Articles | Volume 12, issue 4
https://doi.org/10.5194/amt-12-2387-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-2387-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An instrument for the rapid quantification of PM-bound ROS: the Particle Into Nitroxide Quencher (PINQ)
Reece A. Brown
ILAQH (International Laboratory of Air Quality and Health),
Queensland University of Technology, George St. 2, Brisbane, 4000 QLD,
Australia
Svetlana Stevanovic
CORRESPONDING AUTHOR
ILAQH (International Laboratory of Air Quality and Health),
Queensland University of Technology, George St. 2, Brisbane, 4000 QLD,
Australia
School of Engineering, Deakin University, Geelong, VIC 3216, Australia
Steven Bottle
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, 4000 QLD, Australia
Zoran D. Ristovski
ILAQH (International Laboratory of Air Quality and Health),
Queensland University of Technology, George St. 2, Brisbane, 4000 QLD,
Australia
School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, 4000 QLD, Australia
Related authors
Tommaso F. Villa, Reece A. Brown, E. Rohan Jayaratne, L. Felipe Gonzalez, Lidia Morawska, and Zoran D. Ristovski
Atmos. Meas. Tech., 12, 691–702, https://doi.org/10.5194/amt-12-691-2019, https://doi.org/10.5194/amt-12-691-2019, 2019
Short summary
Short summary
This research demonstrates the use of an unmanned aerial vehicle (UAV) to characterize the gaseous and diesel particle emissions of a ship at sea. The field study was part of the research voyage “The Great Barrier Reef as a significant source of climatically relevant aerosol particles” on board the RV Investigator around the Australian Great Barrier Reef. Measurements of the RV Investigator exhaust plume were carried out while the ship was operating at sea, at a steady engine load.
Behnaz Alinaghipour, Sadegh Niazi, Robert Groth, Branka Miljevic, and Zoran Ristovski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2161, https://doi.org/10.5194/egusphere-2024-2161, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Airborne particles are crucial in environmental and health studies, requiring precise sampling for accurate characterisation. Our study examines the optimal sampling time for the TSI Nanometer Aerosol Sampler 3089 at different input concentrations. Aerosols from low, medium and high concentration environments were sampled over 1, 3, and 6 hours. A linear relationship was observed using a regression model between the deposition densities and the product of input concentration and sampling time.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian S. Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Aikaterina Seitanidi, Pourya Shahpoury, Eduardo J. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-107, https://doi.org/10.5194/amt-2024-107, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP DTT assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardization in OP procedures.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Joel Alroe, Luke T. Cravigan, Branka Miljevic, Graham R. Johnson, Paul Selleck, Ruhi S. Humphries, Melita D. Keywood, Scott D. Chambers, Alastair G. Williams, and Zoran D. Ristovski
Atmos. Chem. Phys., 20, 8047–8062, https://doi.org/10.5194/acp-20-8047-2020, https://doi.org/10.5194/acp-20-8047-2020, 2020
Short summary
Short summary
We present findings from an austral summer voyage across the full latitudinal width of the Southern Ocean, south of Australia. Aerosol properties were strongly influenced by marine biological activity, synoptic-scale weather systems, and long-range transport of continental-influenced air masses. The meteorological history of the sampled air masses is shown to have a vital limiting influence on cloud condensation nuclei and the accuracy of modelled sea spray aerosol concentrations.
Luke T. Cravigan, Marc D. Mallet, Petri Vaattovaara, Mike J. Harvey, Cliff S. Law, Robin L. Modini, Lynn M. Russell, Ed Stelcer, David D. Cohen, Greg Olsen, Karl Safi, Timothy J. Burrell, and Zoran Ristovski
Atmos. Chem. Phys., 20, 7955–7977, https://doi.org/10.5194/acp-20-7955-2020, https://doi.org/10.5194/acp-20-7955-2020, 2020
Short summary
Short summary
Aerosol–cloud interactions in remote marine environments are poorly represented in atmospheric modelling, particularly over the Southern Hemisphere. This work reports in situ chamber observations of sea spray aerosol composition and water uptake during the Surface Ocean Aerosol Production (SOAP) voyage. Observations were compared with currently applied models for sea spray organic enrichment. The sea spray hygroscopicity was persistently high, even at high organic fractions.
Melita Keywood, Paul Selleck, Fabienne Reisen, David Cohen, Scott Chambers, Min Cheng, Martin Cope, Suzanne Crumeyrolle, Erin Dunne, Kathryn Emmerson, Rosemary Fedele, Ian Galbally, Rob Gillett, Alan Griffiths, Elise-Andree Guerette, James Harnwell, Ruhi Humphries, Sarah Lawson, Branka Miljevic, Suzie Molloy, Jennifer Powell, Jack Simmons, Zoran Ristovski, and Jason Ward
Earth Syst. Sci. Data, 11, 1883–1903, https://doi.org/10.5194/essd-11-1883-2019, https://doi.org/10.5194/essd-11-1883-2019, 2019
Short summary
Short summary
The Sydney Particle Study increased scientific knowledge of the processes leading to particle formation and transformations in Sydney through two comprehensive observation programs which are described in detail here. The data set and its analysis underpin comprehensive chemical transport modelling tools that can be used to assist in the development of a long-term control strategy for particles in Sydney and thus reduce the impact of particles on human health.
Tommaso F. Villa, Reece A. Brown, E. Rohan Jayaratne, L. Felipe Gonzalez, Lidia Morawska, and Zoran D. Ristovski
Atmos. Meas. Tech., 12, 691–702, https://doi.org/10.5194/amt-12-691-2019, https://doi.org/10.5194/amt-12-691-2019, 2019
Short summary
Short summary
This research demonstrates the use of an unmanned aerial vehicle (UAV) to characterize the gaseous and diesel particle emissions of a ship at sea. The field study was part of the research voyage “The Great Barrier Reef as a significant source of climatically relevant aerosol particles” on board the RV Investigator around the Australian Great Barrier Reef. Measurements of the RV Investigator exhaust plume were carried out while the ship was operating at sea, at a steady engine load.
Joel Alroe, Luke T. Cravigan, Marc D. Mallet, Zoran D. Ristovski, Branka Miljevic, Chiemeriwo G. Osuagwu, and Graham R. Johnson
Atmos. Meas. Tech., 11, 4361–4372, https://doi.org/10.5194/amt-11-4361-2018, https://doi.org/10.5194/amt-11-4361-2018, 2018
Short summary
Short summary
This study describes a new volatility-based method to directly examine the composition and corresponding hygroscopic contribution of mixed aerosol components. Measurements of chamber-generated secondary organic aerosol and coastal marine aerosol demonstrated effective separation of both internal and external mixtures. In each case, the findings enabled composition-based models to reliably reproduce observed particle hygroscopicities.
Marc D. Mallet, Maximilien J. Desservettaz, Branka Miljevic, Andelija Milic, Zoran D. Ristovski, Joel Alroe, Luke T. Cravigan, E. Rohan Jayaratne, Clare Paton-Walsh, David W. T. Griffith, Stephen R. Wilson, Graham Kettlewell, Marcel V. van der Schoot, Paul Selleck, Fabienne Reisen, Sarah J. Lawson, Jason Ward, James Harnwell, Min Cheng, Rob W. Gillett, Suzie B. Molloy, Dean Howard, Peter F. Nelson, Anthony L. Morrison, Grant C. Edwards, Alastair G. Williams, Scott D. Chambers, Sylvester Werczynski, Leah R. Williams, V. Holly L. Winton, Brad Atkinson, Xianyu Wang, and Melita D. Keywood
Atmos. Chem. Phys., 17, 13681–13697, https://doi.org/10.5194/acp-17-13681-2017, https://doi.org/10.5194/acp-17-13681-2017, 2017
Short summary
Short summary
Fires play an important role within atmosphere. Gaseous and aerosol emissions influence Earth's temperature but these emissions can vary drastically across region and season. The SAFIRED (Savannah Fires in the Early Dry Season) campaign was undertaken at the Australian Tropical Research Station in north Australia during the 2014 early dry season. This paper presents an overview of the fires in this region, the measurements of their emissions and the implications of these fires on the atmosphere.
Cliff S. Law, Murray J. Smith, Mike J. Harvey, Thomas G. Bell, Luke T. Cravigan, Fiona C. Elliott, Sarah J. Lawson, Martine Lizotte, Andrew Marriner, John McGregor, Zoran Ristovski, Karl A. Safi, Eric S. Saltzman, Petri Vaattovaara, and Carolyn F. Walker
Atmos. Chem. Phys., 17, 13645–13667, https://doi.org/10.5194/acp-17-13645-2017, https://doi.org/10.5194/acp-17-13645-2017, 2017
Short summary
Short summary
We carried out a multidisciplinary study to examine how aerosol production is influenced by the production and emission of trace gases and particles in the surface ocean. Phytoplankton blooms of different species composition in frontal waters southeast of New Zealand were a significant source of dimethylsulfide and other aerosol precursors. The relationships between surface ocean biogeochemistry and aerosol composition will inform the understanding of aerosol production over the remote ocean.
Sarah J. Lawson, Martin Cope, Sunhee Lee, Ian E. Galbally, Zoran Ristovski, and Melita D. Keywood
Atmos. Chem. Phys., 17, 11707–11726, https://doi.org/10.5194/acp-17-11707-2017, https://doi.org/10.5194/acp-17-11707-2017, 2017
Short summary
Short summary
A high-resolution chemical transport model was used to reproduce observed smoke plumes. The model output was highly sensitive to fire emission factors and meteorology, particularly for secondary pollutant ozone. Aged urban air (age = 2 days) was the major source of ozone observed, with minor contributions from the fire. This work highlights the importance of assessing model sensitivity and the use of modelling to determine the contribution from different sources to atmospheric composition.
