Articles | Volume 15, issue 14
https://doi.org/10.5194/amt-15-4171-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-4171-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrieval of the sea spray aerosol mode from submicron particle size distributions and supermicron scattering during LASIC
Jeramy L. Dedrick
Scripps Institution of Oceanography, University of California, San
Diego, La Jolla, California, USA
Georges Saliba
Pacific Northwest National Laboratory, Richland, Washington, USA
now at: California Air Resources Board, Sacramento, California, USA
Abigail S. Williams
Scripps Institution of Oceanography, University of California, San
Diego, La Jolla, California, USA
Scripps Institution of Oceanography, University of California, San
Diego, La Jolla, California, USA
Dan Lubin
Scripps Institution of Oceanography, University of California, San
Diego, La Jolla, California, USA
Related authors
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Dan Lubin, Xun Zou, Johannes Mülmenstädt, Andrew Vogelmann, Maria Cadeddu, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2768, https://doi.org/10.5194/egusphere-2025-2768, 2025
Short summary
Short summary
The US Department of Energy Atmospheric Radiation Measurement (ARM) North Slope of Alaska Facility has measured solar and atmospheric infrared radiation, and cloud properties, for the past 25 years. Statistically significant trends are emerging, including increasing infrared radiation due to a warming atmosphere, and decreasing solar radiation due to increasing liquid water content in clouds. These trends are influenced by large-scale atmospheric circulation patterns and by atmospheric rivers.
Israel Silber, Jennifer M. Comstock, Michael R. Kieburtz, and Lynn M. Russell
Earth Syst. Sci. Data, 17, 29–42, https://doi.org/10.5194/essd-17-29-2025, https://doi.org/10.5194/essd-17-29-2025, 2025
Short summary
Short summary
We present ARMTRAJ, a set of multipurpose trajectory datasets, which augments cloud, aerosol, and boundary layer studies utilizing the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility data. ARMTRAJ data include ensemble run statistics that enhance consistency and serve as uncertainty metrics for air mass coordinates and state variables. ARMTRAJ will soon become a near real-time product that will accompany past, ongoing, and future ARM deployments.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Karam Mansour, Stefano Decesari, Darius Ceburnis, Jurgita Ovadnevaite, Lynn M. Russell, Marco Paglione, Laurent Poulain, Shan Huang, Colin O'Dowd, and Matteo Rinaldi
Earth Syst. Sci. Data, 16, 2717–2740, https://doi.org/10.5194/essd-16-2717-2024, https://doi.org/10.5194/essd-16-2717-2024, 2024
Short summary
Short summary
We propose and evaluate machine learning predictive algorithms to model freshly formed biogenic methanesulfonic acid and sulfate concentrations. The long-term constructed dataset covers the North Atlantic at an unprecedented resolution. The improved parameterization of biogenic sulfur aerosols at regional scales is essential for determining their radiative forcing, which could help further understand marine-aerosol–cloud interactions and reduce uncertainties in climate models
Kristopher Scarci, Ryan C. Scott, Madison L. Ghiz, Andrew M. Vogelmann, and Dan Lubin
Atmos. Chem. Phys., 24, 6681–6697, https://doi.org/10.5194/acp-24-6681-2024, https://doi.org/10.5194/acp-24-6681-2024, 2024
Short summary
Short summary
We demonstrate what can be learned about an Antarctic region's climate from basic atmospheric irradiance measurements made by broadband and filter radiometers, instruments suitable for deployment at very remote sites, assisted by meteorological reanalysis and satellite remote sensing. Analysis of shortwave and longwave irradiance reveals subtle contrasts between meteorological regimes favoring cloud ice versus liquid water, relevant to onset versus inhibition of surface melt over ice shelves.
Emily Y. Li, Amir Yazdani, Ann M. Dillner, Guofeng Shen, Wyatt M. Champion, James J. Jetter, William T. Preston, Lynn M. Russell, Michael D. Hays, and Satoshi Takahama
Atmos. Meas. Tech., 17, 2401–2413, https://doi.org/10.5194/amt-17-2401-2024, https://doi.org/10.5194/amt-17-2401-2024, 2024
Short summary
Short summary
Infrared spectroscopy is a cost-effective measurement technique to characterize the chemical composition of organic aerosol emissions. This technique differentiates the organic matter emission factor from different fuel sources by their characteristic functional groups. Comparison with collocated measurements suggests that polycyclic aromatic hydrocarbon concentrations in emissions estimated by conventional chromatography may be substantially underestimated.
Ryan N. Farley, Sonya Collier, Christopher D. Cappa, Leah R. Williams, Timothy B. Onasch, Lynn M. Russell, Hwajin Kim, and Qi Zhang
Atmos. Chem. Phys., 23, 15039–15056, https://doi.org/10.5194/acp-23-15039-2023, https://doi.org/10.5194/acp-23-15039-2023, 2023
Short summary
Short summary
Soot particles, also known as black carbon (BC), have important implications for global climate and regional air quality. After the particles are emitted, BC can be coated with other material, impacting the aerosol properties. We selectively measured the composition of particles containing BC to explore their sources and chemical transformations in the atmosphere. We focus on a persistent, multiday fog event in order to study the effects of chemical reactions occurring within liquid droplets.
Veronica Z. Berta, Lynn M. Russell, Derek J. Price, Chia-Li Chen, Alex K. Y. Lee, Patricia K. Quinn, Timothy S. Bates, Thomas G. Bell, and Michael J. Behrenfeld
Atmos. Chem. Phys., 23, 2765–2787, https://doi.org/10.5194/acp-23-2765-2023, https://doi.org/10.5194/acp-23-2765-2023, 2023
Short summary
Short summary
Amines are compounds emitted from a variety of marine and continental sources and were measured by aerosol mass spectrometry and Fourier transform infrared spectroscopy during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) cruises. Secondary continental and primary marine sources of amines were identified by comparisons to tracers. The results show that the two methods are complementary for investigating amines in the marine environment.
