Articles | Volume 15, issue 10
https://doi.org/10.5194/amt-15-3213-2022
https://doi.org/10.5194/amt-15-3213-2022
Research article
 | 
30 May 2022
Research article |  | 30 May 2022

A phase separation inlet for droplets, ice residuals, and interstitial aerosol particles

Libby Koolik, Michael Roesch, Carmen Dameto de Espana, Christopher Nathan Rapp, Lesly J. Franco Deloya, Chuanyang Shen, A. Gannet Hallar, Ian B. McCubbin, and Daniel J. Cziczo

Related authors

A Phase Separation Inlet for Droplets, Ice Residuals, and Interstitial Aerosols
Libby Koolik, Michael Roesch, Lesly J. Franco Deloya, Chuanyang Shen, A. Gannet Hallar, Ian B. McCubbin, and Daniel J. Cziczo
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-42,https://doi.org/10.5194/amt-2020-42, 2020
Revised manuscript not accepted
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Instruments and Platforms
Development and preliminary testing of a temporally controllable weather modification rocket with spatial seeding capacity
Xiaobo Dong, Xiaoqing Wang, Yongde Liu, and Xiaorong Wang
Atmos. Meas. Tech., 17, 5551–5559, https://doi.org/10.5194/amt-17-5551-2024,https://doi.org/10.5194/amt-17-5551-2024, 2024
Short summary
Design and evaluation of BOOGIE: a collector for the analysis of cloud composition and processes: Biological, Organics, Oxidants, soluble Gases, inorganic Ions and metal Elements
Mickael Vaitilingom, Christophe Bernard, Mickael Ribeiro, Christophe Berthod, Angelica Bianco, and Laurent Deguillaume
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-95,https://doi.org/10.5194/amt-2024-95, 2024
Revised manuscript accepted for AMT
Short summary
A lightweight holographic imager for cloud microphysical studies from an untethered balloon
Thomas Edward Chambers, Iain Murray Reid, and Murray Hamilton
Atmos. Meas. Tech., 17, 3237–3253, https://doi.org/10.5194/amt-17-3237-2024,https://doi.org/10.5194/amt-17-3237-2024, 2024
Short summary
Identifying the seeding signature in cloud particles from hydrometeor residuals
Mahen Konwar, Benjamin Werden, Edward C. Fortner, Sudarsan Bera, Mercy Varghese, Subharthi Chowdhuri, Kurt Hibert, Philip Croteau, John Jayne, Manjula Canagaratna, Neelam Malap, Sandeep Jayakumar, Shivsai A. Dixit, Palani Murugavel, Duncan Axisa, Darrel Baumgardner, Peter F. DeCarlo, Doug R. Worsnop, and Thara Prabhakaran
Atmos. Meas. Tech., 17, 2387–2400, https://doi.org/10.5194/amt-17-2387-2024,https://doi.org/10.5194/amt-17-2387-2024, 2024
Short summary
Design and rocket deployment of a trackable pseudo-Lagrangian drifter-based meteorological probe into the Lawrence/Linwood EF4 tornado and mesocyclone on 28 May 2019
Reed Timmer, Mark Simpson, Sean Schofer, and Curtis Brooks
Atmos. Meas. Tech., 17, 943–960, https://doi.org/10.5194/amt-17-943-2024,https://doi.org/10.5194/amt-17-943-2024, 2024
Short summary

Cited articles

3D Printing with Desktop Stereolithography: An Introduction for Professional Users, https://archive-media.formlabs.com/upload/Intro-sla-whitepaper-04.pdf, last access: 9 August 2020. 
Abel, S. J., Cotton, R. J., Barrett, P. A., and Vance, A. K.: A comparison of ice water content measurement techniques on the FAAM BAe-146 aircraft, Atmos. Meas. Tech., 7, 3007–3022, https://doi.org/10.5194/amt-7-3007-2014, 2014. 
Bartolo, P. J. (Ed.): Stereolithography: Materials, Processes, and Applications, Springer US, 340 pp., https://doi.org/10.1007/978-0-387-92904-0, 2011. 
Baustian, K. J., Cziczo, D. J., Wise, M. E., Pratt, K. A., Kulkarni, G., Hallar, A. G., and Tolbert, M. A.: Importance of aerosol particle composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach, J. Geophys. Res., 117, D06217, https://doi.org/10.1029/2011JD016784, 2012. 
Bhushan, B. and Caspers, M.: An overview of additive manufacturing (3D printing) for microfabrication, Microsyst. Technol., 23, 1117–1124, https://doi.org/10.1007/s00542-017-3342-8, 2017. 
Download
Short summary
A new inlet for studying the small particles, droplets, and ice crystals that constitute mixed-phase clouds has been constructed and is described here. This new inlet was tested in the laboratory. We present the performance of the new inlet to demonstrate its capability of separating ice, droplets, and small particles.