements of solar UVB radiation and its relations to total
ozone, SO2, and clouds, J. Geophys. Res.-Atmos., 98,
5199–5204, https://doi.org/10.1029/92jd02904, 1993.
Berkoff, T., Gronoff, G., Sullivan, J., Nino, L., Carrion, W., Twigg, L., Sparrow, J., Knepp, T., Tully, D., Chaffe, M., Babich, P., Valin, L., and Szykman, J.: Ozone Lidar Observations During the Long Island Sound Tropospheric Ozone Study, LISTOS Meeting, Albany, New York, 11 April 2019, https://www.nescaum.org/documents/listos/presentations-from-listos-meeting-albany-ny/berkoff.pdf (last access: 20 April 2022), 2019.
Brooks, I. M.: Finding Boundary Layer Top: Application of a Wavelet
Covariance Transform to Lidar Backscatter Profiles, J. Atmos. Ocean. Tech.,
20, 1092–1105, https://doi.org/10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2, 2003.
Browell, E. V., Ismail, S., and Shipley, S. T.: Ultraviolet DIAL
measurements of O3 profiles in regions of spatially inhomogeneous
aerosols, Appl. Opt., 24, 2827–2836, https://doi.org/10.1364/ao.24.002827,
1985.
Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Kittaka, C.,
Vaughan, M. A., Obland, M. D., Rogers, R. R., Cook, A. L., Harper, D. B.,
and Remer, L. A.: Using Airborne High Spectral Resolution Lidar Data to
Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction
Profiles, J. Geophys. Res., 115,
D00H15, https://doi.org/10.1029/2009JD012130, 2010.
Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and Froyd, K. D.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-2012, 2012.
Burton, S. P., Ferrare, R. A., Vaughan, M. A., Omar, A. H., Rogers, R. R., Hostetler, C. A., and Hair, J. W.: Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask, Atmos. Meas. Tech., 6, 1397–1412, https://doi.org/10.5194/amt-6-1397-2013, 2013.
Burton, S. P., Vaughan, M. A., Ferrare, R. A., and Hostetler, C. A.: Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data, Atmos. Meas. Tech., 7, 419–436, https://doi.org/10.5194/amt-7-419-2014, 2014.
Burton, S. P., Hair, J. W., Kahnert, M., Ferrare, R. A., Hostetler, C. A., Cook, A. L., Harper, D. B., Berkoff, T. A., Seaman, S. T., Collins, J. E., Fenn, M. A., and Rogers, R. R.: Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar, Atmos. Chem. Phys., 15, 13453–13473, https://doi.org/10.5194/acp-15-13453-2015, 2015.
Carlund, T., Kouremeti, N., Kazadzis, S., and Gröbner, J.: Aerosol optical depth determination in the UV using a four-channel precision filter radiometer, Atmos. Meas. Tech., 10, 905–923, https://doi.org/10.5194/amt-10-905-2017, 2017.
Compton, J. C., Delgado, R., Berkoff, T. A., and Hoff, R. M.: Determination
of planetary boundary layer height on short spatial and temporal scales: a
demonstration of the covariance wavelet transform in ground-based wind
profiler and lidar measurements, J. Atmos. Ocean. Tech., 30, 1566–1575,
https://doi.org/10.1175/JTECH-D-12-00116.1, 2013.
Cottle, P., Strawbridge, K., and McKendry, I.: Long-range transport of
Siberian wildfire smoke to British Columbia: Lidar observations and air
quality impacts, Atmos. Environ., 90, 71–77,
https://doi.org/10.1016/j.atmosenv.2014.03.005, 2014.
Dacic, N., Sullivan, J. T., Knowland, K. E., Wolfe, G. M., Oman, L. D.,
Berkoff, T. A., and Gronoff, G. P.: Evaluation of NASA's high-resolution
global composition simulations: Understanding a pollution event in the
Chesapeake Bay during the summer 2017 OWLETS
campaign, Atmos. Environ., 222, 117133, https://doi.org/10.1016/j.atmosenv.2019.117133,
2020.
De Young, R., Carrion, W., Ganoe, R., Pliutau, D., Gronoff, G., Berkoff, T.,
and Kuang, S.: Langley mobile ozone lidar: ozone and aerosol atmospheric
profiling for air quality research, Appl. Opt., 56,
721–730, https://doi.org/10.1364/ao.56.000721, 2017.