Francesca Gallo, Kevin J. Sanchez, Bruce E. Anderson, Ryan Bennett, Matthew D. Brown, Ewan C. Crosbie, Chris Hostetler, Carolyn Jordan, Melissa Yang Martin, Claire E. Robinson, Lynn M. Russell, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Armin Wisthaler, Luke D. Ziemba, and Richard H. Moore
Atmos. Chem. Phys., 23, 1465–1490, https://doi.org/10.5194/acp-23-1465-2023, https://doi.org/10.5194/acp-23-1465-2023, 2023
Short summary
Short summary
We integrate in situ ship- and aircraft-based measurements of aerosol, trace gases, and meteorological parameters collected during the NASA North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) field campaigns in the western North Atlantic Ocean region. A comprehensive characterization of the vertical profiles of aerosol properties under different seasonal regimes is provided for improving the understanding of aerosol key processes and aerosol–cloud interactions in marine regions.
Jerome D. Fast, David M. Bell, Gourihar Kulkarni, Jiumeng Liu, Fan Mei, Georges Saliba, John E. Shilling, Kaitlyn Suski, Jason Tomlinson, Jian Wang, Rahul Zaveri, and Alla Zelenyuk
Atmos. Chem. Phys., 22, 11217–11238, https://doi.org/10.5194/acp-22-11217-2022, https://doi.org/10.5194/acp-22-11217-2022, 2022
Short summary
Short summary
Recent aircraft measurements from the HI-SCALE campaign conducted over the Southern Great Plains (SGP) site in Oklahoma are used to quantify spatial variability of aerosol properties in terms of grid spacings typically used by weather and climate models. Surprisingly large horizontal gradients in aerosol properties were frequently observed in this rural area. This spatial variability can be used as an uncertainty range when comparing surface point measurements with model predictions.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Madison L. Ghiz, Ryan C. Scott, Andrew M. Vogelmann, Jan T. M. Lenaerts, Matthew Lazzara, and Dan Lubin
The Cryosphere, 15, 3459–3494, https://doi.org/10.5194/tc-15-3459-2021, https://doi.org/10.5194/tc-15-3459-2021, 2021
Short summary
Short summary
We investigate how melt occurs over the vulnerable ice shelves of West Antarctica and determine that the three primary mechanisms can be evaluated using archived numerical weather prediction model data and satellite imagery. We find examples of each mechanism: thermal blanketing by a warm atmosphere, radiative heating by thin clouds, and downslope winds. Our results signify the potential to make a multi-decadal assessment of atmospheric stress on West Antarctic ice shelves in a warming climate.
Kevin J. Sanchez, Gregory C. Roberts, Georges Saliba, Lynn M. Russell, Cynthia Twohy, J. Michael Reeves, Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, and Ian M. McRobert
Atmos. Chem. Phys., 21, 3427–3446, https://doi.org/10.5194/acp-21-3427-2021, https://doi.org/10.5194/acp-21-3427-2021, 2021
Short summary
Short summary
Measurements of particles and their properties were made from aircraft over the Southern Ocean. Aerosol transported from the Antarctic coast is shown to greatly enhance particle concentrations over the Southern Ocean. The occurrence of precipitation was shown to be associated with the lowest particle concentrations over the Southern Ocean. These particles are important due to their ability to enhance cloud droplet concentrations, resulting in more sunlight being reflected by the clouds.
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Short summary
North Atlantic Aerosols and Marine Ecosystems Study measurements combined with GEOS-Chem-TOMAS modeling suggest that several not-well-understood key factors control northwest Atlantic aerosol number and size. These synergetic and climate-relevant factors include particle formation near and above the marine boundary layer top, particle growth by marine secondary organic aerosol on descent, particle formation/growth related to dimethyl sulfide, sea spray aerosol, and ship emissions.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Georges Saliba, Chia-Li Chen, Savannah L. Lewis, Lynn M. Russell, Michael A. Shook, Ewan C. Crosbie, Luke D. Ziemba, Matthew D. Brown, Taylor J. Shingler, Claire E. Robinson, Elizabeth B. Wiggins, Kenneth L. Thornhill, Edward L. Winstead, Carolyn Jordan, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 21, 831–851, https://doi.org/10.5194/acp-21-831-2021, https://doi.org/10.5194/acp-21-831-2021, 2021
Short summary
Short summary
Models describing atmospheric airflow were combined with satellite measurements representative of marine phytoplankton and other meteorological variables. These combined variables were compared to measured aerosol to identify upwind influences on aerosol concentrations. Results indicate that phytoplankton production rates upwind impact the aerosol mass. Also, results suggest that the condensation of mass onto short-lived large sea spray particles may be a significant sink of aerosol mass.
Michael J. Lawler, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Derek J. Coffman, Lucia M. Upchurch, and Eric S. Saltzman
Atmos. Chem. Phys., 20, 16007–16022, https://doi.org/10.5194/acp-20-16007-2020, https://doi.org/10.5194/acp-20-16007-2020, 2020
Short summary
Short summary
This work describes new measurements of aerosol (particles) composition over the North Atlantic Ocean. It provides concentrations of polysaccharide material likely made from organisms in the surface ocean and improves our understanding of the relative importance of such fresh biogenic material compared to more recalcitrant organic carbon in forming marine organic aerosol. We aim ultimately to understand the role that ocean biology plays in cloud formation in marine regions.
Cited articles
Anderson, T. and Ogren, J.: Determining aerosol radiative properties using
the TSI 3563 integrating nephelometer, Aerosol Sci. Technol., 29,
57–69, https://doi.org/10.1080/02786829808965551, 1998.
