Articles | Volume 9, issue 6
https://doi.org/10.5194/amt-9-2669-2016
https://doi.org/10.5194/amt-9-2669-2016
Research article
 | 
24 Jun 2016
Research article |  | 24 Jun 2016

Water vapor inhibits hydrogen sulfide detection in pulsed fluorescence sulfur monitors

Anders B. Bluhme, Jonas L. Ingemar, Carl Meusinger, and Matthew S. Johnson

Related authors

Photocatalytic chloride-to-chlorine conversion by ionic iron in aqueous aerosols: a combined experimental, quantum chemical, and chemical equilibrium model study
Marie K. Mikkelsen, Jesper B. Liisberg, Maarten M. J. W. van Herpen, Kurt V. Mikkelsen, and Matthew S. Johnson
Aerosol Research, 2, 31–47, https://doi.org/10.5194/ar-2-31-2024,https://doi.org/10.5194/ar-2-31-2024, 2024
Short summary
Opinion: Exploring potential atmospheric methane removal approaches: an example research roadmap for chlorine radical enhancement
Katrine A. Gorham, Sam Abernethy, Tyler R. Jones, Peter Hess, Natalie M. Mahowald, Daphne Meidan, Matthew S. Johnson, Maarten M. J. W. van Herpen, Yangyang Xu, Alfonso Saiz-Lopez, Thomas Röckmann, Chloe A. Brashear, Erika Reinhardt, and David Mann
EGUsphere, https://doi.org/10.22541/essoar.169755495.51174285/v1,https://doi.org/10.22541/essoar.169755495.51174285/v1, 2023
Short summary
Are dense networks of low-cost nodes really useful for monitoring air pollution? A case study in Staffordshire
Louise Bøge Frederickson, Ruta Sidaraviciute, Johan Albrecht Schmidt, Ole Hertel, and Matthew Stanley Johnson
Atmos. Chem. Phys., 22, 13949–13965, https://doi.org/10.5194/acp-22-13949-2022,https://doi.org/10.5194/acp-22-13949-2022, 2022
Short summary
Photochemical method for removing methane interference for improved gas analysis
Merve Polat, Jesper Baldtzer Liisberg, Morten Krogsbøll, Thomas Blunier, and Matthew S. Johnson
Atmos. Meas. Tech., 14, 8041–8067, https://doi.org/10.5194/amt-14-8041-2021,https://doi.org/10.5194/amt-14-8041-2021, 2021
Short summary
Chemical and isotopic composition of secondary organic aerosol generated by α-pinene ozonolysis
Carl Meusinger, Ulrike Dusek, Stephanie M. King, Rupert Holzinger, Thomas Rosenørn, Peter Sperlich, Maxime Julien, Gerald S. Remaud, Merete Bilde, Thomas Röckmann, and Matthew S. Johnson
Atmos. Chem. Phys., 17, 6373–6391, https://doi.org/10.5194/acp-17-6373-2017,https://doi.org/10.5194/acp-17-6373-2017, 2017
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Performance characterization of a laminar gas inlet
Da Yang, Margarita Reza, Roy Mauldin, Rainer Volkamer, and Suresh Dhaniyala
Atmos. Meas. Tech., 17, 1463–1474, https://doi.org/10.5194/amt-17-1463-2024,https://doi.org/10.5194/amt-17-1463-2024, 2024
Short summary
Validation and field application of a low-cost device to measure CO2 and evapotranspiration (ET) fluxes
Reena Macagga, Michael Asante, Geoffroy Sossa, Danica Antonijević, Maren Dubbert, and Mathias Hoffmann
Atmos. Meas. Tech., 17, 1317–1332, https://doi.org/10.5194/amt-17-1317-2024,https://doi.org/10.5194/amt-17-1317-2024, 2024
Short summary
Identifying and correcting interferences to PTR-ToF-MS measurements of isoprene and other urban volatile organic compounds
Matthew M. Coggon, Chelsea E. Stockwell, Megan S. Claflin, Eva Y. Pfannerstill, Lu Xu, Jessica B. Gilman, Julia Marcantonio, Cong Cao, Kelvin Bates, Georgios I. Gkatzelis, Aaron Lamplugh, Erin F. Katz, Caleb Arata, Eric C. Apel, Rebecca S. Hornbrook, Felix Piel, Francesca Majluf, Donald R. Blake, Armin Wisthaler, Manjula Canagaratna, Brian M. Lerner, Allen H. Goldstein, John E. Mak, and Carsten Warneke
Atmos. Meas. Tech., 17, 801–825, https://doi.org/10.5194/amt-17-801-2024,https://doi.org/10.5194/amt-17-801-2024, 2024
Short summary
Development of a continuous UAV-mounted air sampler and application to the quantification of CO2 and CH4 emissions from a major coking plant
Tianran Han, Conghui Xie, Yayong Liu, Yanrong Yang, Yuheng Zhang, Yufei Huang, Xiangyu Gao, Xiaohua Zhang, Fangmin Bao, and Shao-Meng Li
Atmos. Meas. Tech., 17, 677–691, https://doi.org/10.5194/amt-17-677-2024,https://doi.org/10.5194/amt-17-677-2024, 2024
Short summary
Uptake behavior of polycyclic aromatic compounds during field calibrations of the XAD-based passive air sampler across seasons and locations
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024,https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary

Cited articles

Akdeniz, N., Janni, K. A., and Salnikov, I. A.: Biofilter Performance of Pine Nuggets and Lava Rock as Media, Bioresource Technol., 102, 4974–4980, 2011.
Akdeniz, N., Jacobson, L. D., Hetchler, B. P., Bereznicki, S. D., A. J. Heber, Koziel, J. A., Cai, L., Zhang, S., and Parker, D. B.: Odor and Odorous Chemical Emissions from Animal Buildings: Part 6. Odor Activity Value, Transactions of the American Society of Agricultural and Biological Engineers, 55, 2357–2368, 2012.
Blume, A. B., Ingemar, J. I., Meusinger, C., and Johnson, M. S.: Supplementary Information: Water vapor inhibits hydrogen sulfide detection in pulsed fluorescence sulfur monitors, http://hdl.handle.net/109.1.1/10151, 2016
Blunden, J. and Aneja, V. P.: Characterizing Ammonia and Hydrogen Sulfide Emissions from a Swine Waste Treatment Lagoon in North Carolina, Atmos. Environ., 42, 3277–3290, 2008.
Diehl, C. A., Bogan, B. W., Grant, R. H., and Boehm, M. T.: EPA Standard Operating Procedure G5: Measurement of Hydrogen Sulfide (H2S) with the Thermo Electron Corporation Model 450I Pulsed-Fluorescence Analyzer, Tech. rep., Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA, 2006.
Download
Short summary
Hydrogen sulfide (H2S) is a malodorous, very poisonous, and flammable gas. It can be detected as SO2 using fluorescence after conversion using a hot catalyst. This technique is well established and as such also recommended by authorities such as the EPA. Our paper describes how at a relative humidity as low as 5 %, significant amounts of H2S pass the instrument undetected. At ambient levels of relative humidity, up to 1/3 of all H2S passes the instrument unnoticed.