Articles | Volume 9, issue 4
Atmos. Meas. Tech., 9, 1785–1797, 2016
https://doi.org/10.5194/amt-9-1785-2016
Atmos. Meas. Tech., 9, 1785–1797, 2016
https://doi.org/10.5194/amt-9-1785-2016

Research article 26 Apr 2016

Research article | 26 Apr 2016

Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC)

Kerry Meyer et al.

Related authors

Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the Southeast Atlantic
Sarah J. Doherty, Pablo E. Saide, Paquita Zuidema, Yohei Shinozuka, Gonzalo A. Ferrada, Hamish Gordon, Marc Mallet, Kerry Meyer, David Painemal, Steven G. Howell, Steffen Freitag, Amie Dobracki, James R. Podolske, Sharon P. Burton, Richard A. Ferrare, Calvin Howes, Pierre Nabat, Gregory R. Carmichael, Arlindo da Silva, Kristina Pistone, Ian Chang, Lan Gao, Robert Wood, and Jens Redemann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-333,https://doi.org/10.5194/acp-2021-333, 2021
Preprint under review for ACP
Short summary
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020,https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study
Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti
Atmos. Chem. Phys., 20, 13191–13216, https://doi.org/10.5194/acp-20-13191-2020,https://doi.org/10.5194/acp-20-13191-2020, 2020
Short summary
Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products
Benjamin Marchant, Steven Platnick, Kerry Meyer, and Galina Wind
Atmos. Meas. Tech., 13, 3263–3275, https://doi.org/10.5194/amt-13-3263-2020,https://doi.org/10.5194/amt-13-3263-2020, 2020
Short summary
A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020,https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
Can machine learning correct microwave humidity radiances for the influence of clouds?
Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan
Atmos. Meas. Tech., 14, 2957–2979, https://doi.org/10.5194/amt-14-2957-2021,https://doi.org/10.5194/amt-14-2957-2021, 2021
Short summary
McRALI: a Monte Carlo high-spectral-resolution lidar and Doppler radar simulator for three-dimensional cloudy atmosphere remote sensing
Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, Valery Shcherbakov, Céline Cornet, Julien Delanoë, Yahya Gour, Olivier Jourdan, Sandra Banson, and Edouard Bray
Atmos. Meas. Tech., 14, 199–221, https://doi.org/10.5194/amt-14-199-2021,https://doi.org/10.5194/amt-14-199-2021, 2021
Short summary
Cirrus cloud shape detection by tomographic extinction retrievals from infrared limb emission sounder measurements
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045, https://doi.org/10.5194/amt-13-7025-2020,https://doi.org/10.5194/amt-13-7025-2020, 2020
Short summary
First Light Multi-Frequency Observations with a G-band radar
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-493,https://doi.org/10.5194/amt-2020-493, 2020
Revised manuscript accepted for AMT
Short summary
Absolute calibration method for frequency-modulated continuous wave (FMCW) cloud radars based on corner reflectors
Felipe Toledo, Julien Delanoë, Martial Haeffelin, Jean-Charles Dupont, Susana Jorquera, and Christophe Le Gac
Atmos. Meas. Tech., 13, 6853–6875, https://doi.org/10.5194/amt-13-6853-2020,https://doi.org/10.5194/amt-13-6853-2020, 2020
Short summary

Cited articles

Ackerman, S. and Frey, R.: MODIS/Aqua Cloud Mask and Spectral Test Results 5-Min L2 Swath 250 m and 1 km, Dataset, https://doi.org/10.5067/MODIS/MYD35_L2.006, 2016.
Ackerman, S., Frey, R., Strabala, K., Liu, Y., Gumley, L., Baum, B., and Menzel, P.: Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35), NASA, ATBD reference number ATBD-MOD-06, 129 pp., 2010.
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS cloud top property refinements for Collection 6, J. Appl. Meteor. Climatol., 51, 1896–1911, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012.
Cho, H.-M., Zhang, Z., Meyer, K., Lebsock, M., Platnick, S., Ackerman, A. S., Di Girolamo, L., C.-Labonnote, L., Cornet, C., Riedi, J., and Holz, R. E.: Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans, J. Geophys. Res., 120, 4132–4154, https://doi.org/10.1002/2015JD023161, 2015.
Cox, C. and Munk, W.: Measurements of the roughness of the sea surface from photographs of the Sun's glitter, J. Opt. Soc. Am., 44, 838–850, 1954a.
Download
Short summary
This paper presents the expected uncertainties of a single-channel cloud opacity retrieval technique and a temperature-based cloud phase approach in support of the Deep Space Climate Observatory (DSCOVR) mission; DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations. Results show that, for ice clouds, retrieval errors are minimal (< 2 %), while for liquid clouds the error is limited to within 10 %, although for thin clouds the error can be higher.