Anderson, T., Covert, D., Marshall, S., Laucks, M., Charlson, R., Waggoner,
A., Ogren, J., Caldow, R., Holm, R., Quant, F., Sem, G., Wiedensohler, A.,
Ahlquist, N., and Bates, T.: Performance characteristics of a
high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,
J. Atmos. Ocean. Technol., 13, 967–986,
https://doi.org/10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2, 1996.
Atmospheric Radiation Measurement (ARM): Data Discovery. 2016-05-20 to 2017-10-31, ARM Mobile Facility (ASI) Ascension Island, South Atlantic Ocean; AMF1 (M1) [data set], https://adc.arm.gov/discovery/ (last access: 5 January 2022), 2017.
Ayash, T., Gong, S., and Jia, C.: Direct and indirect shortwave radiative
effects of sea salt aerosols, J. Climate, 21, 3207–3220,
https://doi.org/10.1175/2007JCLI2063.1, 2008.
Bates, T. S. and Quinn, P. K.: Project/Cruise: NAAMES1 – Nov. 2015, National Oceanic and Atmospheric Administration (NOAA) Pacific Marine Environment Laboratory (PMEL) [data set], https://saga.pmel.noaa.gov/data/download.php?cruise=NAAMES1 (last access: 18 April 2022), 2015.
Bates, T. S., Quinn, P. K., Frossard, A. A., Russell, L. M., Hakala, J., Petaja, T., Kulmala, M., Covert, D. S., Cappa, C. D., Li, S.-M., Hayden, K. L., Nuaaman, I., McLaren, R., Massoli, P., Canagaratna, M. R., Onasch, T. B., Sueper, D., Worsnop, D. R., and Keene, W. C.: Measurements of ocean derived aerosol off the coast of
California, J. Geophys. Res.-Atmos., 117, D00V15,
https://doi.org/10.1029/2012JD017588, 2012.
Behrenfeld, M., Moore, R., Hostetler, C., Graff, J., Gaube, P., Russell, L.,
Chen, G., Doney, S., Giovannoni, S., Liu, H., Proctor, C., Bolalios, L.,
Baetge, N., Davie-Martin, C., Westberry, T., Bates, T., Bell, T., Bidle, K.,
Boss, E., Brooks, S., Cairns, B., Carlson, C., Halsey, K., Harvey, E., Hu,
C., Karp-Boss, L., Kleb, M., Menden-Deuer, S., Morison, F., Quinn, P.,
Scarino, A., Anderson, B., Chowdhary, J., Crosbie, E., Ferrare, R., Haire,
J., Hu, Y., Janz, S., Redemann, J., Saltzman, E., Shook, M., Siegel, D.,
Wisthaler, A., Martine, M., and Ziemba, L.: The North Atlantic Aerosol and
Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview,
Front. Mar. Sci., 6, 122, https://doi.org/10.3389/fmars.2019.00122, 2019.
Bi, L., Lin, W., Wang, Z., Tang, X., Zhang, X., and Yi, B.: Optical Modeling
of Sea Salt Aerosols: The Effects of Nonsphericity and Inhomogeneity,
J. Geophys. Res.-Atmos., 123, 543–558,
https://doi.org/10.1002/2017JD027869, 2018.
Bluvshtein, N., Lin, P., Flores, J., Segev, L., Mazar, Y., Tas, E., Snider,
G., Weagle, C., Brown, S., Laskin, A., and Rudich, Y.: Broadband optical
properties of biomass-burning aerosol and identification of brown carbon
chromophores, J. Geophys. Res.-Atmos., 122, 5441–5456,
https://doi.org/10.1002/2016JD026230, 2017.
Bohren, C. F., Huffman, D. R., and KGaA, W. V. V. G. C. (Ed.): Absorption and
Scattering of Light by Small Particles, John Wiley & Sons, Inc, 530 pp.,
https://doi.org/10.1002/9783527618156, 1998.
Brock, C. A., Williamson, C., Kupc, A., Froyd, K. D., Erdesz, F., Wagner, N., Richardson, M., Schwarz, J. P., Gao, R.-S., Katich, J. M., Campuzano-Jost, P., Nault, B. A., Schroder, J. C., Jimenez, J. L., Weinzierl, B., Dollner, M., Bui, T., and Murphy, D. M.: Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products, Atmos. Meas. Tech., 12, 3081–3099, https://doi.org/10.5194/amt-12-3081-2019, 2019.
Bullard, R.L., Uin, J., Springston, S.R., Kuang, C., and Smith, S: Aerosol Inlet Characterization Experiment Report, United States Department of Energy Atmospheric Radiation Measurement, https://doi.org/10.2172/1355300, 2017.
Cai, Y., Montague, D., Mooiweer-Bryan, W., and Deshler, T.: Performance
characteristics of the ultra high sensitivity aerosol spectrometer for
particles between 55 and 800 nm: Laboratory and field studies, J.
Aerosol Sci., 39, 759–769, https://doi.org/10.1016/j.jaerosci.2008.04.007, 2008.
Chamaillard, K., Kleefeld, C., Jennings, S., Ceburnis, D., and O'Dowd, C.:
Light scattering properties of sea-salt aerosol particles inferred from
modeling studies and ground-based measurements, J. Quant.
Spectrosc. Ra. Transf., 101, 498–511,
https://doi.org/10.1016/j.jqsrt.2006.02.062, 2006.
Dedrick, J. L., Saliba, G., Williams, A. S., Russell, L. M., and Lubin, D.:
Retrieved Sea Spray Aerosol Fitting Parameters from LASIC and NAAMES,
https://doi.org/10.6075/J0GT5NCR, UC San Diego [data set], 2022a.