Dreessen, J., Sullivan, J., and Delgado, R.: Observations and impacts of
transported Canadian wildfire smoke on ozone and aerosol air quality in the
Maryland region on June 9–12, 2015, J. Air Waste Manage Assoc., 66,
842–862, https://doi.org/10.1080/10962247.2016.1161674, 2016.
Farris, B. M., Gronoff, G. P., Carrion, W., Knepp, T., Pippin, M., and Berkoff, T. A.: Demonstration of an off-axis parabolic receiver for near-range retrieval of lidar ozone profiles, Atmos. Meas. Tech., 12, 363–370, https://doi.org/10.5194/amt-12-363-2019, 2019.
Fernald, F. G.: Analysis of atmospheric lidar observations: some comments,
Appl. Optics, 23, 652–653, https://doi.org/10.1364/AO.23.000652, 1984.
Fernald, F. G., Herman, B. M., and Reagan, J. A.: Determination of aerosol
height distributions with lidar, J. Appl. Meteorol., 11,
482–489, https://doi.org/10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2, 1972.
Giannakaki, E., Balis, D. S., Amiridis, V., and Zerefos, C.: Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece, Atmos. Meas. Tech., 3, 569–578, https://doi.org/10.5194/amt-3-569-2010, 2010.
Gronoff, G., Robinson, J., Berkoff, T., Swap, R., Farris, B., Schroeder, J.,
Halliday, H. S., Knepp, T., Spinei, E., Carrion, W., and Adcock, E. E.: A
method for quantifying near range point source induced O3 titration events
using Co-located Lidar and Pandora measurements, Atmos. Environ., 204,
43–52, https://doi.org/10.1016/j.atmosenv.2019.01.052, 2019.
Gronoff, G., Berkoff, T., Knowland, K., E., Lei, L., Shook, M., Fabbri, B.,
Carrion, W., and Langford, A.: Case study of stratospheric Intrusion above
Hampton, Virginia: lidar-observation and modeling analysis, Atmos. Environ.,
118498, 1–12, https://doi.org/10.1016/j.atmosenv.2021.118498, 2021.
Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann, R., and Althausen, D.: Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke, Atmos. Chem. Phys., 18, 11847–11861, https://doi.org/10.5194/acp-18-11847-2018, 2018.
Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Ferrare, R. A.,
Mack, T. L., Welch, W., Izquierdo, L. R., and Hovis, F. E.: Airborne High
Spectral Resolution Lidar for profiling aerosol optical properties, Appl.
Optics, 47, 6734–6752, https://doi.org/10.1364/AO.47.006734, 2008.
Hung, W. T., Lu, C. H. S., Shrestha, B., Lin, H. C., Lin, C. A., Grogan, D.,
and Joseph, E.: The impacts of transported wildfire smoke aerosols on
surface air quality in New York State: A case study in summer 2018, Atmos.
Environ., 227, 117415, https://doi.org/10.1016/j.atmosenv.2020.117415, 2020.
Jin, Y., Kai, K., Kawai, K., Nagai, T., Sakai, T., Yamazaki, A., Uchiyama,
A., Batdorj, D., Sugimoto, N., and Nishizawa, T.: Ceilometer calibration for
retrieval of aerosol optical properties, J. Quant. Spectrosc. Ra., 153,
49–56, https://doi.org/10.1016/j.jqsrt.2014.10.009, 2015.
Kovalev, V. A. and Eichinger, W. E.: Elastic Lidar Theory, Practice, and
Analysis Methods, 1st edn., John Wiley & Sons Inc., Hoboken, New Jersey, USA,
https://doi.org/10.1002/0471643173, 2004.
Kuang, S., Wang, B., Newchurch, M. J., Knupp, K., Tucker, P., Eloranta, E. W., Garcia, J. P., Razenkov, I., Sullivan, J. T., Berkoff, T. A., Gronoff, G., Lei, L., Senff, C. J., Langford, A. O., Leblanc, T., and Natraj, V.: Evaluation of UV aerosol retrievals from an ozone lidar, Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020, 2020.
Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Godin-Beekmann, S., Haefele, A., Trickl, T., Payen, G., and Gabarrot, F.: Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 1: Vertical resolution, Atmos. Meas. Tech., 9, 4029–4049, https://doi.org/10.5194/amt-9-4029-2016, 2016a.
Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Godin-Beekmann, S., Haefele, A., Trickl, T., Payen, G., and Liberti, G.: Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 2: Ozone DIAL uncertainty budget, Atmos. Meas. Tech., 9, 4051–4078, https://doi.org/10.5194/amt-9-4051-2016, 2016b.
Leblanc, T., Brewer, M. A., Wang, P. S., Granados-Muñoz, M. J., Strawbridge, K. B., Travis, M., Firanski, B., Sullivan, J. T., McGee, T. J., Sumnicht, G. K., Twigg, L. W., Berkoff, T. A., Carrion, W., Gronoff, G., Aknan, A., Chen, G., Alvarez, R. J., Langford, A. O., Senff, C. J., Kirgis, G., Johnson, M. S., Kuang, S., and Newchurch, M. J.: Validation of the TOLNet lidars: the Southern California Ozone Observation Project (SCOOP), Atmos. Meas. Tech., 11, 6137–6162, https://doi.org/10.5194/amt-11-6137-2018, 2018.
Lee, S., Hwang, S. O., Kim, J., and Ahn, M. H.: Characteristics of cloud
occurrence using ceilometer measurements and its relationship to
precipitation over Seoul, Atmos. Res., 201, 46–57,
https://doi.org/10.1016/j.atmosres.2017.10.010, 2018.
Li, H., Chang, J., Xu, F., Liu, B., Liu, Z., Zhu, L., and Yang, Z.: An RBF neural network
approach for retrieving atmospheric extinction coefficients based on lidar
measurements, Appl. Phys. B,
124, 1–8, https://doi.org/10.1007/s00340-018-7055-1, 2018.
Liu, Z., Hunt, W., Vaughan, M., Hostetler, C., McGill, M., Powell,
K.,Winker, D., and Hu, Y.: Estimating random errors due to shot noise in
backscatter lidar observations, Appl. Optics, 45, 4437–4447, 2006.
Lopes, F. J. S., Landulfo, E., and Vaughan, M. A.: Evaluating CALIPSO's 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil,
Atmos. Meas. Tech., 6, 3281–3299, https://doi.org/10.5194/amt-6-3281-2013,
2013.
Moozhipurath, R. K., Kraft, L., and Skiera, B.: Evidence of
protective role of Ultraviolet-B (UVB) radiation in reducing COVID-19
deaths, Sci. Rep., 10, 17705, https://doi.org/10.1038/s41598-020-74825-z,
2020.
Müller, D., Mattis, I., Wandinger, U., Ansmann, A., Althausen, D., and Stohl, A.: Raman lidar observations of aged Siberian and
Canadian forest fire smoke in the free troposphere over Germany in 2003:
microphysical particle characterization, J. Geophys. Res., 110, D17201,
https://doi.org/10.1029/2004JD005756, 2005.
Müller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U.,
Althausen, D., and Pisani, G.: Aerosol-type-dependent lidar ratios observed
with Raman lidar, J. Geophys. Res., 112,
D16202, https://doi.org/10.1029/2006JD008292, 2007.
NASA/LARC/SD/ASDC: Aeolus CalVal HALO Aerosol and Water Vapor Profiles and Images, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/SUBORBITAL/LISTOS/DATA001, 2020.
Nehrir, A. R., Kiemle, C., Lebsock, M. D., Kirchengast, G., Buehler, S. A.,
Löhnert, U., Liu, C.-L., Hargrave, P. C., Barrera-Verdejo, M., and
Winker, D. M.: Emerging Technologies and Synergies for Airborne and
Space-Based Measurements of Water Vapor Profiles, Surv. Geophys., 38,
1445–1482, https://doi.org/10.1007/s10712-017-9448-9, 2017.
Nicolae, D., Nemuc, A., Müller, D., Talianu, C., Vasilescu, J.,
Belegante, L., and Kolgotin, A.: Characterization of fresh and aged biomass
burning events using multiwavelength Raman lidar and mass spectrometry, J.
Geophys. Res.-Atmos., 118, 2956–2965, https://doi.org/10.1002/jgrd.50324,
2013.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare,
R. A., Lee, K. P., Hostetler, C. A., Kittaka, C., Rogers, R. R., and Kuehn,
R. E.: The CALIPSO Automated Aerosol Classification and Lidar Ratio
Selection Algorithm, J. Atmos. Ocean. Tech., 26,
1994–2014, https://doi.org/10.1175/2009JTECHA1231.1, 2009.
