Articles | Volume 16, issue 20
https://doi.org/10.5194/amt-16-4709-2023
https://doi.org/10.5194/amt-16-4709-2023
Research article
 | 
18 Oct 2023
Research article |  | 18 Oct 2023

Performance evaluation of MOMA (MOment MAtching) – a remote network calibration technique for PM2.5 and PM10 sensors

Lena Francesca Weissert, Geoff Steven Henshaw, David Edward Williams, Brandon Feenstra, Randy Lam, Ashley Collier-Oxandale, Vasileios Papapostolou, and Andrea Polidori

Related authors

Seasonal effects in the application of the MOment MAtching (MOMA) remote calibration tool to outdoor PM2.5 air sensors
Lena Francesca Weissert, Geoff Stephen Henshaw, Andrea Lee Clements, Rachelle Monique Duvall, and Carry Croghan
Atmos. Meas. Tech., 18, 3635–3645, https://doi.org/10.5194/amt-18-3635-2025,https://doi.org/10.5194/amt-18-3635-2025, 2025
Short summary

Cited articles

Aguilera, R., Gershunov, A., Ilango, S. D., Guzman-Morales, J., and Benmarhnia, T.: Santa Ana Winds of Southern California Impact PM2.5 With and Without Smoke From Wildfires, GeoHealth, 4, 1–9, https://doi.org/10.1029/2019GH000225, 2020. 
Anderson, J. O., Thundiyil, J. G., and Stolbach, A.: Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health, J. Med. Toxicol., 8, 166–175, https://doi.org/10.1007/s13181-011-0203-1, 2012. 
Aphalo, P. J.: ggpmisc: Miscellaneous Extensions to “ggplot2”, https://CRAN.R-project.org/package=ggpmisc (last access: 16 October 2023), 2023. 
Atkinson, R. W., Fuller, G. W., Anderson, H. R., Harrison, R. M., and Armstrong, B.: Urban Ambient Particle Metrics and Health: A Time-series Analysis, Epidemiology, 21, 501–511, https://doi.org/10.1097/EDE.0b013e3181debc88, 2010. 
Badura, M., Batog, P., Drzeniecka-Osiadacz, A., and Modzel, P.: Evaluation of Low-Cost Sensors for Ambient PM 2.5 Monitoring, J. Sens., 2018, 1–16, https://doi.org/10.1155/2018/5096540, 2018. 
Short summary
We apply a previously developed remote calibration framework to a network of particulate matter (PM) sensors deployed in Southern California. Our results show that a remote calibration can improve the accuracy of PM data, which was particularly visible for PM10. We highlight that sensor drift was mostly due to differences in particle composition than monitor operational factors. Thus, PM sensors may require frequent calibration if PM sources vary with different wind conditions or seasons.
Share