Dedrick, J. L., Saliba, G., Williams, A. S., Russell, L. M., and Lubin, D.:
Sea Spray Mode Retrieval and Mie Scattering Codes,
https://doi.org/10.6075/J0GT5NCR, UC San Diego [code], 2022b.
de Leeuw, G., Andreas, E., Anguelova, M., Fairall, C., Lewis, E., O'Dowd,
C., Schulz, M., and Schwartz, S.: PRODUCTION FLUX OF SEA SPRAY AEROSOL,
Rev. Geophys., 49, RG2001, https://doi.org/10.1029/2010RG000349, 2011.
Delene, D. and Ogren, J.: Variability of aerosol optical properties at four
North American surface monitoring sites, J. Atmos.
Sci., 59, 1135–1150, https://doi.org/10.1175/1520-0469(2002)059<1135:VOAOPA>2.0.CO;2, 2002.
DeMott, P., Hill, T., McCluskey, C., Prather, K., Collins, D., Sullivan, R.,
Ruppel, M., Mason, R., Irish, V., Lee, T., Hwang, C., Rhee, T., Snider, J.,
McMeeking, G., Dhaniyala, S., Lewis, E., Wentzell, J., Abbatt, J., Lee, C.,
Sultana, C., Ault, A., Axson, J., Martinez, M., Venero, I., Santos-Figueroa,
G., Stokes, M., Deane, G., Mayol-Bracero, O., Grassian, V., Bertram, T.,
Bertram, A., Moffett, B., and Franc, G.: Sea spray aerosol as a unique
source of ice nucleating particles, P. Natl. Acad.
Sci. USA, 113, 5797–5803,
https://doi.org/10.1073/pnas.1514034112, 2016.
Denjean, C., Cassola, F., Mazzino, A., Triquet, S., Chevaillier, S., Grand, N., Bourrianne, T., Momboisse, G., Sellegri, K., Schwarzenbock, A., Freney, E., Mallet, M., and Formenti, P.: Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean, Atmos. Chem. Phys., 16, 1081–1104, https://doi.org/10.5194/acp-16-1081-2016, 2016.
Denjean, C., Bourrianne, T., Burnet, F., Mallet, M., Maury, N., Colomb, A., Dominutti, P., Brito, J., Dupuy, R., Sellegri, K., Schwarzenboeck, A., Flamant, C., and Knippertz, P.: Overview of aerosol optical properties over southern West Africa from DACCIWA aircraft measurements, Atmos. Chem. Phys., 20, 4735–4756, https://doi.org/10.5194/acp-20-4735-2020, 2020.
Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., Journet, E., Nowak, S., Andreae, M. O., Kandler, K., Saeed, T., Piketh, S., Seibert, D., Williams, E., and Doussin, J.-F.: Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content, Atmos. Chem. Phys., 19, 15503–15531, https://doi.org/10.5194/acp-19-15503-2019, 2019.
Feng, L., Shen, H., Zhu, Y., Gao, H., and Yao, X.: Insight into Generation
and Evolution of Sea-Salt Aerosols from Field Measurements in Diversified
Marine and Coastal Atmospheres, Sci. Rep., 7, 41260, https://doi.org/10.1038/srep41260, 2017.
Frie, A. and Bahreini, R.: Refractive index confidence explorer (RICE): A
tool for propagating uncertainties through complex refractive index
retrievals from aerosol particles, Aerosol Sci. Technol., 55,
703–717, https://doi.org/10.1080/02786826.2021.1895428, 2021.
Frossard, A., Russell, L., Burrows, S., Elliott, S., Bates, T., and Quinn,
P.: Sources and composition of submicron organic mass in marine aerosol
particles, J. Geophys. Res.-Atmos., 119, 12977–13003,
https://doi.org/10.1002/2014JD021913, 2014.
Fuentes, E., Coe, H., Green, D., de Leeuw, G., and McFiggans, G.: On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol – Part 1: Source fluxes, Atmos. Chem. Phys., 10, 9295–9317, https://doi.org/10.5194/acp-10-9295-2010, 2010.
Gasso, S., Hegg, D., Covert, D., Collins, D., Noone, K., Ostrom, E., Schmid,
B., Russell, P., Livingston, J., Durkee, P., and Jonsson, H.: Influence of
humidity on the aerosol scattering coefficient and its effect on the
upwelling radiance during ACE-2, Tellus B – Chem. Phys.
Meteorol., 52, 546–567, https://doi.org/10.1034/j.1600-0889.2000.00055.x, 2000.
Gong, S.: A parameterization of sea-salt aerosol source function for sub-
and super-micron particles, Global Biogeochem. Cy., 17, 1097,
https://doi.org/10.1029/2003GB002079, 2003.
Grythe, H., Ström, J., Krejci, R., Quinn, P., and Stohl, A.: A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements, Atmos. Chem. Phys., 14, 1277–1297, https://doi.org/10.5194/acp-14-1277-2014, 2014.
Haywood, J., Francis, P., Osborne, S., Glew, M., Loeb, N., Highwood, E.,
Tanre, D., Myhre, G., Formenti, P., and Hirst, E.: Radiative properties and
direct radiative effect of Saharan dust measured by the C-130 aircraft
during SHADE: 1. Solar spectrum, J. Geophys.
Res.-Atmos., 108, 8577, https://doi.org/10.1029/2002JD002687, 2003.
Horowitz, H., Holmes, C., Wright, A., Sherwen, T., Wang, X., Evans, M.,
Huang, J., Jaegle, L., Chen, Q., Zhai, S., and Alexander, B.: Effects of Sea
Salt Aerosol Emissions for Marine Cloud Brightening on Atmospheric
Chemistry: Implications for Radiative Forcing, Geophys. Res. Lett.,
47, e2019GL085838, https://doi.org/10.1029/2019GL085838, 2020.
Howell, S. G., Freitag, S., Dobracki, A., Smirnow, N., and Sedlacek III, A. J.: Undersizing of aged African biomass burning aerosol by an ultra-high-sensitivity aerosol spectrometer, Atmos. Meas. Tech., 14, 7381–7404, https://doi.org/10.5194/amt-14-7381-2021, 2021.
