Articles | Volume 17, issue 7
https://doi.org/10.5194/amt-17-2025-2024
https://doi.org/10.5194/amt-17-2025-2024
Research article
 | 
09 Apr 2024
Research article |  | 09 Apr 2024

Characterization of stratospheric particle size distribution uncertainties using SAGE II and SAGE III/ISS extinction spectra

Travis N. Knepp, Mahesh Kovilakam, Larry Thomason, and Stephen J. Miller

Related authors

Quantifying SAGE II (1984–2005) and SAGE III/ISS (2017–2022) observations of smoke in the stratosphere
Larry W. Thomason and Travis Knepp
Atmos. Chem. Phys., 23, 10361–10381, https://doi.org/10.5194/acp-23-10361-2023,https://doi.org/10.5194/acp-23-10361-2023, 2023
Short summary
SAGE III/ISS aerosol/cloud categorization and its impact on GloSSAC
Mahesh Kovilakam, Larry Thomason, and Travis Knepp
Atmos. Meas. Tech., 16, 2709–2731, https://doi.org/10.5194/amt-16-2709-2023,https://doi.org/10.5194/amt-16-2709-2023, 2023
Short summary
Identification of smoke and sulfuric acid aerosol in SAGE III/ISS extinction spectra
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022,https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Comprehensive evaluations of diurnal NO2 measurements during DISCOVER-AQ 2011: effects of resolution-dependent representation of NOx emissions
Jianfeng Li, Yuhang Wang, Ruixiong Zhang, Charles Smeltzer, Andrew Weinheimer, Jay Herman, K. Folkert Boersma, Edward A. Celarier, Russell W. Long, James J. Szykman, Ruben Delgado, Anne M. Thompson, Travis N. Knepp, Lok N. Lamsal, Scott J. Janz, Matthew G. Kowalewski, Xiong Liu, and Caroline R. Nowlan
Atmos. Chem. Phys., 21, 11133–11160, https://doi.org/10.5194/acp-21-11133-2021,https://doi.org/10.5194/acp-21-11133-2021, 2021
Short summary
Evidence for the predictability of changes in the stratospheric aerosol size following volcanic eruptions of diverse magnitudes using space-based instruments
Larry W. Thomason, Mahesh Kovilakam, Anja Schmidt, Christian von Savigny, Travis Knepp, and Landon Rieger
Atmos. Chem. Phys., 21, 1143–1158, https://doi.org/10.5194/acp-21-1143-2021,https://doi.org/10.5194/acp-21-1143-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A near-global multiyear climate data record of the fine-mode and coarse-mode components of atmospheric pure dust
Emmanouil Proestakis, Antonis Gkikas, Thanasis Georgiou, Anna Kampouri, Eleni Drakaki, Claire L. Ryder, Franco Marenco, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 17, 3625–3667, https://doi.org/10.5194/amt-17-3625-2024,https://doi.org/10.5194/amt-17-3625-2024, 2024
Short summary
Innovative aerosol hygroscopic growth study from Mie–Raman–fluorescence lidar and microwave radiometer synergy
Robin Miri, Olivier Pujol, Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Thierry Podvin, and Fabrice Ducos
Atmos. Meas. Tech., 17, 3367–3375, https://doi.org/10.5194/amt-17-3367-2024,https://doi.org/10.5194/amt-17-3367-2024, 2024
Short summary
Evaluation of calibration performance of a low-cost particulate matter sensor using collocated and distant NO2
Kabseok Ko, Seokheon Cho, and Ramesh R. Rao
Atmos. Meas. Tech., 17, 3303–3322, https://doi.org/10.5194/amt-17-3303-2024,https://doi.org/10.5194/amt-17-3303-2024, 2024
Short summary
Geostationary aerosol retrievals of extreme biomass burning plumes during the 2019–2020 Australian bushfires
Daniel J. V. Robbins, Caroline A. Poulsen, Steven T. Siems, Simon R. Proud, Andrew T. Prata, Roy G. Grainger, and Adam C. Povey
Atmos. Meas. Tech., 17, 3279–3302, https://doi.org/10.5194/amt-17-3279-2024,https://doi.org/10.5194/amt-17-3279-2024, 2024
Short summary
Multi-wavelength dataset of aerosol extinction profiles retrieved from GOMOS stellar occultation measurements
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Didier Fussen, Christine Bingen, Filip Vanhellemont, Nina Mateshvili, Alexei Rozanov, and Christine Pohl
Atmos. Meas. Tech., 17, 3085–3101, https://doi.org/10.5194/amt-17-3085-2024,https://doi.org/10.5194/amt-17-3085-2024, 2024
Short summary

Cited articles

Asher, E., Todt, M., Rosenlof, K., Thornberry, T., Gao, R.-S., Taha, G., Walter, P., Alvarez, S., Flynn, J., Davis, S. M., Evan, S., Brioude, J., Metzger, J.-M., Hurst, D. F., Hall, E., and Xiong, K.: Unexpectedly rapid aerosol formation in the Hunga Tonga plume, P. Natl. Acad. Sci. USA, 120, e2219547120, https://doi.org/10.1073/pnas.2219547120, 2023. a
Bergstrom, R. W., Russell, P. B., and Hignett, P.: Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo, J. Atmos. Sci., 59, 567–577, https://doi.org/10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO;2, 2002. a, b, c
Bernath, P., Boone, C., Pastorek, A., Cameron, D., and Lecours, M.: Satellite characterization of global stratospheric sulfate aerosols released by Tonga volcano, J. Quant. Spectrosc. Ra., 299, 108520, https://doi.org/10.1016/j.jqsrt.2023.108520, 2023. a
Bingen, C., Fussen, D., and Vanhellemont, F.: A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 1. Methodology and climatological observations, J. Geophys. Res.-Atmos., 109, D06201, https://doi.org/10.1029/2003JD003518, 2004a. a, b
Bingen, C., Fussen, D., and Vanhellemont, F.: A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 2. Reference data, J. Geophys. Res.-Atmos., 109, D06202, https://doi.org/10.1029/2003JD003511, 2004b. a
Download
Short summary
An algorithm is presented to derive a new SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on the International Space Station) Level-2 product: the size distribution of stratospheric particles. This is a significant improvement over previous techniques in that we now provide uncertainty estimates for all inferred parameters. We also evaluated the stability of this method in retrieving bimodal distribution parameters. We present a special application to the 2022 eruption of Hunga Tonga.