Andelija Milic, Marc D. Mallet, Luke T. Cravigan, Joel Alroe, Zoran D. Ristovski, Paul Selleck, Sarah J. Lawson, Jason Ward, Maximilien J. Desservettaz, Clare Paton-Walsh, Leah R. Williams, Melita D. Keywood, and Branka Miljevic
Atmos. Chem. Phys., 17, 3945–3961, https://doi.org/10.5194/acp-17-3945-2017, https://doi.org/10.5194/acp-17-3945-2017, 2017
Short summary
Short summary
This study reports chemical characterization of fresh and processed aerosols sampled over a month-long field campaign, during the intense fire period in Australian tropical savannah region. The study illustrates diversity in fire emissions and importance of processed fire emissions and formation of secondary species, including biogenic secondary species, in northern Australia.
Marc D. Mallet, Luke T. Cravigan, Andelija Milic, Joel Alroe, Zoran D. Ristovski, Jason Ward, Melita Keywood, Leah R. Williams, Paul Selleck, and Branka Miljevic
Atmos. Chem. Phys., 17, 3605–3617, https://doi.org/10.5194/acp-17-3605-2017, https://doi.org/10.5194/acp-17-3605-2017, 2017
Short summary
Short summary
This paper presents data on the size, composition and concentration of aerosol particles emitted from north Australian savannah fires and how these properties influence cloud condensation nuclei (CCN) concentrations. Both the size and composition of aerosol were found to be important in determining CCN. Despite large CCNc enhancements during periods of close biomass burning, the aerosol was very weakly hygroscopic which should be accounted for in climate models to avoid large CCNc overestimates.
Farhad Salimi, Md. Mahmudur Rahman, Sam Clifford, Zoran Ristovski, and Lidia Morawska
Atmos. Chem. Phys., 17, 521–530, https://doi.org/10.5194/acp-17-521-2017, https://doi.org/10.5194/acp-17-521-2017, 2017
F. Salimi, L. R. Crilley, S. Stevanovic, Z. Ristovski, M. Mazaheri, C. He, G. Johnson, G. Ayoko, and L. Morawska
Atmos. Chem. Phys., 15, 13475–13485, https://doi.org/10.5194/acp-15-13475-2015, https://doi.org/10.5194/acp-15-13475-2015, 2015
S. J. Lawson, M. D. Keywood, I. E. Galbally, J. L. Gras, J. M. Cainey, M. E. Cope, P. B. Krummel, P. J. Fraser, L. P. Steele, S. T. Bentley, C. P. Meyer, Z. Ristovski, and A. H. Goldstein
Atmos. Chem. Phys., 15, 13393–13411, https://doi.org/10.5194/acp-15-13393-2015, https://doi.org/10.5194/acp-15-13393-2015, 2015
Short summary
Short summary
Biomass burning (BB) plumes were opportunistically measured at the Cape Grim Baseline Station in Tasmania, Australia. We provide a unique set of trace gas and particle emission factors for temperate Australian coastal heathland fires, and attribute a major short-lived enhancement in emission ratios to a minor rainfall event. The ability of BB particles to act as cloud condensation nuclei, and the contribution of BB emissions to observed particle growth and ozone enhancements are discussed.
A. M. Pourkhesalian, S. Stevanovic, M. M. Rahman, E. M. Faghihi, S. E. Bottle, A. R. Masri, R. J. Brown, and Z. D. Ristovski
Atmos. Chem. Phys., 15, 9099–9108, https://doi.org/10.5194/acp-15-9099-2015, https://doi.org/10.5194/acp-15-9099-2015, 2015
Short summary
Short summary
This study investigates the effects of biodiesel's chemical composition on the volatility and reactive oxygenate species of fresh and aged diesel particulate matter.
Using a potential aerosol mass chamber, changes of volatility and reactive oxygenated species are studied. The study concludes that more saturated and more oxygenated diesel fuels can cause more volatile particles carrying more reactive oxygenated species whether before or after aging.
S. J. Lawson, P. W. Selleck, I. E. Galbally, M. D. Keywood, M. J. Harvey, C. Lerot, D. Helmig, and Z. Ristovski
Atmos. Chem. Phys., 15, 223–240, https://doi.org/10.5194/acp-15-223-2015, https://doi.org/10.5194/acp-15-223-2015, 2015
Short summary
Short summary
Glyoxal and methylglyoxal are short-lived organic trace gases and important precursors of secondary organic aerosol. Measurements over oceans are sparse. We present the first in situ glyoxal and methylglyoxal observations over remote temperate oceans, alongside observations of precursor gases. Precursor gases cannot explain observed mixing ratios, highlighting an unknown source. We show a large discrepancy between calculated vertical column densities of glyoxal and those retrieved by satellite.
F. Salimi, Z. Ristovski, M. Mazaheri, R. Laiman, L. R. Crilley, C. He, S. Clifford, and L. Morawska
Atmos. Chem. Phys., 14, 11883–11892, https://doi.org/10.5194/acp-14-11883-2014, https://doi.org/10.5194/acp-14-11883-2014, 2014
M. Tjernström, C. Leck, C. E. Birch, J. W. Bottenheim, B. J. Brooks, I. M. Brooks, L. Bäcklin, R. Y.-W. Chang, G. de Leeuw, L. Di Liberto, S. de la Rosa, E. Granath, M. Graus, A. Hansel, J. Heintzenberg, A. Held, A. Hind, P. Johnston, J. Knulst, M. Martin, P. A. Matrai, T. Mauritsen, M. Müller, S. J. Norris, M. V. Orellana, D. A. Orsini, J. Paatero, P. O. G. Persson, Q. Gao, C. Rauschenberg, Z. Ristovski, J. Sedlar, M. D. Shupe, B. Sierau, A. Sirevaag, S. Sjogren, O. Stetzer, E. Swietlicki, M. Szczodrak, P. Vaattovaara, N. Wahlberg, M. Westberg, and C. R. Wheeler
Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, https://doi.org/10.5194/acp-14-2823-2014, 2014
Related subject area
Subject: Aerosols | Technique: In Situ Measurement | Topic: Instruments and Platforms
Deriving the hygroscopicity of ambient particles using low-cost optical particle counters
Performance evaluation of an online monitor based on X-ray fluorescence for detecting elemental concentrations in ambient particulate matter
Simulations of the collection of mesospheric dust particles with a rocket instrument
Characterisation of particle single-scattering albedo with a modified airborne dual-wavelength CAPS monitor
Use of an uncrewed aerial system to investigate aerosol direct and indirect radiative forcing effects in the marine atmosphere
Characterization of the airborne aerosol inlet and transport system used during the A-LIFE aircraft field experiment
Large-scale automated emission measurement of individual vehicles with point sampling
Development of a cascade impactor optimized for size-fractionated analysis of aerosol metal content by total reflection X-ray fluorescence spectroscopy (TXRF)
Modular Multiplatform Compatible Air Measurement System (MoMuCAMS): a new modular platform for boundary layer aerosol and trace gas vertical measurements in extreme environments
Two new multirotor uncrewed aerial vehicles (UAVs) for glaciogenic cloud seeding and aerosol measurements within the CLOUDLAB project
Real-time pollen identification using holographic imaging and fluorescence measurements
Assessing potential indicators of aerosol wet scavenging during long-range transport
Next-generation ice-nucleating particle sampling on board aircraft: characterization of the High-volume flow aERosol particle filter sAmpler (HERA)
Development and characterization of the Portable Ice Nucleation Chamber 2 (PINCii)
The four-wavelength Photoacoustic Aerosol Absorption Spectrometer (PAAS-4λ)
Improved counting statistics of an ultrafine differential mobility particle size spectrometer system
Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah
Source apportionment of black carbon and combustion-related CO2 for the determination of source-specific emission factors
CAMP: an instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere
New method to determine black carbon mass size distribution
The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere
A study on the performance of low-cost sensors for source apportionment at an urban background site
A dual-wavelength photothermal aerosol absorption monitor: design, calibration and performance
A high-transmission axial ion mobility classifier for mass–mobility measurements of atmospheric ions
Design, characterization, and first field deployment of a novel aircraft-based aerosol mass spectrometer combining the laser ablation and flash vaporization techniques
An instrument for direct measurement of emissions: cooling tower example
The Aerosol Research Observation Station (AEROS)
Laser imaging nephelometer for aircraft deployment
A new method to quantify particulate sodium and potassium salts (nitrate, chloride, and sulfate) by thermal desorption aerosol mass spectrometry
Evaluating the PurpleAir monitor as an aerosol light scattering instrument
Undersizing of aged African biomass burning aerosol by an ultra-high-sensitivity aerosol spectrometer
Evaluation methods for low-cost particulate matter sensors
Simulation-aided characterization of a versatile water-based condensation particle counter for atmospheric airborne research
Development of an in situ dual-channel thermal desorption gas chromatography instrument for consistent quantification of volatile, intermediate-volatility and semivolatile organic compounds
Assessment of online water-soluble brown carbon measuring systems for aircraft sampling
Characterizing the performance of a POPS miniaturized optical particle counter when operated on a quadcopter drone
A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth – Part 3: Automation and design improvements
Rapid measurement of RH-dependent aerosol hygroscopic growth using a humidity-controlled fast integrated mobility spectrometer (HFIMS)
Detection of ship plumes from residual fuel operation in emission control areas using single-particle mass spectrometry
Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermal–optical carbon analyzer
Captive Aerosol Growth and Evolution (CAGE) chamber system to investigate particle growth due to secondary aerosol formation
Design and characterization of a new oxidation flow reactor for laboratory and long-term ambient studies
A reel-down instrument system for profile measurements of water vapor, temperature, clouds, and aerosol beneath constant-altitude scientific balloons
Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol
A semicontinuous study on the ecotoxicity of atmospheric particles using a versatile aerosol concentration enrichment system (VACES): development and field characterization
A novel rocket-borne ion mass spectrometer with large mass range: instrument description and first-flight results
Detailed characterization of the CAPS single-scattering albedo monitor (CAPS PMssa) as a field-deployable instrument for measuring aerosol light absorption with the extinction-minus-scattering method
New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 1: Spectral Aerosol Extinction (SpEx) instrument field validation during the KORUS-OC cruise
New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 2: Extinction, total absorption, water- and methanol-soluble absorption observed during the KORUS-OC cruise
Continuous online monitoring of ice-nucleating particles: development of the automated Horizontal Ice Nucleation Chamber (HINC-Auto)
Wei-Chieh Huang, Hui-Ming Hung, Ching-Wei Chu, Wei-Chun Hwang, and Shih-Chun Candice Lung
Atmos. Meas. Tech., 17, 6073–6084, https://doi.org/10.5194/amt-17-6073-2024, https://doi.org/10.5194/amt-17-6073-2024, 2024
Short summary
Short summary
This study investigates aerosol properties crucial for health, cloud formation, and climate impact. Employing a low-cost sensor system, we assess hygroscopicity of particulate matter (PM) and the ability to influence cloud formation to improve the reported PM concentrations from low-cost sensors. The study introduces an alternate methodology for assessing aerosol hygroscopicity, offering insights into atmospheric science, air quality, and cloud dynamics.