Humphries, R. S., Keywood, M. D., Gribben, S., McRobert, I. M., Ward, J. P., Selleck, P., Taylor, S., Harnwell, J., Flynn, C., Kulkarni, G. R., Mace, G. G., Protat, A., Alexander, S. P., and McFarquhar, G.: Southern Ocean latitudinal gradients of cloud condensation nuclei, Atmos. Chem. Phys., 21, 12757–12782, https://doi.org/10.5194/acp-21-12757-2021, 2021.
Hussein, T., Dal Maso, M., Petaja, T., Koponen, I., Paatero, P., Aalto, P.,
Hameri, K., and Kulmala, M.: Evaluation of an automatic algorithm for
fitting the particle number size distributions, Boreal Environ. Res.,
10, 337–355, 2005.
Kassianov, E., Berg, L., Pekour, M., Barnard, J., Chand, D., Flynn, C.,
Ovchinnikov, M., Sedlacek, A., Schmid, B., Shilling, J., Tomlinson, J., and
Fast, J.: Airborne Aerosol in Situ Measurements during TCAP: A Closure Study
of Total Scattering, Atmosphere, 6, 1069–1101, https://doi.org/10.3390/atmos6081069, 2015.
Keene, W., Maring, H., Maben, J., Kieber, D., Pszenny, A., Dahl, E.,
Izaguirre, M., Davis, A., Long, M., Zhou, X., Smoydzin, L., and Sander, R.:
Chemical and physical characteristics of nascent aerosols produced by
bursting bubbles at a model air-sea interface, J. Geophys.
Res.-Atmos., 112, D21202, https://doi.org/10.1029/2007JD008464, 2007.
Khlystov, A., Stanier, C., and Pandis, S.: An algorithm for combining
electrical mobility and aerodynamic size distributions data when measuring
ambient aerosol, Aerosol Sci. Technol., 38, 229–238,
https://doi.org/10.1080/02786820390229543, 2004.
Kishcha, P., da Silva, A., Starobinets, B., Long, C., Kalashnikova, O., and
Alpert, P.: Saharan dust as a causal factor of hemispheric asymmetry in
aerosols and cloud cover over the tropical Atlantic Ocean, Int.
J. Remote Sens., 36, 3423–3445, https://doi.org/10.1080/01431161.2015.1060646,
2015.
Kleefeld, C., O'Dowd, C., O'Reilly, S., Jennings, S., Aalto, P., Becker, E.,
Kunz, G., and de Leeuw, G.: Relative contribution of submicron and
supermicron particles to aerosol light scattering in the marine boundary
layer, J. Geophys. Res.-Atmos., 107, 8103, https://doi.org/10.1029/2000JD000262, 2002.
Kupc, A., Williamson, C., Wagner, N. L., Richardson, M., and Brock, C. A.: Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign, Atmos. Meas. Tech., 11, 369–383, https://doi.org/10.5194/amt-11-369-2018, 2018.
Lewis, E. R. and Schwartz, S. E., and Union, A. G. (Ed.): Sea Salt Aerosol
Production: Mechanisms, Methods, Measurements and Models, Geophysical
Monograph Series, American Geophysical Union, 413 pp., https://doi.org/10.1029/GM152, 2004.
Liu, S., Liu, C., Froyd, K., Schill, G., Murphy, D., Bui, T., Dean-Day, J.,
Weinzierl, B., Dollner, M., Diskin, G., Chen, G., and Gao, R.: Sea spray
aerosol concentration modulated by sea surface temperature, P. Natl. Acad. Sci. USA, 118, e2020583118,
https://doi.org/10.1073/pnas.2020583118, 2021.
Lv, M., Wang, Z., Li, Z., Luo, T., Ferrare, R., Liu, D., Wu, D., Mao, J.,
Wan, B., Zhang, F., and Wang, Y.: Retrieval of Cloud Condensation Nuclei
Number Concentration Profiles From Lidar Extinction and Backscatter Data,
J. Geophys. Res.-Atmos., 123, 6082–6098,
https://doi.org/10.1029/2017JD028102, 2018.
Ma, X., von Salzen, K., and Li, J.: Modelling sea salt aerosol and its direct and indirect effects on climate, Atmos. Chem. Phys., 8, 1311–1327, https://doi.org/10.5194/acp-8-1311-2008, 2008.
Mätzler, C: MATLAB Functions for Mie Scattering and Absorption, Institut für Angewandte Physik, Bern, Switzerland, Research Report No. 2002-08, 26 pp., 2002.
Mie, G.: Articles on the optical characteristics of turbid tubes, especially
colloidal metal solutions, Ann. Phys., 25, 377–445,
https://doi.org/10.1002/andp.19083300302, 1908.
Miller, M., Nitschke, K., Ackerman, T., Ferrell, W., Hickmon, N., Ivey, M.,
Turner, D., and Ellingson, R.: The ARM Mobile Facilities, Atmospheric
Radiation Measurement (Arm) Program: the First 20 Years, 57,
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0051.1, 2016.
Miller, R. M., McFarquhar, G. M., Rauber, R. M., O'Brien, J. R., Gupta, S., Segal-Rozenhaimer, M., Dobracki, A. N., Sedlacek, A. J., Burton, S. P., Howell, S. G., Freitag, S., and Dang, C.: Observations of supermicron-sized aerosols originating from biomass burning in southern Central Africa, Atmos. Chem. Phys., 21, 14815–14831, https://doi.org/10.5194/acp-21-14815-2021, 2021.
Ming, Y. and Russell, L.: Predicted hygroscopic growth of sea salt aerosol,
J. Geophys. Res.-Atmos., 106, 28259–28274,
https://doi.org/10.1029/2001JD000454, 2001.
