Articles | Volume 8, issue 11
Atmos. Meas. Tech., 8, 4773–4783, 2015
https://doi.org/10.5194/amt-8-4773-2015
Atmos. Meas. Tech., 8, 4773–4783, 2015
https://doi.org/10.5194/amt-8-4773-2015
Research article
16 Nov 2015
Research article | 16 Nov 2015

An improved method for retrieving nighttime aerosol optical thickness from the VIIRS Day/Night Band

T. M. McHardy et al.

Related authors

OMI UV aerosol index data analysis over the Arctic region for future data assimilation and climate forcing applications
Blake T. Sorenson, Jianglong Zhang, Jeffrey S. Reid, Peng Xian, and Shawn Jaker
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-743,https://doi.org/10.5194/acp-2022-743, 2022
Preprint under review for ACP
Short summary
Assessment of Severe Aerosol Events from NASA MODIS and VIIRS Aerosol Products for Data Assimilation and Climate Continuity
Amanda Gumber, Jeffery S. Reid, Robert E. Holz, Thomas F. Eck, N. Christina Hsu, Robert C. Levy, Jianglong Zhang, and Paolo Veglio
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-290,https://doi.org/10.5194/amt-2022-290, 2022
Preprint under review for AMT
Short summary
Sensitivity studies of nighttime TOA radiances from artificial light sources using a 3-D radiative transfer model for nighttime aerosol retrievals
Jianglong Zhang, Jeffrey S. Reid, Steven D. Miller, Miguel Román, Zhuosen Wang, Robert J. D. Spurr, and Shawn Jaker
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-232,https://doi.org/10.5194/amt-2022-232, 2022
Preprint under review for AMT
Short summary
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022,https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Jeffrey S. Reid, Travis D. Toth, Blake Sorenson, Edward J. Hyer, James R. Campbell, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9949–9967, https://doi.org/10.5194/acp-22-9949-2022,https://doi.org/10.5194/acp-22-9949-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Volcanic cloud detection using Sentinel-3 satellite data by means of neural networks: the Raikoke 2019 eruption test case
Ilaria Petracca, Davide De Santis, Matteo Picchiani, Stefano Corradini, Lorenzo Guerrieri, Fred Prata, Luca Merucci, Dario Stelitano, Fabio Del Frate, Giorgia Salvucci, and Giovanni Schiavon
Atmos. Meas. Tech., 15, 7195–7210, https://doi.org/10.5194/amt-15-7195-2022,https://doi.org/10.5194/amt-15-7195-2022, 2022
Short summary
The new MISR research aerosol retrieval algorithm: a multi-angle, multi-spectral, bounded-variable least squares retrieval of aerosol particle properties over both land and water
James A. Limbacher, Ralph A. Kahn, and Jaehwa Lee
Atmos. Meas. Tech., 15, 6865–6887, https://doi.org/10.5194/amt-15-6865-2022,https://doi.org/10.5194/amt-15-6865-2022, 2022
Short summary
Algorithm for vertical distribution of boundary layer aerosol components in remote-sensing data
Futing Wang, Ting Yang, Zifa Wang, Haibo Wang, Xi Chen, Yele Sun, Jianjun Li, Guigang Tang, and Wenxuan Chai
Atmos. Meas. Tech., 15, 6127–6144, https://doi.org/10.5194/amt-15-6127-2022,https://doi.org/10.5194/amt-15-6127-2022, 2022
Short summary
The CALIPSO version 4.5 stratospheric aerosol subtyping algorithm
Jason L. Tackett, Jayanta Kar, Mark A. Vaughan, Brian J. Getzewich, Man-Hae Kim, Jean-Paul Vernier, Ali H. Omar, Brian E. Magill, Michael C. Pitts, and David M. Winker
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-289,https://doi.org/10.5194/amt-2022-289, 2022
Revised manuscript accepted for AMT
Short summary
Atmospheric visibility inferred from continuous-wave Doppler wind lidar
Manuel Queißer, Michael Harris, and Steven Knoop
Atmos. Meas. Tech., 15, 5527–5544, https://doi.org/10.5194/amt-15-5527-2022,https://doi.org/10.5194/amt-15-5527-2022, 2022
Short summary

Cited articles

Barreto, A., Cuevas, E., Damiri, B., Guirado, C., Berkoff, T., Berjón, A. J., Hernández, Y., Almansa, F., and Gil, M.: A new method for nocturnal aerosol measurements with a lunar photometer prototype, Atmos. Meas. Tech., 6, 585–598, https://doi.org/10.5194/amt-6-585-2013, 2013.
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J. Geophys. Res., 114, D13205, https://doi.org/10.1029/2008JD011115, 2009.
Berkoff, T. A., Sorokin, M., Stone, T., Eck, T. F., Raymond Hoff, R., Welton, E., and Holben, B.: Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source, J. Atmos. Ocean. Tech., 28, 1297–1306, 2011.
Campbell, J. R., Tackett, J. L., Reid, J. S., Zhang, J., Curtis, C. A., Hyer, E. J., Sessions, W. R., Westphal, D. L., Prospero, J. M., Welton, E. J., Omar, A. H., Vaughan, M. A., and Winker, D. M.: Evaluating nighttime CALIOP 0.532 μm aerosol optical depth and extinction coefficient retrievals, Atmos. Meas. Tech., 5, 2143–2160, https://doi.org/10.5194/amt-5-2143-2012, 2012.
Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Ferrare, R. A., Mack, T. L., Welch, W., Izquierdo, L. R., and Hovis, F. E.: Airborne High Spectral Resolution Lidar for profiling aerosol optical properties, Appl. Optics, 47, 6734–6752, https://doi.org/10.1364/AO.47.006734, 2008.
Download
Short summary
Using Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data, a new method is developed for retrieving nighttime aerosol optical thickness values through the examination of the dispersion of radiance values above an artificial light source. Preliminary results suggest that artificial light sources can be used for estimating regional and global nighttime aerosol distributions in the future.