Ivonne Trebs, Céline Lett, Andreas Krein, Erika Matsumoto Kawaguchi, and Jürgen Junk
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-134, https://doi.org/10.5194/amt-2024-134, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study explores the effectiveness of the Horiba PX-375 monitor for analyzing the elemental composition of airborne particulate matter (PM). Understanding this composition of PM is important for identifying its sources, assessing potential health risks, and developing strategies to reduce air pollution. The PX-375 monitor proved to be a valuable tool for ongoing air quality monitoring studies and could be particularly useful as pollution levels and sources change in the future.
Adrien Pineau, Henriette Trollvik, Herman Greaker, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann
Atmos. Meas. Tech., 17, 3843–3861, https://doi.org/10.5194/amt-17-3843-2024, https://doi.org/10.5194/amt-17-3843-2024, 2024
Short summary
Short summary
The mesosphere, part of the upper atmosphere, contains small solid dust particles, mostly made up of material from interplanetary space. We are preparing an experiment to collect such particles during a rocket flight. A new instrument has been designed and numerical simulations have been performed to investigate the airflow nearby as well as its dust collection efficiency. The collected dust particles will be further analyzed in the laboratory in order to study their chemical composition.
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024, https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary
Short summary
To meet the requirements for measuring aerosol optical properties on airborne platforms and conducting dual-wavelength measurements, we introduced A2S2, an airborne dual-wavelength cavity-attenuated phase-shift single monitor. This study reports the results in the laboratory and an aircraft campaign over Paris and its surrounding regions. The results demonstrate A2S2's reliability in measuring aerosol optical properties at both wavelengths and its suitability for future aircraft campaigns.
Patricia K. Quinn, Timothy S. Bates, Derek J. Coffman, James E. Johnson, and Lucia M. Upchurch
Atmos. Meas. Tech., 17, 3157–3170, https://doi.org/10.5194/amt-17-3157-2024, https://doi.org/10.5194/amt-17-3157-2024, 2024
Short summary
Short summary
An uncrewed aerial observing system has been developed for the measurement of vertical profiles of aerosol and cloud properties that affect Earth's radiation balance. The system was successfully deployed from a ship and from a coastal site and flown autonomously up to 3050 m and for 4.5 h. These results indicate the potential of the observing system to make routine, operational flights from ships and land to characterize aerosol interactions with radiation and clouds.
Manuel Schöberl, Maximilian Dollner, Josef Gasteiger, Petra Seibert, Anne Tipka, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 2761–2776, https://doi.org/10.5194/amt-17-2761-2024, https://doi.org/10.5194/amt-17-2761-2024, 2024
Short summary
Short summary
Transporting a representative aerosol sample to instrumentation inside a research aircraft remains a challenge due to losses or enhancements of particles in the aerosol sampling system. Here, we present sampling efficiencies and the cutoff diameter for the DLR Falcon aerosol sampling system as a function of true airspeed by comparing the in-cabin and the out-cabin particle number size distributions observed during the A-LIFE aircraft mission.
Markus Knoll, Martin Penz, Hannes Juchem, Christina Schmidt, Denis Pöhler, and Alexander Bergmann
Atmos. Meas. Tech., 17, 2481–2505, https://doi.org/10.5194/amt-17-2481-2024, https://doi.org/10.5194/amt-17-2481-2024, 2024
Short summary
Short summary
Exhaust emissions from combustion-based vehicles are negatively affecting human health and our environment. In particular, a small share (< 20 %) of poorly maintained or tampered vehicles are responsible for the majority (60 %–90 %) of traffic-related emissions. The emissions from vehicles are currently not properly monitored during their lifetime. We present a roadside measurement technique, called
point sampling, which can be used to monitor vehicle emissions throughout their life cycle.
Claudio Crazzolara and Andreas Held
Atmos. Meas. Tech., 17, 2183–2194, https://doi.org/10.5194/amt-17-2183-2024, https://doi.org/10.5194/amt-17-2183-2024, 2024
Short summary
Short summary
Our paper describes the development of a collection device that can be used to collect airborne dust particles classified according to their size. This collection device is optimized for a special analysis method based on X-ray fluorescence so that particles can be collected from the air and analyzed with high sensitivity. This enables the determination of the content of heavy metals in the airborne particle fraction, which are of health-relevant significance.
Roman Pohorsky, Andrea Baccarini, Julie Tolu, Lenny H. E. Winkel, and Julia Schmale
Atmos. Meas. Tech., 17, 731–754, https://doi.org/10.5194/amt-17-731-2024, https://doi.org/10.5194/amt-17-731-2024, 2024
Short summary
Short summary
This manuscript presents a new tethered-balloon-based platform for in situ vertical measurements of aerosols and trace gases in the lower atmosphere of polar and alpine regions. The system can host various instrumental setups to target different research questions and features new instruments, in particular a miniaturized scanning electrical mobility spectrometer, deployed for the first time in a tethered balloon.
Anna J. Miller, Fabiola Ramelli, Christopher Fuchs, Nadja Omanovic, Robert Spirig, Huiying Zhang, Ulrike Lohmann, Zamin A. Kanji, and Jan Henneberger
Atmos. Meas. Tech., 17, 601–625, https://doi.org/10.5194/amt-17-601-2024, https://doi.org/10.5194/amt-17-601-2024, 2024
Short summary
Short summary
We present a method for aerosol and cloud research using two uncrewed aerial vehicles (UAVs). The UAVs have a propeller heating mechanism that allows flights in icing conditions, which has so far been a limitation for cloud research with UAVs. One UAV burns seeding flares, producing a plume of particles that causes ice formation in supercooled clouds. The second UAV measures aerosol size distributions and is used for measuring the seeding plume or for characterizing the boundary layer.
Sophie Erb, Elias Graf, Yanick Zeder, Simone Lionetti, Alexis Berne, Bernard Clot, Gian Lieberherr, Fiona Tummon, Pascal Wullschleger, and Benoît Crouzy
Atmos. Meas. Tech., 17, 441–451, https://doi.org/10.5194/amt-17-441-2024, https://doi.org/10.5194/amt-17-441-2024, 2024
Short summary
Short summary
In this study, we focus on an automatic bioaerosol measurement instrument and investigate the impact of using its fluorescence measurement for pollen identification. The fluorescence signal is used together with a pair of images from the same instrument to identify single pollen grains via neural networks. We test whether considering fluorescence as a supplementary input improves the pollen identification performance by comparing three different neural networks.
Miguel Ricardo A. Hilario, Avelino F. Arellano, Ali Behrangi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Michael A. Shook, Luke D. Ziemba, and Armin Sorooshian
Atmos. Meas. Tech., 17, 37–55, https://doi.org/10.5194/amt-17-37-2024, https://doi.org/10.5194/amt-17-37-2024, 2024
Short summary
Short summary
Wet scavenging strongly influences aerosol lifetime and interactions but is a large uncertainty in global models. We present a method to identify meteorological variables relevant for estimating wet scavenging. During long-range transport over the tropical western Pacific, relative humidity and the frequency of humid conditions are better predictors of scavenging than precipitation. This method can be applied to other regions, and our findings can inform scavenging parameterizations in models.
Sarah Grawe, Conrad Jentzsch, Jonas Schaefer, Heike Wex, Stephan Mertes, and Frank Stratmann
Atmos. Meas. Tech., 16, 4551–4570, https://doi.org/10.5194/amt-16-4551-2023, https://doi.org/10.5194/amt-16-4551-2023, 2023
Short summary
Short summary
Measurements of ice-nucleating particle (INP) concentrations are valuable for the simulation of cloud properties. In recent years, filter sampling in combination with offline INP measurements has become increasingly popular. However, most sampling is ground-based, and the vertical transport of INPs is not well quantified. The High-volume flow aERosol particle filter sAmpler (HERA) for applications on board aircraft was developed to expand the sparse dataset of INP concentrations at cloud level.
