Articles | Volume 17, issue 15
https://doi.org/10.5194/amt-17-4725-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-4725-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drone CO2 measurements during the Tajogaite volcanic eruption
John Ericksen
Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, USA
Tobias P. Fischer
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, USA
Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, USA
Scott Nowicki
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, USA
Nemesio M. Pérez
Instituto Volcanológico de Canarias (INVOLCAN), 38400 Puerto de la Cruz, Tenerife, Canary Islands, Spain
Environmental Research Division, ITER, 38600 Granadilla de Abona, Tenerife, Canary Islands, Spain
Pedro Hernández Pérez
Instituto Volcanológico de Canarias (INVOLCAN), 38400 Puerto de la Cruz, Tenerife, Canary Islands, Spain
Environmental Research Division, ITER, 38600 Granadilla de Abona, Tenerife, Canary Islands, Spain
Eleazar Padrón González
Instituto Volcanológico de Canarias (INVOLCAN), 38400 Puerto de la Cruz, Tenerife, Canary Islands, Spain
Environmental Research Division, ITER, 38600 Granadilla de Abona, Tenerife, Canary Islands, Spain
Melanie E. Moses
Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, USA
Santa Fe Institute, Santa Fe, New Mexico, USA
Related authors
No articles found.
Lucia Dominguez, Sébastien Biass, Corine Frischknecht, Alana Weir, Maria Paz Reyes-Hardy, Luigia Sara Di Maio, Nemesio Pérez, and Costanza Bonadonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-986, https://doi.org/10.5194/egusphere-2025-986, 2025
Short summary
Short summary
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By combining forensic techniques with network analysis, this research quantifies the effects of physical damage on the road network as well as the cascading loss of functionality and systemic disruptions to emergency services, health centers, agriculture and education. Result show the relevance of redundant infrastructure and landuse on effective risk management and mitigation of future volcanic impacts.
Bo Galle, Santiago Arellano, Nicole Bobrowski, Vladimir Conde, Tobias P. Fischer, Gustav Gerdes, Alexandra Gutmann, Thorsten Hoffmann, Ima Itikarai, Tomas Krejci, Emma J. Liu, Kila Mulina, Scott Nowicki, Tom Richardson, Julian Rüdiger, Kieran Wood, and Jiazhi Xu
Atmos. Meas. Tech., 14, 4255–4277, https://doi.org/10.5194/amt-14-4255-2021, https://doi.org/10.5194/amt-14-4255-2021, 2021
Short summary
Short summary
Measurements of volcanic gases are important for geophysical research, risk assessment and environmental impact studies. Some gases, like SO2 and BrO, may be studied from the ground at a safe distance using remote sensing techniques. Many other gases require in situ access to the gas plume. Here, a drone may be an attractive alternative. This paper describes a drone specially adapted for volcanic gas studies and demonstrates its use in a field campaign at Manam volcano in Papua New Guinea.