Ortiz-Amezcua, P., Guerrero-Rascado, J. L., Granados-MunÞoz, M. J.,
Benavent-Oltra, J. A., Böckmann, C., Samaras, S., Stach-lewska, I. S.,
Janicka, L., Baars, H., Bohlmann, S., and Alados-Arboledas, L.:
Microphysical characterization of long-range transported biomass burning
particles from North America at three EARLINET stations, Atmos. Chem. Phys.,
17, 5931–5946, https://doi.org/10.5194/acp-17-5931-2017, 2017.
Phuleria, H. C., Fine, P. M., Zhu, Y. F., and Sioutas, C.: Air quality
impacts of the October 2003 Southern California wildfires, J. Geophys. Res.,
110, 1–11, https://doi.org/10.1029/2004JD004626, 2005.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005.
Rogers, H. M., Ditto, J. C., and Gentner, D. R.: Evidence for impacts on surface-level air quality in the northeastern US from long-distance transport of smoke from North American fires during the Long Island Sound Tropospheric Ozone Study (LISTOS) 2018, Atmos. Chem. Phys., 20, 671–682, https://doi.org/10.5194/acp-20-671-2020, 2020.
Russell, P. B., Swissler, T. J., and McCormick, M. P.: Methodology for error
analysis and simulation of lidar aerosol measurements, Appl. Optics, 18,
3783–3797, https://doi.org/10.1364/AO.18.003783, 1979.
Sasano, Y. and Nakane, H.: Significance of the extinction backscatter ratio
and the boundary value term in the solution for the two-component lidar
equation, Appl. Opt., 23, 1–13,
https://doi.org/10.1364/AO.23.0011_1, 1984.
Sasano, Y., Browell, E. V., and Ismail, S.: Error caused by using a constant
extinction backscattering ratio in the lidar solution, Appl. Opt., 24,
3929–3932, https://doi.org/10.1364/AO.24.003929, 1985.
Scarino, A. J., Obland, M. D., Fast, J. D., Burton, S. P., Ferrare, R. A., Hostetler, C. A., Berg, L. K., Lefer, B., Haman, C., Hair, J. W., Rogers, R. R., Butler, C., Cook, A. L., and Harper, D. B.: Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES, Atmos. Chem. Phys., 14, 5547–5560, https://doi.org/10.5194/acp-14-5547-2014, 2014.
Schoennagel, T., Balch, J. K., Brenkert-Smith, H., Dennison, P. E., Harvey,
B. J., Krawchuk, M. A., Mietkiewicz, N., Morgan, P., Moritz, M. A., Rasker,
R., Turner, M. G., and Whitlock, C.: Adapt to more wildfire in western North
American forests as climate changes, P. Natl. Acad. Sci. USA, 114,
4582–4590, https://doi.org/10.1073/pnas.1617464114, 2017.
Strawbridge, K. B., Travis, M. S., Firanski, B. J., Brook, J. R., Staebler, R., and Leblanc, T.: A fully autonomous ozone, aerosol and nighttime water vapor lidar: a synergistic approach to profiling the atmosphere in the Canadian oil sands region, Atmos. Meas. Tech., 11, 6735–6759, https://doi.org/10.5194/amt-11-6735-2018, 2018.
Sugimoto, N. and Lee, C. H.: Characteristics of dust aerosols inferred
from lidar depolarization measurements at two wavelengths, Appl. Optics,
45, 7468–7474, 2006.
Sullivan, J. T., Berkoff, T., Gronoff, G., Knepp, T., Pippin, M., Allen, D.,
Twigg, L., Swap, R., Tzortziou, M., Thompson, A. M., Stauffer, R. M., Wolfe,
G. M., Flynn, J., Pusede, S. E., Judd, L. M., Moore, W., Baker, B. D.,
Al-Saadi, J., and McGee, T. J.: The Ozone Water–Land Environmental
Transition Study: An Innovative Strategy for Understanding Chesapeake Bay
Pollution Events, B. Am. Meteorol. Soc., 100,
291–306, https://doi.org/10.1175/BAMS-D-18-0025.1, 2019.
Wagner, F. and Silva, A. M.: Some considerations about Ångström exponent distributions, Atmos. Chem. Phys., 8, 481–489, https://doi.org/10.5194/acp-8-481-2008, 2008.