Dimitri Castarède, Zoé Brasseur, Yusheng Wu, Zamin A. Kanji, Markus Hartmann, Lauri Ahonen, Merete Bilde, Markku Kulmala, Tuukka Petäjä, Jan B. C. Pettersson, Berko Sierau, Olaf Stetzer, Frank Stratmann, Birgitta Svenningsson, Erik Swietlicki, Quynh Thu Nguyen, Jonathan Duplissy, and Erik S. Thomson
Atmos. Meas. Tech., 16, 3881–3899, https://doi.org/10.5194/amt-16-3881-2023, https://doi.org/10.5194/amt-16-3881-2023, 2023
Short summary
Short summary
Clouds play a key role in Earth’s climate by influencing the surface energy budget. Certain types of atmospheric aerosols, called ice-nucleating particles (INPs), induce the formation of ice in clouds and, thus, often initiate precipitation formation. The Portable Ice Nucleation Chamber 2 (PINCii) is a new instrument developed to study ice formation and to conduct ambient measurements of INPs, allowing us to investigate the sources and properties of the atmospheric aerosols that can act as INPs.
Franz Martin Schnaiter, Claudia Linke, Eija Asmi, Henri Servomaa, Antti-Pekka Hyvärinen, Sho Ohata, Yutaka Kondo, and Emma Järvinen
Atmos. Meas. Tech., 16, 2753–2769, https://doi.org/10.5194/amt-16-2753-2023, https://doi.org/10.5194/amt-16-2753-2023, 2023
Short summary
Short summary
Light-absorbing particles from combustion processes are important contributors to climate warming. Their highly variable spectral light absorption properties need to be monitored in the field. Commonly used methods show measurement artefacts that are difficult to correct. We introduce a new instrument that is based on the photoacoustic effect. Long-term operation in the Finnish Arctic demonstrates the applicability of the new instrument for unattended light absorption monitoring.
Dominik Stolzenburg, Tiia Laurila, Pasi Aalto, Joonas Vanhanen, Tuukka Petäjä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 2471–2483, https://doi.org/10.5194/amt-16-2471-2023, https://doi.org/10.5194/amt-16-2471-2023, 2023
Short summary
Short summary
Size-distribution measurements of ultrafine particles are of special interest as they can be used to estimate the atmospheric significance of new particle formation, a process which is thought to influence the global climate. Here we show that improved counting statistics in size-distribution measurements through the usage of higher sampling flows can significantly reduce the uncertainties in such calculations.
Kamaljeet Kaur and Kerry E. Kelly
Atmos. Meas. Tech., 16, 2455–2470, https://doi.org/10.5194/amt-16-2455-2023, https://doi.org/10.5194/amt-16-2455-2023, 2023
Short summary
Short summary
We evaluated the AlphaSense OPC-N3 and PMS5003 compared to federal equivalent method (FEM) PM10 measurements in the Salt Lake Valley during five dust events. Before correction, the OPC-N3 agreed well, but the PMS PM10 measurements correlated poorly with the FEM. After correcting the PMS with a PM2.5 / PM10 ratio-based factor, the PMS PM10 correlations improved significantly. This suggests the possibility of better resolved spatial estimates of PM10 using PMS measurements and PM2.5 / PM10 ratios.
Balint Alfoldy, Asta Gregorič, Matic Ivančič, Irena Ježek, and Martin Rigler
Atmos. Meas. Tech., 16, 135–152, https://doi.org/10.5194/amt-16-135-2023, https://doi.org/10.5194/amt-16-135-2023, 2023
Short summary
Short summary
Atmospheric concentrations and source apportionment (SA) of black carbon (BC) and CO2 were determined in an urban environment during a heating season. BC particles were attributed to two major sources: traffic and heating. The BC SA was implemented by an Aethalometer model used for the SA of CO2 supposing that the source-specific CO2 components are correlated with the corresponding BC. Source-specific emission factors were determined as a ratio of corresponding BC and CO2 components.
Christian Pilz, Sebastian Düsing, Birgit Wehner, Thomas Müller, Holger Siebert, Jens Voigtländer, and Michael Lonardi
Atmos. Meas. Tech., 15, 6889–6905, https://doi.org/10.5194/amt-15-6889-2022, https://doi.org/10.5194/amt-15-6889-2022, 2022
Short summary
Short summary
Tethered balloon observations are highly valuable for aerosol studies in the lowest part of the atmosphere. This study presents a newly developed platform called CAMP with four aerosol instruments for balloon-borne measurements in the Arctic. Laboratory characterizations and evaluations of the instruments and results of a first field deployment are shown. A case study highlights CAMP's capabilities and the importance of airborne aerosol studies for interpretation of ground-based observations.
Weilun Zhao, Gang Zhao, Ying Li, Song Guo, Nan Ma, Lizi Tang, Zirui Zhang, and Chunsheng Zhao
Atmos. Meas. Tech., 15, 6807–6817, https://doi.org/10.5194/amt-15-6807-2022, https://doi.org/10.5194/amt-15-6807-2022, 2022
Short summary
Short summary
A new method to determine black carbon mass size distribution (BCMSD) was proposed using the size-resolved absorption coefficient measured by an aerodynamic aerosol classifier in tandem with an aethalometer. This new method fills the gap in the high-time-resolution measurement of BCMSD ranging from upper submicron particle sizes to larger than 1 µm. This method can be applied to field measurement of BCMSD extensively for better understanding BC aging and better estimating the BC climate effect.
Antonis Dragoneas, Sergej Molleker, Oliver Appel, Andreas Hünig, Thomas Böttger, Markus Hermann, Frank Drewnick, Johannes Schneider, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 15, 5719–5742, https://doi.org/10.5194/amt-15-5719-2022, https://doi.org/10.5194/amt-15-5719-2022, 2022
Short summary
Short summary
The ERICA is a specially designed aerosol particle mass spectrometer for in situ, real-time chemical composition analysis of aerosols. It can operate completely autonomously, in the absence of an instrument operator. Its design has enabled its operation under harsh conditions, like those experienced in the upper troposphere and lower stratosphere, aboard unpressurized high-altitude research aircraft. The instrument has successfully participated in several aircraft operations around the world.
Dimitrios Bousiotis, David C. S. Beddows, Ajit Singh, Molly Haugen, Sebastián Diez, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 15, 4047–4061, https://doi.org/10.5194/amt-15-4047-2022, https://doi.org/10.5194/amt-15-4047-2022, 2022
Short summary
Short summary
In the last decade, low-cost sensors have revolutionised the field of air quality monitoring. This paper extends the ability of low-cost sensors to not only measure air pollution, but also to understand where the pollution comes from. This "source apportionment" is a critical step in air quality management to allow for the mitigation of air pollution. The techniques developed in this paper have the potential for great impact in both research and industrial applications.
Luka Drinovec, Uroš Jagodič, Luka Pirker, Miha Škarabot, Mario Kurtjak, Kristijan Vidović, Luca Ferrero, Bradley Visser, Jannis Röhrbein, Ernest Weingartner, Daniel M. Kalbermatter, Konstantina Vasilatou, Tobias Bühlmann, Celine Pascale, Thomas Müller, Alfred Wiedensohler, and Griša Močnik
Atmos. Meas. Tech., 15, 3805–3825, https://doi.org/10.5194/amt-15-3805-2022, https://doi.org/10.5194/amt-15-3805-2022, 2022
Short summary
Short summary
A new photothermal interferometer (PTAAM-2λ) for artefact-free determination of the aerosol absorption coefficient at two wavelengths is presented. The instrument is calibrated with NO2 and polydisperse nigrosin, resulting in very low uncertainties of the absorption coefficients: 4 % at 532 nm and 6 % at 1064 nm. The instrument’s performance makes the PTAAM-2λ a strong candidate for reference measurements of the aerosol absorption coefficient.
Markus Leiminger, Lukas Fischer, Sophia Brilke, Julian Resch, Paul Martin Winkler, Armin Hansel, and Gerhard Steiner
Atmos. Meas. Tech., 15, 3705–3720, https://doi.org/10.5194/amt-15-3705-2022, https://doi.org/10.5194/amt-15-3705-2022, 2022
Short summary
Short summary
We developed an axial ion mobility classifier coupled to an atmospheric-pressure interface time-of-flight (APi-TOF) mass spectrometer to measure size-segregated atmospheric ions. We characterize the performance of the novel instrument with bipolar-electrospray-generated ion mobility standards and compare the results with CFD simulations and a simplified numerical particle-tracking model. Ultimately, we report first mass–mobility measurements of atmospheric ions in Innsbruck, Austria.
Andreas Hünig, Oliver Appel, Antonis Dragoneas, Sergej Molleker, Hans-Christian Clemen, Frank Helleis, Thomas Klimach, Franziska Köllner, Thomas Böttger, Frank Drewnick, Johannes Schneider, and Stephan Borrmann
Atmos. Meas. Tech., 15, 2889–2921, https://doi.org/10.5194/amt-15-2889-2022, https://doi.org/10.5194/amt-15-2889-2022, 2022
Short summary
Short summary
We have serially combined the two well-established methods for in situ real-time measurement of fine particle chemical composition, the single-particle laser ablation method and the flash evaporation with electron impact ionization method, into a novel instrument. Here we present the design; instrument characteristics, as derived from laboratory and field measurements; and results from the first field deployment during the 2017 StratoClim aircraft campaign.