Modini, R. L., Harris, B., and Ristovski, Z. D.: The organic fraction of bubble-generated, accumulation mode Sea Spray Aerosol (SSA), Atmos. Chem. Phys., 10, 2867–2877, https://doi.org/10.5194/acp-10-2867-2010, 2010.
Modini, R., Frossard, A., Ahlm, L., Russell, L., Corrigan, C., Roberts, G.,
Hawkins, L., Schroder, J., Bertram, A., Zhao, R., Lee, A., Abbatt, J., Lin,
J., Nenes, A., Wang, Z., Wonaschutz, A., Sorooshian, A., Noone, K., Jonsson,
H., Seinfeld, J., Toom-Sauntry, D., Macdonald, A., and Leaitch, W.: Primary
marine aerosol-cloud interactions off the coast of California, J.
Geophys. Res.-Atmos., 120, 4282–4303, https://doi.org/10.1002/2014JD022963,
2015.
Moore, R. H., Wiggins, E. B., Ahern, A. T., Zimmerman, S., Montgomery, L., Campuzano Jost, P., Robinson, C. E., Ziemba, L. D., Winstead, E. L., Anderson, B. E., Brock, C. A., Brown, M. D., Chen, G., Crosbie, E. C., Guo, H., Jimenez, J. L., Jordan, C. E., Lyu, M., Nault, B. A., Rothfuss, N. E., Sanchez, K. J., Schueneman, M., Shingler, T. J., Shook, M. A., Thornhill, K. L., Wagner, N. L., and Wang, J.: Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index, Atmos. Meas. Tech., 14, 4517–4542, https://doi.org/10.5194/amt-14-4517-2021, 2021.
Mulcahy, J., O'Dowd, C., and Jennings, S.: Aerosol optical depth in clean
marine and continental northeast Atlantic air, J. Geophys. Res., 114, D20204, https://doi.org/10.1029/2009JD011992, 2009.
Murphy, D., Anderson, J., Quinn, P., McInnes, L., Brechtel, F., Kreidenweis,
S., Middlebrook, A., Posfai, M., Thomson, D., and Buseck, P.: Influence of
sea-salt on aerosol radiative properties in the Southern Ocean marine
boundary layer, Nature, 392, 62–65, https://doi.org/10.1038/32138, 1998.
O'Dowd, C., Smith, M., Consterdine, I., and Lowe, J.: Marine aerosol,
sea-salt, and the marine sulphur cycle: A short review, Atmos.
Environ., 31, 73–80, https://doi.org/10.1016/S1352-2310(96)00106-9, 1997.
O'Dowd, C., Scannell, C., Mulcahy, J., and Jennings, S.: Wind Speed
Influences on Marine Aerosol Optical Depth, Adv. Meteorol., 2010, 830846,
https://doi.org/10.1155/2010/830846, 2010.
Ovadnevaite, J., Ceburnis, D., Canagaratna, M., Berresheim, H., Bialek, J.,
Martucci, G., Worsnop, D., and O'Dowd, C.: On the effect of wind speed on
submicron sea salt mass concentrations and source fluxes, J.
Geophys. Res.-Atmos., 117, D16201, https://doi.org/10.1029/2011JD017379, 2012.
Paulot, F., Paynter, D., Winton, M., Ginoux, P., Zhao, M., and Horowitz, L.:
Revisiting the Impact of Sea Salt on Climate Sensitivity, Geophys.
Res. Lett., 47, e2019GL085601, https://doi.org/10.1029/2019GL085601, 2020.
Pennypacker, S. and Wood, R.: A Case Study in Low Aerosol Number
Concentrations Over the Eastern North Atlantic: Implications for Pristine
Conditions in the Remote Marine Boundary Layer, J. Geophys.
Res.-Atmos., 122, 12393–12415, https://doi.org/10.1002/2017JD027493, 2017.
Pennypacker, S., Diamond, M., and Wood, R.: Ultra-clean and smoky marine boundary layers frequently occur in the same season over the southeast Atlantic, Atmos. Chem. Phys., 20, 2341–2351, https://doi.org/10.5194/acp-20-2341-2020, 2020.
Prather, K., Bertram, T., Grassian, V., Deane, G., Stokes, M., DeMott, P.,
Aluwihare, L., Palenik, B., Azam, F., Seinfeld, J., Moffet, R., Molina, M.,
Cappa, C., Geiger, F., Roberts, G., Russell, L., Ault, A., Baltrusaitis, J.,
Collins, D., Corrigan, C., Cuadra-Rodriguez, L., Ebben, C., Forestieri, S.,
Guasco, T., Hersey, S., Kim, M., Lambert, W., Modini, R., Mui, W., Pedler,
B., Ruppel, M., Ryder, O., Schoepp, N., Sullivan, R., and Zhao, D.: Bringing
the ocean into the laboratory to probe the chemical complexity of sea spray
aerosol, P. Natl. Acad. Sci. USA, 110, 7550–7555, https://doi.org/10.1073/pnas.1300262110, 2013.
Quinn, P., Coffman, D., Kapustin, V., Bates, T., and Covert, D.: Aerosol
optical properties in the marine boundary layer during the First Aerosol
Characterization Experiment (ACE 1) and the underlying chemical and physical
aerosol properties, J. Geophys. Res.-Atmos., 103,
16547–16563, https://doi.org/10.1029/97JD02345, 1998.
Quinn, P., Coffman, D., Johnson, J., Upchurch, L., and Bates, T.: Small
fraction of marine cloud condensation nuclei made up of sea spray aerosol,
Nat. Geosci., 10, 674–+, https://doi.org/10.1038/NGEO3003, 2017.
Randles, C., Russell, L., and Ramaswamy, V.: Hygroscopic and optical
properties of organic sea salt aerosol and consequences for climate forcing,
Geophys. Res. Lett., 31, L16108, https://doi.org/10.1029/2004GL020628, 2004.
