Articles | Volume 10, issue 4
https://doi.org/10.5194/amt-10-1323-2017
https://doi.org/10.5194/amt-10-1323-2017
Research article
 | 
04 Apr 2017
Research article |  | 04 Apr 2017

FATES: a flexible analysis toolkit for the exploration of single-particle mass spectrometer data

Camille M. Sultana, Gavin C. Cornwell, Paul Rodriguez, and Kimberly A. Prather

Related authors

Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments
Sara D. Forestieri, Gavin C. Cornwell, Taylor M. Helgestad, Kathryn A. Moore, Christopher Lee, Gordon A. Novak, Camille M. Sultana, Xiaofei Wang, Timothy H. Bertram, Kimberly A. Prather, and Christopher D. Cappa
Atmos. Chem. Phys., 16, 9003–9018, https://doi.org/10.5194/acp-16-9003-2016,https://doi.org/10.5194/acp-16-9003-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Spatial analysis of PM2.5 using a concentration similarity index applied to air quality sensor networks
Rósín Byrne, John C. Wenger, and Stig Hellebust
Atmos. Meas. Tech., 17, 5129–5146, https://doi.org/10.5194/amt-17-5129-2024,https://doi.org/10.5194/amt-17-5129-2024, 2024
Short summary
A novel probabilistic source apportionment approach: Bayesian auto-correlated matrix factorization
Anton Rusanen, Anton Björklund, Manousos I. Manousakas, Jianhui Jiang, Markku T. Kulmala, Kai Puolamäki, and Kaspar R. Daellenbach
Atmos. Meas. Tech., 17, 1251–1277, https://doi.org/10.5194/amt-17-1251-2024,https://doi.org/10.5194/amt-17-1251-2024, 2024
Short summary
Towards a hygroscopic growth calibration for low-cost PM2.5 sensors
Milan Y. Patel, Pietro F. Vannucci, Jinsol Kim, William M. Berelson, and Ronald C. Cohen
Atmos. Meas. Tech., 17, 1051–1060, https://doi.org/10.5194/amt-17-1051-2024,https://doi.org/10.5194/amt-17-1051-2024, 2024
Short summary
Enhancing characterization of organic nitrogen components in aerosols and droplets using high-resolution aerosol mass spectrometry
Xinlei Ge, Yele Sun, Justin Trousdell, Mindong Chen, and Qi Zhang
Atmos. Meas. Tech., 17, 423–439, https://doi.org/10.5194/amt-17-423-2024,https://doi.org/10.5194/amt-17-423-2024, 2024
Short summary
Machine learning approaches for automatic classification of single-particle mass spectrometry data
Guanzhong Wang, Heinrich Ruser, Julian Schade, Johannes Passig, Thomas Adam, Günther Dollinger, and Ralf Zimmermann
Atmos. Meas. Tech., 17, 299–313, https://doi.org/10.5194/amt-17-299-2024,https://doi.org/10.5194/amt-17-299-2024, 2024
Short summary

Cited articles

Allen, J. O.: YAADA – Software Toolkit to Analyze Single-Particle Mass Spectral Data: Reference Manual Versions 1.3 and 2.0, Tempe, 2005.
Brands, M., Kamphus, M., Böttger, T., Schneider, J., Drewnick, F., Roth, A., Curtius, J., Voigt, C., Borbon, A., Beekmann, M., Bourdon, A., Perrin, T., and Borrmann, S.: Characterization of a Newly Developed Aircraft-Based Laser Ablation Aerosol Mass Spectrometer (ALABAMA) and First Field Deployment in Urban Pollution Plumes over Paris During MEGAPOLI 2009, Aerosol Sci. Tech., 45, 46–64, https://doi.org/10.1080/02786826.2010.517813, 2011.
Carson, P. G., Neubauer, K. R., Johnston, M. V., and Wexler, A. S.: On-line chemical analysis of aerosols by rapid single-particle mass spectrometry Peter, J. Aerosol Sci., 26, 535–545, https://doi.org/10.1016/0168-1176(95)04312-8, 1995.
Dall'Osto, M. and Harrison, R.: Chemical characterisation of single airborne particles in Athens (Greece) by ATOFMS, Atmos. Environ., 40, 7614–7631, https://doi.org/10.1016/j.atmosenv.2006.06.053, 2006.
Dall'Osto, M., Ceburnis, D., Monahan, C., Worsnop, D. R., Bialek, J., Kulmala, M., Kurtén, T., Ehn, M., Wenger, J., Sodeau, J., Healy, R., and O'Dowd, C.: Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth, J. Geophys. Res., 117, D12311, https://doi.org/10.1029/2012JD017522, 2012.
Download
Short summary
Single-particle mass spectrometers (SPMSs) can determine the size and chemical composition of single particles in real time. We developed the first open-source SPMS toolkit to allow creative script-based data mining along with GUI-based visual data exploration and calibration all within a single programming environment. We believe that this software will be adopted by many in the SPMS community and improve the efficiency of knowledge discovery from these atmospherically critical data sets.