Christopher D. Wallis, Mason D. Leandro, Patrick Y. Chuang, and Anthony S. Wexler
Atmos. Meas. Tech., 15, 2547–2556, https://doi.org/10.5194/amt-15-2547-2022, https://doi.org/10.5194/amt-15-2547-2022, 2022
Short summary
Short summary
Measuring emissions from stacks requires techniques to address a broad range of conditions and measurement challenges. Here we describe an instrument package held by a crane above a stack to characterize both wet droplet and dried aerosol emissions from cooling tower spray drift in situ. The instrument package characterizes the velocity, size distribution, and concentration of the wet droplet emissions and the mass concentration and elemental composition of the dried PM2.5 and PM10 emissions.
Karin Ardon-Dryer, Mary C. Kelley, Xia Xueting, and Yuval Dryer
Atmos. Meas. Tech., 15, 2345–2360, https://doi.org/10.5194/amt-15-2345-2022, https://doi.org/10.5194/amt-15-2345-2022, 2022
Short summary
Short summary
The Aerosol Research Observation Station (AEROS) located in West Texas was designed to continuously measure atmospheric particles, including different particulate matter sizes, total particle number concentration, and size distribution. This article provides a description of AEROS as well as an intercomparison of the different instruments using laboratory and atmospheric particles, showing similar concentration as well to distinguish between various pollution events (natural vs. anthropogenic).
Adam T. Ahern, Frank Erdesz, Nicholas L. Wagner, Charles A. Brock, Ming Lyu, Kyra Slovacek, Richard H. Moore, Elizabeth B. Wiggins, and Daniel M. Murphy
Atmos. Meas. Tech., 15, 1093–1105, https://doi.org/10.5194/amt-15-1093-2022, https://doi.org/10.5194/amt-15-1093-2022, 2022
Short summary
Short summary
Particles in the atmosphere play a significant role in climate change by scattering light back into space, reducing the amount of energy available to be absorbed by greenhouse gases. We built a new instrument to measure what direction light is scattered by particles, e.g., wildfire smoke. This is important because, depending on the angle of the sun, some particles scatter light into space (cooling the planet), but some light is also scattered towards the Earth (not cooling the planet).
Yuya Kobayashi and Nobuyuki Takegawa
Atmos. Meas. Tech., 15, 833–844, https://doi.org/10.5194/amt-15-833-2022, https://doi.org/10.5194/amt-15-833-2022, 2022
Short summary
Short summary
We propose a new method to quantify particulate sodium and potassium salts (nitrate, chloride, and sulfate) by using a refractory aerosol thermal desorption mass spectrometer (rTDMS). The combination of a graphite particle collector and a carbon dioxide laser enables high desorption temperature. Laboratory experiments showed that major ion signals originating from sodium or potassium salts were clearly detected, associated with the increase in the desorption temperature by laser heating.
James R. Ouimette, William C. Malm, Bret A. Schichtel, Patrick J. Sheridan, Elisabeth Andrews, John A. Ogren, and W. Patrick Arnott
Atmos. Meas. Tech., 15, 655–676, https://doi.org/10.5194/amt-15-655-2022, https://doi.org/10.5194/amt-15-655-2022, 2022
Short summary
Short summary
We show that the low-cost PurpleAir sensor can be characterized as a cell-reciprocal nephelometer. At two very different locations (Mauna Loa Observatory in Hawaii and the Table Mountain rural site in Colorado), the PurpleAir measurements are highly correlated with the submicrometer aerosol scattering coefficient measured by a research-grade integrating nephelometer. These results imply that, with care, PurpleAir data may be used to evaluate climate and air quality models.
Steven G. Howell, Steffen Freitag, Amie Dobracki, Nikolai Smirnow, and Arthur J. Sedlacek III
Atmos. Meas. Tech., 14, 7381–7404, https://doi.org/10.5194/amt-14-7381-2021, https://doi.org/10.5194/amt-14-7381-2021, 2021
Short summary
Short summary
Small particles in the air have important effects on visibility, clouds, and human health. For the ORACLES project we got a new particle sizing instrument that is fast, works over the most important particle sizes, and avoids some of the issues that plague other optical particle sizers. Unfortunately it sees some particles much smaller than they really are, likely because they heat up and evaporate. We show a crude correction and speculate why these particles heat up much more than expected.
Jeffrey K. Bean
Atmos. Meas. Tech., 14, 7369–7379, https://doi.org/10.5194/amt-14-7369-2021, https://doi.org/10.5194/amt-14-7369-2021, 2021
Short summary
Short summary
Understanding and improving the quality of data generated from low-cost air quality sensors are crucial steps in using these sensors. This work investigates how averaging time, choice of reference instrument, and the observation of higher pollutant concentrations can impact the perceived performance of low-cost sensors in an evaluation. The influence of these factors should be considered when comparing one sensor to another or determining if a sensor can produce data that fit a specific need.
Fan Mei, Steven Spielman, Susanne Hering, Jian Wang, Mikhail S. Pekour, Gregory Lewis, Beat Schmid, Jason Tomlinson, and Maynard Havlicek
Atmos. Meas. Tech., 14, 7329–7340, https://doi.org/10.5194/amt-14-7329-2021, https://doi.org/10.5194/amt-14-7329-2021, 2021
Short summary
Short summary
This study focuses on understanding a versatile water-based condensation particle counter (vWCPC 3789) performance under various ambient pressure conditions (500–1000 hPa). A vWCPC has the advantage of avoiding health and safety concerns. However, its performance characterization under low pressure is rare but crucial for ensuring successful airborne deployment. This paper provides advanced knowledge of operating a vWCPC 3789 to capture the spatial variations of atmospheric aerosols.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Yutong Liang, John Jayne, Susanne Hering, and Allen H. Goldstein
Atmos. Meas. Tech., 14, 6533–6550, https://doi.org/10.5194/amt-14-6533-2021, https://doi.org/10.5194/amt-14-6533-2021, 2021
Short summary
Short summary
cTAG is a new scientific instrument that measures concentrations of organic chemicals in the atmosphere. cTAG is the first instrument capable of measuring small, light chemicals as well as heavier chemicals and everything in between on a single detector, every hour. In this work we explain how cTAG works and some of the tests we performed to verify that it works properly and reliably. We also present measurements of alkanes that suggest they have three dominant sources in a Bay Area suburb.
Linghan Zeng, Amy P. Sullivan, Rebecca A. Washenfelder, Jack Dibb, Eric Scheuer, Teresa L. Campos, Joseph M. Katich, Ezra Levin, Michael A. Robinson, and Rodney J. Weber
Atmos. Meas. Tech., 14, 6357–6378, https://doi.org/10.5194/amt-14-6357-2021, https://doi.org/10.5194/amt-14-6357-2021, 2021
Short summary
Short summary
Three online systems for measuring water-soluble brown carbon are compared. A mist chamber and two different particle-into-liquid samplers were deployed on separate research aircraft targeting wildfires and followed a similar detection method using a long-path liquid waveguide with a spectrometer to measure the light absorption from 300 to 700 nm. Detection limits, signal hysteresis and other sampling issues are compared, and further improvements of these liquid-based systems are provided.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Eric A. Wendt, Casey Quinn, Christian L'Orange, Daniel D. Miller-Lionberg, Bonne Ford, Jeffrey R. Pierce, John Mehaffy, Michael Cheeseman, Shantanu H. Jathar, David H. Hagan, Zoey Rosen, Marilee Long, and John Volckens
Atmos. Meas. Tech., 14, 6023–6038, https://doi.org/10.5194/amt-14-6023-2021, https://doi.org/10.5194/amt-14-6023-2021, 2021
Short summary
Short summary
Fine particulate matter air pollution is one of the leading contributors to adverse health outcomes on the planet. Here, we describe the design and validation of a low-cost, compact, and autonomous instrument capable of measuring particulate matter levels directly, via mass sampling, and optically, via mass and sunlight extinction measurements. We demonstrate the instrument's accuracy relative to reference measurements and its potential for community-level sampling.
Jiaoshi Zhang, Steven Spielman, Yang Wang, Guangjie Zheng, Xianda Gong, Susanne Hering, and Jian Wang
Atmos. Meas. Tech., 14, 5625–5635, https://doi.org/10.5194/amt-14-5625-2021, https://doi.org/10.5194/amt-14-5625-2021, 2021
Short summary
Short summary
In this study, we present a newly developed instrument, the humidity-controlled fast integrated mobility spectrometer (HFIMS), for fast measurements of aerosol hygroscopic growth. The HFIMS can measure the distributions of particle hygroscopic growth factors at six diameters from 35 to 265 nm under five RH levels from 20 to 85 % within 25 min. The HFIMS significantly advances our capability of characterizing the hygroscopic growth of atmospheric aerosols over a wide range of relative humidities.
Johannes Passig, Julian Schade, Robert Irsig, Lei Li, Xue Li, Zhen Zhou, Thomas Adam, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 4171–4185, https://doi.org/10.5194/amt-14-4171-2021, https://doi.org/10.5194/amt-14-4171-2021, 2021
Short summary
Short summary
Ships are major sources of air pollution; however, monitoring of ship emissions outside harbours is a challenging task. We optimized single-particle mass spectrometry (SPMS) for the detection of bunker fuel emissions and demonstrate the detection of individual ship plumes from more than 10 km in distance. The approach works independently of background air pollution and also when ships use exhaust-cleaning scrubbers. We discuss the potential and limits of SPMS-based monitoring of ship plumes.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yu-Chi Lin, Yuhang Wang, Xiaoyan Liu, Wenqi Zhang, Meiyi Fan, Feng Xie, Robert Cary, Joshua Dixon, and Lihua Zhou
Atmos. Meas. Tech., 14, 4053–4068, https://doi.org/10.5194/amt-14-4053-2021, https://doi.org/10.5194/amt-14-4053-2021, 2021
Short summary
Short summary
We introduce a two-wavelength method for brown C measurements with a modified Sunset carbon analyzer. We defined the enhanced concentrations and gave the possibility of providing an indicator of brown C. Compared with the strong local sources of organic and elemental C, we found that differences in EC mainly originated from regional transport. Biomass burning emissions significantly contributed to high differences in EC concentrations during the heavy biomass burning periods.
