Articles | Volume 15, issue 22
https://doi.org/10.5194/amt-15-6521-2022
https://doi.org/10.5194/amt-15-6521-2022
Research article
 | 
14 Nov 2022
Research article |  | 14 Nov 2022

ICE-CAMERA: a flatbed scanner to study inland Antarctic polar precipitation

Massimo Del Guasta

Related authors

Consistency test of precipitating ice cloud retrieval properties obtained from the observations of different instruments operating at Dome C (Antarctica)
Gianluca Di Natale, David D. Turner, Giovanni Bianchini, Massimo Del Guasta, Luca Palchetti, Alessandro Bracci, Luca Baldini, Tiziano Maestri, William Cossich, Michele Martinazzo, and Luca Facheris
Atmos. Meas. Tech., 15, 7235–7258, https://doi.org/10.5194/amt-15-7235-2022,https://doi.org/10.5194/amt-15-7235-2022, 2022
Short summary
Ice fog observed at cirrus temperatures at Dome C, Antarctic Plateau
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022,https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and surface radiation impact
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-433,https://doi.org/10.5194/acp-2022-433, 2022
Preprint under review for ACP
Short summary
Ice and mixed-phase cloud statistics on the Antarctic Plateau
William Cossich, Tiziano Maestri, Davide Magurno, Michele Martinazzo, Gianluca Di Natale, Luca Palchetti, Giovanni Bianchini, and Massimo Del Guasta
Atmos. Chem. Phys., 21, 13811–13833, https://doi.org/10.5194/acp-21-13811-2021,https://doi.org/10.5194/acp-21-13811-2021, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
A new accurate low-cost instrument for fast synchronized spatial measurements of light spectra
Bert G. Heusinkveld, Wouter B. Mol, and Chiel C. van Heerwaarden
Atmos. Meas. Tech., 16, 3767–3785, https://doi.org/10.5194/amt-16-3767-2023,https://doi.org/10.5194/amt-16-3767-2023, 2023
Short summary
Drone-based meteorological observations up to the tropopause – a concept study
Konrad B. Bärfuss, Holger Schmithüsen, and Astrid Lampert
Atmos. Meas. Tech., 16, 3739–3765, https://doi.org/10.5194/amt-16-3739-2023,https://doi.org/10.5194/amt-16-3739-2023, 2023
Short summary
A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets
André Ehrlich, Martin Zöger, Andreas Giez, Vladyslav Nenakhov, Christian Mallaun, Rolf Maser, Timo Röschenthaler, Anna E. Luebke, Kevin Wolf, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 16, 1563–1581, https://doi.org/10.5194/amt-16-1563-2023,https://doi.org/10.5194/amt-16-1563-2023, 2023
Short summary
Acquiring high-resolution wind measurements by modifying radiosonde sounding procedures
Jens Faber, Michael Gerding, and Torsten Köpnick
EGUsphere, https://doi.org/10.5194/egusphere-2023-510,https://doi.org/10.5194/egusphere-2023-510, 2023
Short summary
Toward quantifying turbulent vertical airflow and sensible heat flux in tall forest canopies using fiber-optic distributed temperature sensing
Mohammad Abdoli, Karl Lapo, Johann Schneider, Johannes Olesch, and Christoph K. Thomas
Atmos. Meas. Tech., 16, 809–824, https://doi.org/10.5194/amt-16-809-2023,https://doi.org/10.5194/amt-16-809-2023, 2023
Short summary

Cited articles

Argentini, S., Pietroni, I., Mastrantonio, G., Viola, A. P., Dargaud, G., and Petenko, I.: Observations of near surface wind speed, temperature and radiative budget at Dome C, Antarctic Plateau during 2005, Antarct. Sci., 26, 104–112, https://doi.org/10.1017/S0954102013000382, 2014. 
Aristidi, E.: An analysis of temperatures and wind speeds above Dome C, Antarctica, Astron. Astrophys., 430, 739–746, https://doi.org/10.1051/0004-6361:20041876, 2005. 
Bailey, M. P. and Hallett, J.: A Comprehensive Habit Diagram for Atmospheric Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field Studies, J. Atmos. Sci., 61, 2888–2899, https://doi.org/10.1175/2009JAS2883.1, 2009. 
Böhm, H. P.: A General Equation for the Terminal Fall Speed of Solid Hydrometeors, J. Atmos. Sci., 46, 2419–2427, https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2, 1989. 
Bracci, A., Baldini, L., Roberto, N., Adirosi, E., Montopoli, M., Scarchilli, C., Grigioni, P., Ciardini, V., Levizzani, V., and Porcù, F.: Quantitative Precipitation Estimation over Antarctica Using Different ZeSR Relationships Based on Snowfall Classification Combining Ground Observations, Remote Sens., 14, 82, https://doi.org/10.3390/rs14010082, 2022. 
Download
Short summary
Any instrument on the Antarctic plateau must cope with a harsh environment. Concordia station is a special place for testing new instruments. With low temperatures and weak winds, precipitation can be studied by simply collecting it on horizontal surfaces. This is typically done manually. ICE-CAMERA is intended as an automatic alternative. The combined construction of rugged equipment for taking photographs of particles and the adoption of machine learning techniques have served this purpose.