Russell, L., Huebert, B., Flagan, R., and Seinfeld, J.: Characterization of
submicron aerosol size distributions from time-resolved measurements in the
Atlantic Stratocumulus Transition Experiment Marine Aerosol and Gas
Exchange, J. Geophys. Res.-Atmos., 101, 4469–4478,
https://doi.org/10.1029/95JD01372, 1996a.
Russell, L., Zhang, S., Flagan, R., Seinfeld, J., Stolzenburg, M., and
Caldow, R.: Radially classified aerosol detector for aircraft-based
submicron aerosol measurements, J. Atmos. Ocean.
Technol., 13, 598–609, https://doi.org/10.1175/1520-0426(1996)013<0598:RCADFA>2.0.CO;2, 1996b.
Russell, L., Hawkins, L., Frossard, A., Quinn, P., and Bates, T.:
Carbohydrate-like composition of submicron atmospheric particles and their
production from ocean bubble bursting, P. Natl. Acad. Sci. USA, 107, 6652–6657, https://doi.org/10.1073/pnas.0908905107, 2010.
Russell, L. M., Chen, C., Betha, R., Price, D. J., and Lewis, S.: NAAMES1 Research Cruise Aerosol Measurements (2015), in: Aerosol Particle Chemical and Physical Measurements on the 2015, 2016, 2017, and 2018 North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) Research Cruises, UC San Diego Library Digital Collections, [data set], https://doi.org/10.6075/J0736P3J, 2018.
Saliba, G., Chen, C., Lewis, S., Russell, L., Rivellini, L., Lee, A., Quinn,
P., Bates, T., Haentjens, N., Boss, E., Karp-Boss, L., Baetge, N., Carlson,
C., and Behrenfeld, M.: Factors driving the seasonal and hourly variability
of sea-spray aerosol number in the North Atlantic, P.
Natl. Acad. Sci. USA, 116,
20309–20314, https://doi.org/10.1073/pnas.1907574116, 2019.
Saliba, G., Chen, C., Lewis, S., Russell, L., Quinn, P., Bates, T., Bell,
T., Lawler, M., Saltzman, E., Sanchez, K., Moore, R., Shook, M., Rivellini,
L., Lee, A., Baetge, N., Carlson, C., and Behrenfeld, M.: Seasonal
Differences and Variability of Concentrations, Chemical Composition, and
Cloud Condensation Nuclei of Marine Aerosol Over the North Atlantic, J. Geophys. Res.-Atmos., 125, e2020JD033145, https://doi.org/10.1029/2020JD033145, 2020.
Salter, M., Nilsson, E., Butcher, A., and Bilde, M.: On the seawater
temperature dependence of the sea spray aerosol generated by a continuous
plunging jet, J. Geophys. Res.-Atmos., 119, 9052–9072,
https://doi.org/10.1002/2013JD021376, 2014.
Salter, M. E., Zieger, P., Acosta Navarro, J. C., Grythe, H., Kirkevåg, A., Rosati, B., Riipinen, I., and Nilsson, E. D.: An empirically derived inorganic sea spray source function incorporating sea surface temperature, Atmos. Chem. Phys., 15, 11047–11066, https://doi.org/10.5194/acp-15-11047-2015, 2015.
Sanchez, K. J., Roberts, G. C., Saliba, G., Russell, L. M., Twohy, C., Reeves, J. M., Humphries, R. S., Keywood, M. D., Ward, J. P., and McRobert, I. M.: Measurement report: Cloud processes and the transport of biological emissions affect southern ocean particle and cloud condensation nuclei concentrations, Atmos. Chem. Phys., 21, 3427–3446, https://doi.org/10.5194/acp-21-3427-2021, 2021.
Schmale, J., Sharma, S., Decesari, S., Pernov, J., Massling, A., Hansson, H.-C., von Salzen, K., Skov, H., Andrews, E., Quinn, P. K., Upchurch, L. M., Eleftheriadis, K., Traversi, R., Gilardoni, S., Mazzola, M., Laing, J., and Hopke, P.: Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories, Atmos. Chem. Phys., 22, 3067–3096, https://doi.org/10.5194/acp-22-3067-2022, 2022.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, John Wiley & Sons, ISBN: 9780471720171, New York, USA, 2006.
Sellegri, K., O'Dowd, C., Yoon, Y., Jennings, S., and de Leeuw, G.:
Surfactants and submicron sea spray generation, J. Geophys.
Res.-Atmos., 111, D22215, https://doi.org/10.1029/2005JD006658, 2006.
Shen, Y., Virkkula, A., Ding, A., Luoma, K., Keskinen, H., Aalto, P. P., Chi, X., Qi, X., Nie, W., Huang, X., Petäjä, T., Kulmala, M., and Kerminen, V.-M.: Estimating cloud condensation nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization, Atmos. Chem. Phys., 19, 15483–15502, https://doi.org/10.5194/acp-19-15483-2019, 2019.
Swap, R., Garstang, M., Macko, S., Tyson, P., Maenhaut, W., Artaxo, P.,
Kallberg, P., and Talbot, R.: The long-range transport of southern African
aerosols the tropical South Atlantic, J. Geophys.
Res.-Atmos., 101, 23777–23791, https://doi.org/10.1029/95JD01049, 1996.
Tang, I., Tridico, A., and Fung, K.: Thermodynamic and optical properties of
sea salt aerosols, J. Geophys. Res.-Atmos., 102,
23269–23275, https://doi.org/10.1029/97JD01806, 1997.
Testa, B., Hill, T., Marsden, N., Barry, K., Hume, C., Bian, Q., Uetake, J.,
Hare, H., Perkins, R., Mohler, O., Kreidenweis, S., and DeMott, P.: Ice
Nucleating Particle Connections to Regional Argentinian Land Surface
Emissions and Weather During the Cloud, Aerosol, and Complex Terrain
Interactions Experiment, J. Geophys. Res.-Atmos., 126, e2021JD035186,
https://doi.org/10.1029/2021JD035186, 2021.