Wandinger, U., Müller, D., Böckmann, C., Althausen, D., Matthias,
V., Bösenberg, J, Weiß, V., Fiebig, M., Wendisch, M., Stohl, A., and
Ansmann, A.: Optical and microphysical characterization of biomass-burning
and industrial-pollution aerosols from multiwavelength lidar and aircraft
measurements, J. Geophys. Res., 107,
8125, https://doi.org/10.1029/2000JD000202, 2002.
Wang, Y., Zhao, C., Dong, Z., Li, Z., Hu, S., Chen, T., and Wang, Y.:
Improved retrieval of cloud base heights from ceilometer using a
non-standard instrument method, Atmos. Res., 202, 148–155, https://doi.org/10.1016/j.atmosres.2017.11.021, 2018.
Wu, Y., Arapi, A., Huang, J., Gross, B., and Moshary, F.: Intra-continental
wildfire smoke transport and impact on local air quality observed by
ground-based and satellite remote sensing in New York City, Atmos. Environ.,
187, 266–281, https://doi.org/10.1016/j.atmosenv.2018.06.006, 2018.
Wu, Y., Zhao, K., Huang, J., Arend, M., Gross, B., and Moshary, F.:
Observation of heat wave effects on the urban air quality and PBL in New
York City area, Atmos. Environ., 218, 117024,
https://doi.org/10.1016/j.atmosenv.2019.117024, 2019.
Wu, Y., Nehrir, A. R., Ren, X., Dickerson, R. R., Huang, J., Stratton, P.
R., Gronoff G., Kooi S. A., Collins J. E., Beroff T. A., Lei L., Gross B.,
and Moshary, F.: Synergistic aircraft and ground observations of transported
wildfire smoke and its impact on air quality in New York City during the
summer 2018 LISTOS campaign, Sci. Total Environ., 773, 145030,
https://doi.org/10.1016/j.scitotenv.2021.145030, 2021.
Young, S. A.: Analysis of lidar backscatter profiles in optically thin
clouds, Appl. Opt., 34, 7019–7031, https://doi.org/10.1364/AO.34.007019,
1995.
Young, S. A. and Vaughan, M. A.: The retrieval of profiles of particulate
extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite
Observations (CALIPSO) data: Algorithm description, J. Atmos. Ocean. Tech.,
26, 1105–1119, https://doi.org/10.1175/2008JTECHA1221.1, 2009.
Zauscher, M. D., Wang, Y., Moore, M. J. K., Gaston, C. J., and Prather, K.
A.: Air Quality Impact and Physicochemical Aging of Biomass Burning
Aerosols during the 2007 San Diego Wildfires, Environ. Sci. Technol., 47,
7633–7643, https://doi.org/10.1021/es4004137, 2013.
Zoogman, P., Liu, X., Suleiman, R., Pennington, W., Flittner, D., Al-Saadi,
J., Hilton, B., Nicks, D., Newchurch, M., Carr, J., Janz, S., Andraschko,
M., Arola, A., Baker, B., Canova, B., Miller,C. C., Cohen, R., Davis, J.,
Dussault, M., Edwards, D., Fishman, J., Ghulam, A., Abad, G. G., Grutter,
M., Herman, J., Houck, J., Jacob, D., Joiner, J., Kerridge, B., Kim, J.,
Krotkov, N., Lamsal, L., Li, C., Lindfors, A., Martin, R., McElroy, C.,
McLinden, C., Natraj, V., Neil, D., Nowlan, C., O'Sullivan, E., Palmer, P.,
Pierce, R., Pippin, M., Saiz-Lopez, A., Spurr, R., Szykman, J., Torres, O.,
Veefkind, J., Veihelmann, B., Wang, H., Wang, J., and Chance, K.:
Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant.
Spectrosc. Ra., 186, 17–39, https://doi.org/10.1016/j.jqsrt.2016.05.008,
2017.
Short summary
Aerosol extinction in the UVB (280–315 nm) is difficult to retrieve using simple lidar techniques due to the lack of lidar ratios at those wavelengths. The 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City region provided the opportunity to characterize the lidar ratio for UVB aerosol retrieval for the Langley Mobile Ozone Lidar (LMOL). A 292 nm aerosol product comparison between the NASA Langley High Altitude Lidar Observatory (HALO) and LMOL was also carried out.
Aerosol extinction in the UVB (280–315 nm) is difficult to retrieve using simple lidar...