Cited articles
Acocella, V., Di Lorenzo, R., Newhall, C., and Scandone, R.: An overview of recent (1988 to 2014) caldera unrest: Knowledge and perspectives, Rev. Geophys., 53, 896–955, https://doi.org/10.1002/2015RG000492, 2015. a
Albert, H., Costa, F., and Martí, J.: Years to weeks of seismic unrest and magmatic intrusions precede monogenetic eruptions, Geology, 44, 211–214, https://doi.org/10.1130/G37239.1, 2016. a
Albertos, V. T., Recio, G., Alonso, M., Amonte, C., Rodríguez, F., Rodríguez, C., Pitti, L., Leal, V., Cervigón, G., González, J., Przeor, M., Santana-León, J. M., Barrancos, J., Hernández, P. A., Padilla, G. D., Melián, G. V., Padrón, E., Asensio-Ramos, M., and Pérez, N. M.: Sulphur dioxide (SO2) emissions by means of miniDOAS measurements during the 2021 eruption of Cumbre Vieja volcano, La Palma, Canary Islands, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5603, https://doi.org/10.5194/egusphere-egu22-5603, 2022. a, b, c
Arrhenius, S.: On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground, Philos. Mag, 41, 237–276, 1896. a
Burton, M., Aiuppa, A., Allard, P., Asensio-Ramos, M., Cofrades, A. P., La Spina, A., Nicholson, E. J., Zanon, V., Barrancos, J., Bitetto, M., Hartley, M., Romero, J. E., Waters, E., Stewart, A., Hernández, P. A., Lages, J. P., Padrón, E., Wood, K., Esse, B., Hayer, C., Cyrzan, K., Rose-Koga, E. F., Schiavi, F., D'Auria, L., and Pérez, N. M.: Exceptional eruptive CO2 emissions from intra-plate alkaline magmatism in the Canary volcanic archipelago, Communications Earth & Environment, 4, 1–10, https://doi.org/10.1038/s43247-023-01103-x, 2023. a, b, c, d, e, f
Burton, M. R., Sawyer, G. M., and Granieri, D.: Deep Carbon Emissions from Volcanoes, Rev. Mineral. Geochem., 75, 323–354, https://doi.org/10.2138/RMG.2013.75.11, 2013. a
Carracedo, J. C., Day, S., Guillou, H., Rodríguez Badiola, E., Canas, J. A., and Pérez Torrado, F. J.: Hotspot volcanism close to a passive continental margin: the Canary Islands, Geol. Mag., 135, 591–604, https://doi.org/10.1017/S0016756898001447, 1998. a
Carracedo, J. C., Badiola, E. R., Guillou, H., De La Nuez, J., and Pérez Torrado, F. J.: Geology and volcanology of la Palma and el Hierro, western Canaries, Estud. Geol., 57, 175–273, 2001. a
Castro, J. M. and Feisel, Y.: Eruption of ultralow-viscosity basanite magma at Cumbre Vieja, La Palma, Canary Islands, Nat. Commun., 13, 1–12, https://doi.org/10.1038/s41467-022-30905-4, 2022. a
Conlen, M.: How Much Carbon Dioxide Are We Emitting? – Climate Change: Vital Signs of the Planet, NASA, https://climate.nasa.gov/news/3020/how-much-carbon-dioxide-are-we-emitting/ (last access: 8 August 2024), 2021. a
Day, S. J., Carracedo, J. C., Guillou, H., and Gravestock, P.: Recent structural evolution of the Cumbre Vieja volcano, La Palma, Canary Islands: Volcanic rift zone reconfiguration as a precursor to volcano flank instability?, J. Volcanol. Geoth. Res., 94, 135–167, https://doi.org/10.1016/S0377-0273(99)00101-8, 1999. a
De Luca, C., Valerio, E., Giudicepietro, F., Macedonio, G., Casu, F., and Lanari, R.: Pre-and Co-Eruptive Analysis of the September 2021 Eruption at Cumbre Vieja Volcano (La Palma, Canary Islands) Through DInSAR Measurements and Analytical Modeling, Geophys. Res. Lett., 49, e2021GL097293, https://doi.org/10.1029/2021GL097293, 2022. a
Ericksen, J. and Fricke, G. M.: BCLab-UNM/lapalma-expedition: AMT 2024 (2021_tajogaite_eruption), Zenodo [data and code], https://doi.org/10.5281/zenodo.13274766, 2024. a