Uin, J.: Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) instrument
handbook, United States Department of Energy Atmospheric Radiation Measurement, Technical Report No. DOE/SC-ARM-TR-163, 17 pp., https://doi.org/10.2172/1251410, 2016.
Uin, J., Aiken, A., Dubey, M., Kuang, C., Pekour, M., Salwen, C., Sedlacek,
A., Senum, G., Smith, S., Wang, J., Watson, T., and Springston, S.:
Atmospheric Radiation Measurement (ARM) Aerosol Observing Systems (AOS) for
Surface-Based In Situ Atmospheric Aerosol and Trace Gas Measurements,
J. Atmos. Ocean. Technol., 36, 2429–2447,
https://doi.org/10.1175/JTECH-D-19-0077.1, 2019.
Veselovskii, I., Kolgotin, A., Griaznov, V., Muller, D., Wandinger, U., and
Whiteman, D.: Inversion with regularization for the retrieval of
tropospheric aerosol parameters from multiwavelength lidar sounding, Appl.
Opt., 41, 3685–3699, https://doi.org/10.1364/AO.41.003685, 2002.
Virkkula, A., Teinilä, K., Hillamo, R., Kerminen, V.-M., Saarikoski, S., Aurela, M., Viidanoja, J., Paatero, J., Koponen, I. K., and Kulmala, M.: Chemical composition of boundary layer aerosol over the Atlantic Ocean and at an Antarctic site, Atmos. Chem. Phys., 6, 3407–3421, https://doi.org/10.5194/acp-6-3407-2006, 2006.
Viskari, T., Asmi, E., Virkkula, A., Kolmonen, P., Petäjä, T., and Järvinen, H.: Estimation of aerosol particle number distribution with Kalman Filtering – Part 2: Simultaneous use of DMPS, APS and nephelometer measurements, Atmos. Chem. Phys., 12, 11781–11793, https://doi.org/10.5194/acp-12-11781-2012, 2012.
von der Weiden, S.-L., Drewnick, F., and Borrmann, S.: Particle Loss Calculator – a new software tool for the assessment of the performance of aerosol inlet systems, Atmos. Meas. Tech., 2, 479–494, https://doi.org/10.5194/amt-2-479-2009, 2009.
Von Hoyningen-Huene, W., Dinter, T., Kokhanovsky, A., Burrows, J., Wendisch,
M., Bierwirth, E., Muller, D., and Diouri, M.: Measurements of desert dust
optical characteristics at Porte au Sahara during SAMUM, Tellus
B – Chem. Phys. Meteorol., 61, 206–215,
https://doi.org/10.1111/j.1600-0889.2008.00405.x, 2009.
Wang, W. and Rood, M.: Real refractive index: Dependence on relative
humidity and solute composition with relevancy to atmospheric aerosol
particles, J. Geophys. Res.-Atmos., 113, D23305,
https://doi.org/10.1029/2008JD010165, 2008.
Yu, Q., Zhang, F., Li, J., and Zhang, J.: Analysis of sea-salt aerosol size
distributions in radiative transfer, J. Aerosol Sci., 129, 71–86,
https://doi.org/10.1016/j.jaerosci.2018.11.014, 2019.
Zábori, J., Matisāns, M., Krejci, R., Nilsson, E. D., and Ström, J.: Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity, and succinic acid concentration, Atmos. Chem. Phys., 12, 10709–10724, https://doi.org/10.5194/acp-12-10709-2012, 2012.
Zhang, J. and Zuidema, P.: The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic, Atmos. Chem. Phys., 19, 14493–14516, https://doi.org/10.5194/acp-19-14493-2019, 2019.
Zheng, G., Wang, Y., Aiken, A. C., Gallo, F., Jensen, M. P., Kollias, P., Kuang, C., Luke, E., Springston, S., Uin, J., Wood, R., and Wang, J.: Marine boundary layer aerosol in the eastern North Atlantic: seasonal variations and key controlling processes, Atmos. Chem. Phys., 18, 17615–17635, https://doi.org/10.5194/acp-18-17615-2018, 2018.
Zheng, G., Wang, Y., Wood, R., Jensen, M., Kuang, C., McCoy, I., Matthews,
A., Mei, F., Tomlinson, J., Shilling, J., Zawadowicz, M., Crosbie, E.,
Moore, R., Ziemba, L., Andreae, M., and Wang, J.: New particle formation in
the remote marine boundary layer, Nat. Commun., 12,
https://doi.org/10.1038/s41467-020-20773-1, 2021.
Zieger, P., Fierz-Schmidhauser, R., Gysel, M., Ström, J., Henne, S., Yttri, K. E., Baltensperger, U., and Weingartner, E.: Effects of relative humidity on aerosol light scattering in the Arctic, Atmos. Chem. Phys., 10, 3875–3890, https://doi.org/10.5194/acp-10-3875-2010, 2010.
Zuidema, P., Redemann, J., Haywood, J., Wood, R., Piketh, S., Hipondoka, M.,
and Formenti, P.: Smoke and Clouds above the Southeast Atlantic Upcoming
Field Campaigns Probe Absorbing Aerosol's Impact on Climate, B.
Am. Meteorol. Soc., 97, 1131–1135, https://doi.org/10.1175/BAMS-D-15-00082.1,
2016.
Short summary
A new method is presented to retrieve the sea spray aerosol size distribution by combining submicron size and nephelometer scattering based on Mie theory. Using available sea spray tracers, we find that this approach serves as a comparable substitute to supermicron size distribution measurements, which are limited in availability at marine sites. Application of this technique can expand sea spray observations and improve the characterization of marine aerosol impacts on clouds and climate.
A new method is presented to retrieve the sea spray aerosol size distribution by combining...