Articles | Volume 18, issue 11
https://doi.org/10.5194/amt-18-2523-2025
https://doi.org/10.5194/amt-18-2523-2025
Research article
 | 
13 Jun 2025
Research article |  | 13 Jun 2025

Using neural networks for near-real-time aerosol retrievals from OMPS Limb Profiler measurements

Michael D. Himes, Ghassan Taha, Daniel Kahn, Tong Zhu, and Natalya A. Kramarova

Related authors

Aerosol Composition and Extinction of the 2022 Hunga Plume Using CALIOP
Clair Duchamp, Bernard Legras, Aurélien Podglajen, Pasquale Sellitto, Adam E. Bourassa, Alexei Rozanov, Ghassan Taha, and Daniel J. Zawada
EGUsphere, https://doi.org/10.5194/egusphere-2025-3355,https://doi.org/10.5194/egusphere-2025-3355, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations
Selena Zhang, Susan Solomon, Chris D. Boone, and Ghassan Taha
Atmos. Chem. Phys., 24, 11727–11736, https://doi.org/10.5194/acp-24-11727-2024,https://doi.org/10.5194/acp-24-11727-2024, 2024
Short summary
Using OMPS-LP color ratio to extract stratospheric aerosol particle median radius and concentration with application to two volcanic eruptions
Yi Wang, Mark Schoeberl, and Ghassan Taha
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-267,https://doi.org/10.5194/amt-2023-267, 2024
Revised manuscript not accepted
Short summary
Using OMPS-LP color ratio to extract stratospheric aerosol particle size and concentration with application to volcanic eruptions
Yi Wang, Mark Schoeberl, Ghassan Taha, Daniel Zawada, and Adam Bourassa
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-36,https://doi.org/10.5194/amt-2023-36, 2023
Revised manuscript not accepted
Short summary
SAGE III/ISS ozone and NO2 validation using diurnal scaling factors
Sarah A. Strode, Ghassan Taha, Luke D. Oman, Robert Damadeo, David Flittner, Mark Schoeberl, Christopher E. Sioris, and Ryan Stauffer
Atmos. Meas. Tech., 15, 6145–6161, https://doi.org/10.5194/amt-15-6145-2022,https://doi.org/10.5194/amt-15-6145-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Producing aerosol size distributions consistent with optical particle counter measurements using space-based measurements of aerosol extinction coefficient
Nicholas Ernest, Larry W. Thomason, and Terry Deshler
Atmos. Meas. Tech., 18, 2957–2968, https://doi.org/10.5194/amt-18-2957-2025,https://doi.org/10.5194/amt-18-2957-2025, 2025
Short summary
Star photometry with all-sky cameras to retrieve aerosol optical depth at nighttime
Roberto Román, Daniel González-Fernández, Juan Carlos Antuña-Sánchez, Celia Herrero del Barrio, Sara Herrero-Anta, África Barreto, Victoria E. Cachorro, Lionel Doppler, Ramiro González, Christoph Ritter, David Mateos, Natalia Kouremeti, Gustavo Copes, Abel Calle, María José Granados-Muñoz, Carlos Toledano, and Ángel M. de Frutos
Atmos. Meas. Tech., 18, 2847–2875, https://doi.org/10.5194/amt-18-2847-2025,https://doi.org/10.5194/amt-18-2847-2025, 2025
Short summary
Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, David P. Donovan, Gerd-Jan van Zadelhoff, and J. Pepijn Veefkind
Atmos. Meas. Tech., 18, 2553–2571, https://doi.org/10.5194/amt-18-2553-2025,https://doi.org/10.5194/amt-18-2553-2025, 2025
Short summary
Retrieval algorithm for aerosol effective height from the Geostationary Environment Monitoring Spectrometer (GEMS)
Sang Seo Park, Jhoon Kim, Yeseul Cho, Hanlim Lee, Junsung Park, Dong-Won Lee, Won-Jin Lee, and Deok-Rae Kim
Atmos. Meas. Tech., 18, 2241–2259, https://doi.org/10.5194/amt-18-2241-2025,https://doi.org/10.5194/amt-18-2241-2025, 2025
Short summary
ACDL/DQ-1 calibration algorithms – Part 1: Nighttime 532 nm polarization and the high-spectral-resolution channel
Fanqian Meng, Junwu Tang, Guangyao Dai, Wenrui Long, Kangwen Sun, Zhiyu Zhang, Xiaoquan Song, Jiqiao Liu, Weibiao Chen, and Songhua Wu
Atmos. Meas. Tech., 18, 2021–2039, https://doi.org/10.5194/amt-18-2021-2025,https://doi.org/10.5194/amt-18-2021-2025, 2025
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning, in: OSDI, 16, 265–283, 2016. a
Barnes, J. E. and Hofmann, D. J.: Lidar measurements of stratospheric aerosol over Mauna Loa Observatory, Geophys. Res. Lett., 24, 1923–1926, https://doi.org/10.1029/97GL01943, 1997. a
Baydin, A. G., Heinrich, L., Bhimji, W., Shao, L., Naderiparizi, S., Munk, A., Liu, J., Gram-Hansen, B., Louppe, G., Meadows, L., Torr, P., Lee, V., Prabhat, Cranmer, K., and Wood, F.: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model, in: Advances in Neural Information Processing Systems 33, https://proceedings.neurips.cc/paper_files/paper/2019/file/6d19c113404cee55b4036fce1a37c058-Paper.pdf (last access: 10 June 2025), 2019. a
Borrmann, S., Kunkel, D., Weigel, R., Minikin, A., Deshler, T., Wilson, J. C., Curtius, J., Volk, C. M., Homan, C. D., Ulanovsky, A., Ravegnani, F., Viciani, S., Shur, G. N., Belyaev, G. V., Law, K. S., and Cairo, F.: Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility, Atmos. Chem. Phys., 10, 5573–5592, https://doi.org/10.5194/acp-10-5573-2010, 2010. a
Brock, C. A., Schröder, F., Kärcher, B., Petzold, A., Busen, R., and Fiebig, M.: Ultrafine particle size distributions measured in aircraft exhaust plumes, J. Geophys. Res., 105, 26555–26568, https://doi.org/10.1029/2000JD900360, 2000. a
Download
Short summary
The Ozone Mapping and Profiler Suite's Limb Profiler (OMPS LP) yields near-global coverage and information about how aerosols from volcanic eruptions and major wildfires is vertically distributed through the atmosphere. We developed a machine learning method to characterize aerosols using OMPS LP measurements about 60 times faster than the current approach.
Share