Ericksen, J. and Frost, C.: BCLab-UNM/dragonfly-dashboard: AMT 2024 (Version AMT2024), Zenodo [code], https://doi.org/10.5281/zenodo.13274798, 2024. a
Ericksen, J., Fricke, G. M., Nowicki, S., Fischer, T. P., Hayes, J. C., Rosenberger, K., Wolf, S. R., Fierro, R., and Moses, M. E.: Aerial Survey Robotics in Extreme Environments: Mapping Volcanic CO2 Emissions With Flocking UAVs, Frontiers in Control Engineering, 3, 836720, https://doi.org/10.3389/FCTEG.2022.836720, 2022. a, b
Ericksen, J., Frost, C., and Islam, A.: BCLab-UNM/dragonfly-controller: AMT 2024 (Version AMT2024), Zenodo [code], https://doi.org/10.5281/zenodo.13274812, 2024. a
Fernández, J., Escayo, J., Hu, Z., Camacho, A. G., Samsonov, S. V., Prieto, J. F., Tiampo, K. F., Palano, M., Mallorquí, J. J., and Ancochea, E.: Detection of volcanic unrest onset in La Palma, Canary Islands, evolution and implications, Sci. Rep., 11, 2540, https://doi.org/10.1038/s41598-021-82292-3, 2021. a, b
Fischer, T. P. and Aiuppa, A.: AGU Centennial Grand Challenge: Volcanoes and Deep Carbon Global CO2 Emissions From Subaerial Volcanism – Recent Progress and Future Challenges, Geochem. Geophy. Geosy., 21, e2019GC008690, https://doi.org/10.1029/2019GC008690, 2020. a, b
Fischer, T. P. and Lopez, T. M.: First airborne samples of a volcanic plume for δ13C of CO2 determinations, Geophys. Res. Lett., 43, 3272–3279, https://doi.org/10.1002/2016GL068499, 2016. a, b
Fischer, T. P., Arellano, S., Carn, S., Aiuppa, A., Galle, B., Allard, P., Lopez, T., Shinohara, H., Kelly, P., Werner, C., Cardellini, C., and Chiodini, G.: The emissions of CO2 and other volatiles from the world's subaerial volcanoes, Sci. Rep., 9, 18716, https://doi.org/10.1038/s41598-019-54682-1, 2019. a
Fischer, T. P., Mandon, C. L., Nowicki, S., Ericksen, J., Vilches, F. R., Pfeffer, M. A., Aiuppa, A., Bitetto, M., Vitale, A., Fricke, G. M., Moses, M. E., and Stefánsson, A.: CO2 emissions during the 2023 Litli Hrútur eruption in Reykjanes, Iceland: δ13C tracks magma degassing, B. Volcanol., 86, 1–10, https://doi.org/10.1007/S00445-024-01751-7, 2024. a
Galle, B., Arellano, S., Bobrowski, N., Conde, V., Fischer, T. P., Gerdes, G., Gutmann, A., Hoffmann, T., Itikarai, I., Krejci, T., Liu, E. J., Mulina, K., Nowicki, S., Richardson, T., Rüdiger, J., Wood, K., and Xu, J.: A multi-purpose, multi-rotor drone system for long-range and high-altitude volcanic gas plume measurements, Atmos. Meas. Tech., 14, 4255–4277, https://doi.org/10.5194/amt-14-4255-2021, 2021. a, b, c
Gerlach, T. M., Delgado, H., McGee, K. A., Doukas, M. P., Venegas, J. J., and Cárdenas, L.: Application of the LI-COR CO2 analyzer to volcanic plumes: A case study, volcán Popocatépetl, Mexico, June 7 and 10, 1995, J. Geophys. Res.-Sol. Ea., 102, 8005–8019, https://doi.org/10.1029/96JB03887, 1997. a
Giggenbach, W. F.: Chemical Composition of Volcanic Gases, in: Monitoring and Mitigation of Volcano Hazards, Springer-Verlag Berlin Heidelberg, 221–256, https://link.springer.com/chapter/10.1007/978-3-642-80087-0_7 (last access: 8 August 2024), 1996. a
Ilanko, T., Fischer, T. P., Kyle, P., Curtis, A., Lee, H., and Sano, Y.: Modification of fumarolic gases by the ice-covered edifice of Erebus volcano, Antarctica, J. Volcanol. Geoth. Res., 381, 119–139, https://doi.org/10.1016/J.JVOLGEORES.2019.05.017, 2019. a