Candice L. Sirmollo, Don R. Collins, Jordan M. McCormick, Cassandra F. Milan, Matthew H. Erickson, James H. Flynn, Rebecca J. Sheesley, Sascha Usenko, Henry W. Wallace, Alexander A. T. Bui, Robert J. Griffin, Matthew Tezak, Sean M. Kinahan, and Joshua L. Santarpia
Atmos. Meas. Tech., 14, 3351–3370, https://doi.org/10.5194/amt-14-3351-2021, https://doi.org/10.5194/amt-14-3351-2021, 2021
Short summary
Short summary
The newly developed portable 1 m3 CAGE chamber systems were characterized using data acquired during a 2-month field study in 2016 in a forested area north of Houston, TX, USA. Concentrations of several oxidant and organic compounds measured in the chamber were found to closely agree with those calculated with a zero-dimensional model. By tracking the modes of injected monodisperse particles, a pattern change was observed for hourly averaged growth rates between late summer and early fall.
Ningjin Xu and Don R. Collins
Atmos. Meas. Tech., 14, 2891–2906, https://doi.org/10.5194/amt-14-2891-2021, https://doi.org/10.5194/amt-14-2891-2021, 2021
Short summary
Short summary
Oxidation flow reactors (OFRs) are frequently used to study atmospheric chemistry and aerosol formation by accelerating by up to 10 000 times the reactions that can take hours, days, or even weeks in the atmosphere. Here we present the design and evaluation of a new all-Teflon OFR. The computational, laboratory, and field use data we present demonstrate that the PFA OFR is suitable for a range of applications, including the study of rapidly changing ambient concentrations.
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021, https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Short summary
This work introduces a novel instrument system for high-resolution atmospheric profiling, which lowers and retracts a suspended instrument package beneath drifting long-duration balloons. During a 100 d circumtropical flight, the instrument collected over a hundred 2 km profiles of temperature, water vapor, clouds, and aerosol at 1 m resolution, yielding unprecedented geographic sampling and vertical resolution measurements of the tropical tropopause layer.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Xiaona Shang, Ling Li, Xinlian Zhang, Huihui Kang, Guodong Sui, Gehui Wang, Xingnan Ye, Hang Xiao, and Jianmin Chen
Atmos. Meas. Tech., 14, 1037–1045, https://doi.org/10.5194/amt-14-1037-2021, https://doi.org/10.5194/amt-14-1037-2021, 2021
Short summary
Short summary
Oxidative stress can be used to evaluate not only adverse health effects but also adverse ecological effects. However, little research uses eco-toxicological assay to assess the risks posed by particle matter to non-human biomes. One important reason might be that the concentration of toxic components of atmospheric particles is far below the high detection limit of eco-toxic measurement. To solve the rapid detection problem, we extended a VACES for ecotoxicity aerosol measurement.
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Frank Arnold, and Boris Strelnikov
Atmos. Meas. Tech., 14, 983–993, https://doi.org/10.5194/amt-14-983-2021, https://doi.org/10.5194/amt-14-983-2021, 2021
Short summary
Short summary
In this paper we describe the instrument ROMARA and show data from the first flight on a research rocket.
On the way through the atmosphere, the instrument detects positive and negative, natural occurring ions before returning back to ground.
ROMARA was successfully launched together with other instruments into a special radar echo.
We detected typical, light ions of positive and negative charge and heavy negative ions, but no heavy positive ions.
Rob L. Modini, Joel C. Corbin, Benjamin T. Brem, Martin Irwin, Michele Bertò, Rosaria E. Pileci, Prodromos Fetfatzis, Kostas Eleftheriadis, Bas Henzing, Marcel M. Moerman, Fengshan Liu, Thomas Müller, and Martin Gysel-Beer
Atmos. Meas. Tech., 14, 819–851, https://doi.org/10.5194/amt-14-819-2021, https://doi.org/10.5194/amt-14-819-2021, 2021
Short summary
Short summary
Extinction-minus-scattering is an important method for measuring aerosol light absorption, but its application in the field presents a number of challenges. A recently developed instrument based on this method – the CAPS PMssa – has the potential to overcome some of these challenges. We present a compilation of theory, lab measurements, and field examples to characterize this instrument and show the conditions under which it can deliver reliable absorption measurements for atmospheric aerosols.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Charles H. Hudgins, Kenneth L. Thornhill, Gregory L. Schuster, Richard H. Moore, Ewan C. Crosbie, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 695–713, https://doi.org/10.5194/amt-14-695-2021, https://doi.org/10.5194/amt-14-695-2021, 2021
Short summary
Short summary
First field data from a custom-built in situ instrument measuring hyperspectral (300–700 nm, 0.8 nm resolution) ambient atmospheric aerosol extinction are presented. The advantage of this capability is that it can be directly linked to other in situ techniques that measure physical and chemical properties of atmospheric aerosols. Second-order polynomials provided a better fit to the data than traditional power law fits, yielding greater discrimination among distinct ambient aerosol populations.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Michael Novak, Antonio Mannino, Ewan C. Crosbie, Gregory L. Schuster, Richard H. Moore, Charles H. Hudgins, Kenneth L. Thornhill, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, https://doi.org/10.5194/amt-14-715-2021, 2021
Short summary
Short summary
In situ measurements of ambient atmospheric aerosol hyperspectral (300–700 nm) optical properties (extinction, total absorption, water- and methanol-soluble absorption) were observed around the Korean peninsula. Such in situ observations provide a direct link between ambient aerosol optical properties and their physicochemical properties. The benefit of hyperspectral measurements is evident as simple mathematical functions could not fully capture the observed spectral detail of ambient aerosols.
Cyril Brunner and Zamin A. Kanji
Atmos. Meas. Tech., 14, 269–293, https://doi.org/10.5194/amt-14-269-2021, https://doi.org/10.5194/amt-14-269-2021, 2021
Short summary
Short summary
Subvisual microscopic particles in the atmosphere are needed to act as seeds for cloud droplets or ice crystals to form. The microscopic particles, called ice-nucleating particles (INPs), form ice crystals and are rare, and their properties are not well understood, in part because measuring them is challenging and time consuming, and to date has not been automated. Here, we present the first online instrument that can continuously and autonomously measure INP concentration at 243 K.
Cited articles
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions,
Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89,
13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Ayres, J. G., Borm, P., Cassee, F. R., Castranova, V., Donaldson, K., Ghio,
A., Harrison, R. M., Hider, R., Kelly, F., Kooter, I. M., Marano, F.,
Maynard, R. L., Mudway, I., Nel, A., Sioutas, C., Smith, S., Baeza-Squiban,
A., Cho, A., Duggan, S., and Froines, J.: Evaluating the toxicity of airborne
particulate matter and nanoparticles by measuring oxidative stress potential
– a workshop report and consensus statement, Inhal. Toxicol., 20, 75–99,
https://doi.org/10.1080/08958370701665517, 2008.
Benbrahim-Tallaa, L., Baan, R., Grosse, Y., Secretan-Lauby, B., El Ghissassi,
F., Bouvard, V., Guha, N., Loomis, D., and Straif, K.: Carcinogenicity of
diesel-engine and gasoline-engine exhausts and some Nitroarènes, Pollut.
Atmos., 13, 43–44, https://doi.org/10.1016/S1470-2045(12)70280-2, 2012.
Biskos, G., Paulsen, D., Russell, L. M., Buseck, P. R., and Martin, S. T.:
Prompt deliquescence and efflorescence of aerosol nanoparticles, Atmos. Chem.
Phys., 6, 4633–4642, https://doi.org/10.5194/acp-6-4633-2006, 2006.
Blinco, J. P., Fairfull-Smith, K. E., Morrow, B. J., and Bottle, S. E.:
Profluorescent Nitroxides as Sensitive Probes of Oxidative Change and Free
Radical Reactions, Aust. J. Chem., 64, 373–389, https://doi.org/10.1071/CH10442, 2011.
Brines, M., Dall'Osto, M., Beddows, D. C. S., Harrison, R. M.,
Gómez-Moreno, F., Núñez, L., Artíñano, B., Costabile,
F., Gobbi, G. P., Salimi, F., Morawska, L., Sioutas, C., and Querol, X.:
Traffic and nucleation events as main sources of ultrafine particles in
high-insolation developed world cities, Atmos. Chem. Phys., 15, 5929–5945,
https://doi.org/10.5194/acp-15-5929-2015, 2015.
Cho, A. K., Sioutas, C., Miguel, A. H., Kumagai, Y., Schmitz, D. A., Singh,
M., Eiguren-Fernandez, A., and Froines, J. R.: Redox activity of airborne
particulate matter at different sites in the Los Angeles Basin, Environ.
Res., 99, 40–47, 2005.
