Articles | Volume 16, issue 21
https://doi.org/10.5194/amt-16-5415-2023
https://doi.org/10.5194/amt-16-5415-2023
Research article
 | 
13 Nov 2023
Research article |  | 13 Nov 2023

Spectral analysis approach for assessing the accuracy of low-cost air quality sensor network data

Vijay Kumar, Dinushani Senarathna, Supraja Gurajala, William Olsen, Shantanu Sur, Sumona Mondal, and Suresh Dhaniyala

Related authors

Development and characterization of an aircraft inlet system for broader quantitative particle sampling at higher altitudes: aerodynamic lenses, beam and vaporizer diagnostics, and pressure-controlled inlets
Dongwook Kim, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Da Yang, Suresh Dhaniyala, Leah Williams, Philip Croteau, John Jayne, Douglas Worsnop, Rainer Volkamer, and Jose L. Jimenez
Aerosol Research, 3, 371–404, https://doi.org/10.5194/ar-3-371-2025,https://doi.org/10.5194/ar-3-371-2025, 2025
Short summary
Laminar gas inlet – Part 2: Wind tunnel chemical transmission measurement and modelling
Da Yang, Emmanuel Assaf, Roy Mauldin, Suresh Dhaniyala, and Rainer Volkamer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2390,https://doi.org/10.5194/egusphere-2024-2390, 2024
Short summary
Performance characterization of a laminar gas inlet
Da Yang, Margarita Reza, Roy Mauldin, Rainer Volkamer, and Suresh Dhaniyala
Atmos. Meas. Tech., 17, 1463–1474, https://doi.org/10.5194/amt-17-1463-2024,https://doi.org/10.5194/amt-17-1463-2024, 2024
Short summary

Cited articles

Afrifa-Yamoah, E., Mueller, U. A., Taylor, S., and Fisher, A.: Missing data imputation of high-resolution temporal climate time series data, Meteorol. Appl., 27, e1873, https://doi.org/10.1002/met.1873, 2020. a
Ardon-Dryer, K., Dryer, Y., Williams, J. N., and Moghimi, N.: Measurements of PM2.5 with PurpleAir under atmospheric conditions, Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020, 2020. a, b, c, d, e
Bai, H., Gao, W., Zhang, Y., and Wang, L.: Assessment of health benefit of PM2.5 reduction during COVID-19 lockdown in China and separating contributions from anthropogenic emissions and meteorology, J. Environ. Sci., 115, 422–431, 2022. a, b
Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor, Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021. a, b, c, d, e, f, g
Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating low-cost sensor measurements into high-resolution PM2.5 modeling at a large spatial scale, Environ. Sci. Technol., 54, 2152–2162, 2020. a
Download
Short summary
Low-cost sensors are becoming increasingly important in air quality monitoring due to their affordability and ease of deployment. While low-cost sensors have the potential to democratize air quality monitoring, their use must be accompanied by careful interpretation and validation of the data. Analysis of their long-term data record clearly shows that the reported data from low-cost sensors may not be equally sensitive to all emission sources, which can complicate policy-making.
Share