Articles | Volume 18, issue 11
https://doi.org/10.5194/amt-18-2523-2025
https://doi.org/10.5194/amt-18-2523-2025
Research article
 | 
13 Jun 2025
Research article |  | 13 Jun 2025

Using neural networks for near-real-time aerosol retrievals from OMPS Limb Profiler measurements

Michael D. Himes, Ghassan Taha, Daniel Kahn, Tong Zhu, and Natalya A. Kramarova

Related authors

Validation of SNPP OMPS limb profiler version 2.6 ozone profile retrievals against correlative satellite and ground based measurements
Nigel A. D. Richards, Natalya A. Kramarova, Stacey M. Frith, Sean M. Davis, and Yue Jia
EGUsphere, https://doi.org/10.5194/egusphere-2025-4117,https://doi.org/10.5194/egusphere-2025-4117, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Solar Backscatter Ultraviolet (BUV) Retrievals of Mid-Stratospheric Aerosols from the 2022 Hunga Eruption
Robert James Duncan Spurr, Matt Christi, Nickolay Anatoly Krotkov, Won-Ei Choi, Simon Carn, Can Li, Natalya Kramarova, David Haffner, Eun-Su Yang, Nick Gorkavyi, Alexander Vasilkov, Krzysztof Wargan, Omar Torres, Diego Loyola, Serena Di Pede, Joris Pepijn Veefkind, and Pawan Kumar Bhartia
EGUsphere, https://doi.org/10.5194/egusphere-2025-2938,https://doi.org/10.5194/egusphere-2025-2938, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Aerosol Composition and Extinction of the 2022 Hunga Plume Using CALIOP
Clair Duchamp, Bernard Legras, Aurélien Podglajen, Pasquale Sellitto, Adam E. Bourassa, Alexei Rozanov, Ghassan Taha, and Daniel J. Zawada
EGUsphere, https://doi.org/10.5194/egusphere-2025-3355,https://doi.org/10.5194/egusphere-2025-3355, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations
Selena Zhang, Susan Solomon, Chris D. Boone, and Ghassan Taha
Atmos. Chem. Phys., 24, 11727–11736, https://doi.org/10.5194/acp-24-11727-2024,https://doi.org/10.5194/acp-24-11727-2024, 2024
Short summary
Using OMPS-LP color ratio to extract stratospheric aerosol particle median radius and concentration with application to two volcanic eruptions
Yi Wang, Mark Schoeberl, and Ghassan Taha
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-267,https://doi.org/10.5194/amt-2023-267, 2024
Revised manuscript not accepted
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning, in: OSDI, 16, 265–283, 2016. a
Barnes, J. E. and Hofmann, D. J.: Lidar measurements of stratospheric aerosol over Mauna Loa Observatory, Geophys. Res. Lett., 24, 1923–1926, https://doi.org/10.1029/97GL01943, 1997. a
Baydin, A. G., Heinrich, L., Bhimji, W., Shao, L., Naderiparizi, S., Munk, A., Liu, J., Gram-Hansen, B., Louppe, G., Meadows, L., Torr, P., Lee, V., Prabhat, Cranmer, K., and Wood, F.: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model, in: Advances in Neural Information Processing Systems 33, https://proceedings.neurips.cc/paper_files/paper/2019/file/6d19c113404cee55b4036fce1a37c058-Paper.pdf (last access: 10 June 2025), 2019. a
Borrmann, S., Kunkel, D., Weigel, R., Minikin, A., Deshler, T., Wilson, J. C., Curtius, J., Volk, C. M., Homan, C. D., Ulanovsky, A., Ravegnani, F., Viciani, S., Shur, G. N., Belyaev, G. V., Law, K. S., and Cairo, F.: Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility, Atmos. Chem. Phys., 10, 5573–5592, https://doi.org/10.5194/acp-10-5573-2010, 2010. a
Brock, C. A., Schröder, F., Kärcher, B., Petzold, A., Busen, R., and Fiebig, M.: Ultrafine particle size distributions measured in aircraft exhaust plumes, J. Geophys. Res., 105, 26555–26568, https://doi.org/10.1029/2000JD900360, 2000. a
Download
Short summary
The Ozone Mapping and Profiler Suite's Limb Profiler (OMPS LP) yields near-global coverage and information about how aerosols from volcanic eruptions and major wildfires is vertically distributed through the atmosphere. We developed a machine learning method to characterize aerosols using OMPS LP measurements about 60 times faster than the current approach.
Share