Chow, J. C., Watson, J. G., Mauderly, J. L., Costa, D. L., Wyzga, R. E.,
Vedal, S., Hidy, G. M., Altshuler, S. L., Marrack, D., Heuss, J. M., Wolff,
G. T., Pope, C. A., Dockery, D. W., Poperd, C. A., and Dockery, D. W.: Health
effects of fine particulate air pollution: lines that connect, J. Air Waste
Ma., 56, 707–708,
https://doi.org/10.1080/10473289.2006.10464545, 2006.
Delfino, R. J., Staimer, N., Tjoa, T., Arhami, M., Polidori, A., Gillen, D.
L., George, S. C., Shafer, M. M., Schauer, J. J., Sioutas, C., Ralph, C.,
Delfino, J., and Sioutash, C.: Associations of Primary and Secondary Organic
Aerosols With Airway and Systemic Inflammation in an Elderly Panel Cohort,
Source Epidemiol., 21, 892–902, 2010.
Donaldson, K., Stone, V., Seaton, A., and MacNee, W.: Ambient Particle
Inhalation and the Cardiovascular System: Potential Mechanisms, Environ.
Health Perspect., 109, 523–527, 2001.
Donaldson, K., Brown, D., Clouter, A., Duffin, R., Macnee, W., Renwick, L.,
Tran, L., and Stone, V.: The Pulmonary Toxicology of Ultrafine Particles, J.
Aerosol. Med., 15, 213–220, 2002.
Dong, H. B., Zeng, L. M., Hu, M., Yu, Y. S., Zhang, Y. H., Slanina, J.,
Zheng, M., Wang, Z. F., and Jansen, R.: Technical Note: The application of an
improved gas and aerosol collector for ambient air pollutants in China,
Atmos. Chem. Phys., 12, 10519–10533,
https://doi.org/10.5194/acp-12-10519-2012, 2012.
Eiguren-Fernandez, A., Kreisberg, N., and Hering, S.: An online monitor of
the oxidative capacity of aerosols (o-MOCA), Atmos. Meas. Tech., 10,
633–644, https://doi.org/10.5194/amt-10-633-2017, 2017.
Fairfull-Smith, K. E. and Bottle, S. E.: The Synthesis and Physical
Properties of Novel Polyaromatic Profluorescent Isoindoline Nitroxide Probes,
European J. Org. Chem., 2008, 5391–5400, https://doi.org/10.1002/ejoc.200800597, 2008.
Fang, T., Verma, V., Guo, H., King, L. E., Edgerton, E. S., and Weber, R. J.:
A semi-automated system for quantifying the oxidative potential of ambient
particles in aqueous extracts using the dithiothreitol (DTT) assay: results
from the Southeastern Center for Air Pollution and Epidemiology (SCAPE),
Atmos. Meas. Tech., 8, 471–482, https://doi.org/10.5194/amt-8-471-2015,
2015.
Fang, T., Verma, V., T Bates, J., Abrams, J., Klein, M., Strickland, J. M.,
Sarnat, E. S., Chang, H. H., Mulholland, A. J., Tolbert, E. P., Russell, G.
A., and Weber, J. R.: Oxidative potential of ambient water-soluble PM2.5
in the southeastern United States: Contrasts in sources and health
associations between ascorbic acid (AA) and dithiothreitol (DTT) assays,
Atmos. Chem. Phys., 16, 3865–3879, https://doi.org/10.5194/acp-16-3865-2016,
2016.
Fuller, S. J., Wragg, F. P. H., Nutter, J., and Kalberer, M.: Comparison of
on-line and off-line methods to quantify reactive oxygen species (ROS) in
atmospheric aerosols, Atmos. Environ., 92, 97–103,
https://doi.org/10.1016/j.atmosenv.2014.04.006, 2014.
Gao, D., Fang, T., Verma, V., Zeng, L., and Weber, R. J.: A method for
measuring total aerosol oxidative potential (OP) with the dithiothreitol
(DTT) assay and comparisons between an urban and roadside site of
water-soluble and total OP, Atmos. Meas. Tech., 10, 2821–2835,
https://doi.org/10.5194/amt-10-2821-2017, 2017.
Gussman, R. A., Kenny, L. C., Labickas, M., and Norton, P.: Design,
Calibration, and Field Test of a Cyclone for PM1 Ambient Air Sampling,
Aerosol Sci. Technol., 36, 361–365, https://doi.org/10.1080/027868202753504461, 2002.
Harrison, R. M. and Yin, J.: Particulate matter in the atmosphere: Which
particle properties are important for its effects on health?, Sci. Total
Environ., 249, 85–101, https://doi.org/10.1016/S0048-9697(99)00513-6, 2000.
Hasson, A. S. and Paulson, S. E.: An investigation of the relationship
between gas-phase and aerosol-borne hydroperoxides in urban air, J. Aerosol
Sci., 34, 459–468, https://doi.org/10.1016/S0021-8502(03)00002-8, 2003.
Hedayat, F., Stevanovic, S., Miljevic, B., Bottle, S., and Ristovski, Z. D.
D.: Review-evaluating the molecular assays for measuring the oxidative
potential of particulate matter, Chem. Ind. Chem. Eng. Q., 21, 201–210,
https://doi.org/10.2298/CICEQ140228031H, 2015.
Hering, S. V., Spielman, S. R., and Lewis, G. S.: Moderated Water Based
Condensational Particle Growth in a Laminar Flow, Aerosol Sci. Technol., 48,
401–408, https://doi.org/10.1080/02786826.2014.881460, 2014.
Huang, W., Zhang, Y., Zhang, Y., Zeng, L., Dong, H., Huo, P., Fang, D., and
Schauer, J. J.: Development of an automated sampling-analysis system for
simultaneous measurement of reactive oxygen species (ROS) in gas and particle
phases: GAC-ROS, Atmos. Environ., 134, 18–26,
https://doi.org/10.1016/j.atmosenv.2016.03.038, 2016a.
Huang, W., Zhang, Y., Zhang, Y., Fang, D., and Schauer, J. J.: Optimization
of the Measurement of Particle-Bound Reactive Oxygen Species with
2′,7′-dichlorofluorescin (DCFH), Water. Air. Soil Pollut., 227,
p. 164, https://doi.org/10.1007/s11270-016-2860-9,
2016b.
Hung, H.-F. and Wang, C.-S.: Experimental determination of reactive oxygen
species in Taipei aerosols, J. Aerosol Sci., 32, 1201–1211,
https://doi.org/10.1016/S0021-8502(01)00051-9, 2001.
Kao, M. C. and Wang, C.-S.: Reactive Oxygen Species in Incense Smoke, Aerososl
Air Qual. Res., 2, 61–69, 2002.
Kenny, L. C., Gussman, R., and Meyer, M.: Development of a Sharp-Cut Cyclone
for Ambient Aerosol Monitoring Applications, Aerosol Sci. Technol., 32,
338–358, https://doi.org/10.1080/027868200303669, 2000.
Khlystov, A.: The steam-jet aerosol collector, Atmos. Environ., 29,
2229–2234, https://doi.org/10.1016/1352-2310(95)00180-7, 1995.
Kidwell, C. B. and Ondov, J. M.: Development and Evaluation of a Prototype
System for Collecting Sub-Hourly Ambient Aerosol for Chemical Analysis,
Aerosol Sci. Technol., 35, 596–601, 2010.
King, L. E. and Weber, R. J.: Development and testing of an online method to
measure ambient fine particulate reactive oxygen species (ROS) based on the
2′,7′-dichlorofluorescin (DCFH) assay, Atmos. Meas. Tech., 6, 1647–1658,
https://doi.org/10.5194/amt-6-1647-2013, 2013.
Koehler, K., Shapiro, J., Sameenoi, Y., Henry, C., and Volckens, J.:
Laboratory evaluation of a microfluidic electrochemical sensor for aerosol
oxidative load, Aerosol Sci. Technol., 48, 489–497,
https://doi.org/10.1080/02786826.2014.891722, 2014.
Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., Wang, M.,
Oberley, T., Froines, J., and Nel, A.: Ultrafine Particulate Pollutants
Induce Oxidative Stress and Mitochondrial Damage, Environ. Health Perspect.,
111, 455–460, https://doi.org/10.1289/ehp.6000, 2002.
Li, Q., Wyatt, A., and Kamens, R. M.: Oxidant generation and toxicity
enhancement of aged-diesel exhaust, Atmos. Environ., 43, 1037–1042,
https://doi.org/10.1016/j.atmosenv.2008.11.018, 2009.
Ma, Q., Cai, S., Wang, S., Zhao, B., Martin, R. V., Brauer, M., Cohen, A.,
Jiang, J., Zhou, W., Hao, J., Frostad, J., Forouzanfar, M. H., and Burnett,
R. T.: Impacts of coal burning on ambient PM2.5 pollution in China,
Atmos. Chem. Phys., 17, 4477–4491, https://doi.org/10.5194/acp-17-4477-2017,
2017.
Miljevic, B., Fairfull-Smith, K. E., Bottle, S. E., and Ristovski, Z. D.: The
application of profluorescent nitroxides to detect reactive oxygen species
derived from combustion-generated particulate matter: Cigarette smoke – A
case study, Atmos. Environ., 44, 2224–2230,
https://doi.org/10.1016/j.atmosenv.2010.02.043, 2010.
Miljevic, B., Hedayat, F., Stevanovic, S., Fairfull-Smith, K. E., Bottle, S.
E., and Ristovski, Z. D.: To sonicate or not to sonicate PM filters: Reactive
Oxygen Species generation upon ultrasonic irradiation, Aerosol Sci.
Technol., 48, 1276–1284,
https://doi.org/10.1080/02786826.2014.981330, 2014.