Johnson, M. S., Schwandner, F. M., Potter, C. S., Nguyen, H. M., Bell, E., Nelson, R. R., Philip, S., and O'Dell, C. W.: Carbon Dioxide Emissions During the 2018 Kilauea Volcano Eruption Estimated Using OCO-2 Satellite Retrievals, Geophys. Res. Lett., 47, e2020GL090507, https://doi.org/10.1029/2020GL090507, 2020. a, b
Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas, Geochim. Cosmochim. Ac., 13, 322–334, https://doi.org/10.1016/0016-7037(58)90033-4, 1958. a
Lin, X., van der A, R., de Laat, J., Eskes, H., Chevallier, F., Ciais, P., Deng, Z., Geng, Y., Song, X., Ni, X., Huo, D., Dou, X., and Liu, Z.: Monitoring and quantifying CO2 emissions of isolated power plants from space, Atmos. Chem. Phys., 23, 6599–6611, https://doi.org/10.5194/acp-23-6599-2023, 2023. a
Liu, E. J., Aiuppa, A., Alan, A., Arellano, S., Bitetto, M., Bobrowski, N., Carn, S., Clarke, R., Corrales, E., De Moor, J. M., Diaz, J. A., Edmonds, M., Fischer, T. P., Freer, J., Fricke, G. M., Galle, B., Gerdes, G., Giudice, G., Gutmann, A., Hayer, C., Itikarai, I., Jones, J., Mason, E., McCormick Kilbride, B. T., Mulina, K., Nowicki, S., Rahilly, K., Richardson, T., Rüdiger, J., Schipper, C. I., Watson, I. M., and Wood, K.: Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes, Science Advances, 6, eabb9103, https://doi.org/10.1126/sciadv.abb9103, 2020. a, b, c, d
Nassar, R., Hill, T. G., McLinden, C. A., Wunch, D., Jones, D. B., and Crisp, D.: Quantifying CO2 Emissions From Individual Power Plants From Space, Geophys. Res. Lett., 44, 10045–10053, https://doi.org/10.1002/2017GL074702, 2017. a
Nassar, R., Mastrogiacomo, J. P., Bateman-Hemphill, W., McCracken, C., MacDonald, C. G., Hill, T., O'Dell, C. W., Kiel, M., and Crisp, D.: Advances in quantifying power plant CO2 emissions with OCO-2, Remote Sens. Environ., 264, 112579, https://doi.org/10.1016/J.RSE.2021.112579, 2021. a
Office of Science: FLUXNET, Office of Science, US DOE, http://fluxnet.org (last access: 8 August 2024), 2023. a
Padrón, E., Pérez, N. M., Rodríguez, F., Melián, G., Hernández, P. A., Sumino, H., Padilla, G., Barrancos, J., Dionis, S., Notsu, K., and Calvo, D.: Dynamics of diffuse carbon dioxide emissions from Cumbre Vieja volcano, La Palma, Canary Islands, B. Volcanol., 77, 1–15, https://doi.org/10.1007/s00445-015-0914-2, 2015. a, b, c
Pérez, N. M., Hernández, P. A., Melián, G. V., Padrón, E., Asensio-Ramos, M., Barrancos, J., Padilla, G. D., Rodríguez, F., D'Auria, L., Amonte, C., Alonso, M., Martín-Lorenzo, A., Calvo, D., Rodríguez, C., Hernández, W., Coldwell, B., and Pankhurst, M. J. and the International Collaborative Research TEAM: The 2021 Cumbre Vieja eruption: an overview of the geochemical monitoring program, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12491, https://doi.org/10.5194/egusphere-egu22-12491, 2022. a, b
Rodríguez-Pérez, C., Barrancos, J., Hernández, P. A., Pérez, N. M., Padrón, E., Melián, G. V., Rodríguez, F., Asensio-Ramos, M., and Padilla, G. D.: Continuous monitoring of diffuse CO2 emission from Cumbre Vieja volcano: early evidences of magmatic CO2 surface arrival, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9819, https://doi.org/10.5194/egusphere-egu22-9819, 2022. a
Rüdiger, J., Tirpitz, J.-L., de Moor, J. M., Bobrowski, N., Gutmann, A., Liuzzo, M., Ibarra, M., and Hoffmann, T.: Implementation of electrochemical, optical and denuder-based sensors and sampling techniques on UAV for volcanic gas measurements: examples from Masaya, Turrialba and Stromboli volcanoes, Atmos. Meas. Tech., 11, 2441–2457, https://doi.org/10.5194/amt-11-2441-2018, 2018. a
Sandoval-Velasquez, A., Rizzo, A. L., Aiuppa, A., Remigi, S., Padrón, E., Pérez, N. M., and Frezzotti, M. L.: Recycled crustal carbon in the depleted mantle source of El Hierro volcano, Canary Islands, Lithos, 400–401, 106414, https://doi.org/10.1016/j.lithos.2021.106414, 2021. a, b, c
Sandoval-Velasquez, A., Casetta, F., Ntaflos, T., Aiuppa, A., Coltorti, M., Frezzotti, M. L., Alonso, M., Padrón, E., Pankhurst, M., Pérez, N. M., and Rizzo, A. L.: 2021 Tajogaite eruption records infiltration of crustal fluids within the upper mantle beneath La Palma, Canary Islands, Front. Earth Sci., 12, 1303872, https://doi.org/10.3389/FEART.2024.1303872, 2024. a
Santana de León, J. M., Melián, G. V., Rodríguez, C., Cervigón-Tomico, G., Ortega, V., Martínez van Dorth, D., Cabrera-Pérez, I., Cordero, M., Przeor, M., Silva, R. F. F., Matos, S. B. D., Baldoni, E., Ramalho, M. M. P., Viveiros, F., Calvo, D., and Pérez, N. M.: Long-term variations of diffuse CO2 at Cumbre Vieja volcano, La Palma, Canary Islands, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8773, https://doi.org/10.5194/egusphere-egu22-8773, 2022. a
Schmincke, H. U.: Volcanic and chemical evolution of the Canary Islands, in: Geology of the northwest African continental margin, Springer, 273–306, https://doi.org/10.1007/978-3-642-68409-8_12, 1982. a
Schwandner, F. M., Gunson, M. R., Miller, C. E., Carn, S. A., Eldering, A., Krings, T., Verhulst, K. R., Schimel, D. S., Nguyen, H. M., Crisp, D., O'Dell, C. W., Osterman, G. B., Iraci, L. T., and Podolske, J. R.: Spaceborne detection of localized carbon dioxide sources, Science, 358, eaam5782, https://doi.org/10.1126/science.aam5782, 2017. a, b
Stix, J., de Moor, J. M., Rüdiger, J., Alan, A., Corrales, E., D'Arcy, F., Diaz, J. A., and Liotta, M.: Using Drones and Miniaturized Instrumentation to Study Degassing at Turrialba and Masaya Volcanoes, Central America, J. Geophys. Res.-Sol. Ea., 123, 6501–6520, https://doi.org/10.1029/2018JB015655, 2018. a
Ward, S. N. and Day, S.: Cumbre Vieja Volcano-Potential collapse and tsunami at La Palma, Canary Islands, Geophys. Res. Lett., 28, 3397–3400, https://doi.org/10.1029/2001GL013110, 2001. a
Werner, C., Kelly, P. J., Doukas, M., Lopez, T., Pfeffer, M., McGimsey, R., and Neal, C.: Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geoth. Res., 259, 270–284, https://doi.org/10.1016/J.JVOLGEORES.2012.04.012, 2013. a, b
Xi, X., Johnson, M. S., Jeong, S., Fladeland, M., Pieri, D., Diaz, J. A., and Bland, G. L.: Constraining the sulfur dioxide degassing flux from Turrialba volcano, Costa Rica using unmanned aerial system measurements, J. Volcanol. Geoth. Res., 325, 110–118, https://doi.org/10.1016/J.JVOLGEORES.2016.06.023, 2016. a
Short summary
Volcanic eruptions emit significant quantities of carbon dioxide (CO2) to the atmosphere. We present a new method for directly determining the CO2 emission from a volcanic eruption on the island of La Palma, Spain, using an unpiloted aerial vehicle (UAV). We also collected samples of the emitted CO2 and analyzed their isotopic composition. Together with the emission rate the isotopic data provide valuable information on the state of volcanic activity and the potential evolution of the eruption.
Volcanic eruptions emit significant quantities of carbon dioxide (CO2) to the atmosphere. We...