Morgan, T. E., Davis, D. A., Iwata, N., Tanner, J. A., Snyder, D., Ning, Z.,
Kam, W., Hsu, Y.-T. T., Winkler, J. W., Chen, J.-C. C., Petasis, N. A.,
Baudry, M., Sioutas, C., and Finch, C. E.: Glutamatergic neurons in rodent
models respond to nanoscale particulate urban air pollutants in vivo and in
vitro, Environ. Health Perspect., 119, 1003–1009, https://doi.org/10.1289/ehp.1002973,
2011.
Mudway, I. S., Duggan, S. T., Venkataraman, C., Habib, G., Kelly, F. J., and
Grigg, J.: Combustion of dried animal dung as biofuel results in the
generation of highly redox active fine particulates, Part. Fibre Toxicol., 2,
p. 6, https://doi.org/10.1186/1743-8977-2-6, 2005.
Nel, A.: Air Pollution-Related Illness: Effects of Particles, Science, 308,
804–806, https://doi.org/10.1126/science.1108752, 2005.
Orsini, D. A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., and Weber, R.
J.: Refinements to the particle-into-liquid sampler (PILS) for ground and
airborne measurements of water soluble aerosol composition, Atmos. Environ.,
37, 1243–1259, https://doi.org/10.1016/S1352-2310(02)01015-4, 2003.
Orsini, D. A., Rhoads, K., McElhoney, K., Schick, E., Koehler, D., and
Hogrefe, O.: A Water Cyclone to Preserve Insoluble Aerosols in Liquid Flow –
An Interface to Flow Cytometry to Detect Airborne Nucleic Acid, Aerosol Sci.
Technol., 42, 343–356, https://doi.org/10.1080/02786820802072881, 2008.
Pal, A. K., Bello, D., Budhlall, B., Rogers, E., and Milton, D. K.: Screening
for Oxidative Stress Elicited by Engineered Nanomaterials: Evaluation of
Acellular DCFH Assay, Dose. Response., 10, 308–330,
https://doi.org/10.2203/dose-response.10-036.Pal, 2012.
Peltier, R. E., Weber, R. J., and Sullivan, A. P.: Investigating a
Liquid-Based Method for Online Organic Carbon Detection in Atmospheric
Particles, Aerosol Sci. Technol., 41, 1117–1127,
https://doi.org/10.1080/02786820701777465, 2007.
Penttinen, P., Timonen, K. L., Tiittanen, P., Mirme, A., Ruuskanen, J., and
Pekkanen, J.: Ultrafine particles in urban air and respiratory health among
adult asthmatics, Eur. Respir. J., 17, 428–435,
https://doi.org/10.1183/09031936.01.17304280, 2001.
Popovicheva, O., Persiantseva, N. M., Shonija, N. K., Demott, P., Koehler,
K., Petters, M., Kreidenweis, S., Tishkova, V., Demirdjian, B., and Suzanne,
J.: Water interaction with hydrophobic and hydrophilic soot particles, Phys.
Chem. Chem. Phys., 10, 2332–2344, https://doi.org/10.1039/b718944n, 2008.
Posner, L. N. and Pandis, S. N.: Sources of ultrafine particles in the
Eastern United States, Atmos. Environ., 111, 103–112,
https://doi.org/10.1016/j.atmosenv.2015.03.033, 2015.
Puthussery, J. V., Zhang, C., and Verma, V.: Development and field testing of
an online instrument for measuring the real-time oxidative potential of
ambient particulate matter based on dithiothreitol assay, Atmos. Meas. Tech.,
11, 5767–5780, https://doi.org/10.5194/amt-11-5767-2018, 2018.
Ristovski, Z. D., Miljevic, B., Surawski, N. C., Morawska, L., Fong, K. M.,
Goh, F., and Yang, I. A.: Respiratory health effects of diesel particulate
matter, Respirology, 17, 201–212, https://doi.org/10.1111/j.1440-1843.2011.02109.x,
2012.
Sa, A., Daher, N., Shafer, M. M., Schauer, J. J., Sioutas, C., Saffari, A.,
Daher, N., Shafer, M. M., Schauer, J. J., and Sioutas, C.: Global Perspective
on the Oxidative Potential of Airborne Particulate Matter: A Synthesis of
Research Findings, Environ. Sci. Technol., 48, 7576–7583,
https://doi.org/10.1021/es500937x, 2014.
Sabaliauskas, K., Jeong, C. H., Yao, X., Jun, Y. S., and Evans, G.: Cluster
analysis of roadside ultrafine particle size distributions, Atmos. Environ.,
70, 64–74, https://doi.org/10.1016/j.atmosenv.2012.12.025, 2013.
Sameenoi, Y., Koehler, K., Shapiro, J., Boonsong, K., Sun, Y., Collett, J.,
Volckens, J., and Henry, C. S.: Microfluidic electrochemical sensor for
on-line monitoring of aerosol oxidative activity, J. Am. Chem. Soc., 134,
10562–10566, https://doi.org/10.1021/ja3031104, 2012.
Sameenoi, Y., Panymeesamer, P., Supalakorn, N., Koehler, K., Chailapakul, O.,
Henry, C. S., and Volckens, J.: Microfluidic paper-based analytical device
for aerosol oxidative activity, Environ. Sci. Technol., 47, 932–940,
https://doi.org/10.1021/es304662w, 2013.
Shi, T., Duffin, R., Borm, P. J. A., Li, H., Weishaupt, C., and Schins, R. P.
F.: Hydroxyl-radical-dependent DNA damage by ambient particulate matter from
contrasting sampling locations, Environ. Res., 101, 18–24,
https://doi.org/10.1016/j.envres.2005.09.005, 2006.
Shima, H., Koike, E., Shinohara, R., and Kobayashi, T.: Oxidative ability and
toxicity of n-hexane insoluble fraction of diesel exhaust particles, Toxicol.
Sci., 91, 218–226, https://doi.org/10.1093/toxsci/kfj119, 2006.
Silverman, D. T., Samanic, C. M., Lubin, J. H., Blair, A. E., Stewart, P. A.,
Vermeulen, R., Coble, J. B., Rothman, N., Schleiff, P. L., Travis, W. D.,
Ziegler, R. G., Wacholder, S., and Attfield, M. D.: The Diesel Exhaust in
Miners study: a nested case-control study of lung cancer and diesel exhaust,
J. Natl. Cancer Inst., 104, 855–868, https://doi.org/10.1093/jnci/djs034, 2012.
Simon, P. K. and Dasgupta, P. K.: Wet Effluent Denuder Coupled Liquid/Ion
Chromatography Systems: Annular and Parallel Plate Denuders, Anal. Chem., 65,
1134–1139, https://doi.org/10.1021/ac00057a006, 1993.
Simon, P. K. and Dasgupta, P. K.: Continuous Automated Measurement of the
Soluble Fraction of Atmospheric Particulate Matter, Anal. Chem., 67, 71–78,
https://doi.org/10.1021/ac00097a012, 1995.
Simoneit, B. R. T., Kobayashi, M., Mochida, M., Kawamura, K., Lee, M., Lim,
H. J., Turpin, B. J., and Komazaki, Y.: Composition and major sources of
organic compounds of aerosol particulate matter sampled during the ACE-Asia
campaign, J. Geophys. Res.-Atmos., 109, D19S10, https://doi.org/10.1029/2004JD004598,
2004.
Stevanovic, S., Ristovski, Z. D., Miljevic, B., Fairfull-Smith, K. E., and
Bottle, S. E.: Application of profluorescent nitroxides for measurements of
oxidative capacity of combustion generated particles, Chem. Ind. Chem. Eng.
Q., 18, 653–659, 2012a.
Stevanovic, S., Miljevic, B., Eaglesham, G. K., Bottle, S. E., Ristovski, Z.
D., and Fairfull-Smith, K. E.: The use of a nitroxide probe in DMSO to
capture free radicals in particulate pollution, European J. Org. Chem.,
2012, 5908–5912, https://doi.org/10.1002/ejoc.201200903,
2012b.
Stevanovic, S., Miljevic, B., Madl, P., Clifford, S., and Ristovski, Z.:
Characterisation of a Commercially Available Thermodenuder and Diffusion
Drier for Ultrafine Particles Losses, Aerosol Air Qual. Res., 15,
357–363, https://doi.org/10.4209/aaqr.2013.12.0355,
2015.
Stevanovic, S., Vaughan, A., Hedayat, F., Salimi, F., Rahman, M. M., Zare,
A., Brown, R. A. J., Brown, R. A. J., Wang, H., Zhang, Z., Wang, X., Bottle,
S. E., Yang, I. A., and Ristovski, Z. D.: Oxidative potential of gas phase
combustion emissions – An underestimated and potentially harmful component
of air pollution from combustion processes, Atmos. Environ., 158, 227–235,
https://doi.org/10.1016/j.atmosenv.2017.03.041, 2017.
Stoeger, T., Takenaka, S., Frankenberger, B., Ritter, B., Karg, E., Maier,
K., Schulz, H., and Schmid, O.: Deducing in vivo toxicity of
combustion-derived nanoparticles from a cell-Free oxidative potency assay and
Metabolic activation of organic compounds, Environ. Health Perspect., 117,
54–60, https://doi.org/10.1289/ehp.11370, 2009.
Takeuchi, M., Ullah, S. M. R., and Dasgupta, P. K.: Continuous Collection of
Soluble Atmospheric Particles with a Wetted Hydrophilic Filter, Anal. Chem.,
77, 8031–8040, 2005.
Venkatachari, P. and Hopke, P. K.: Development and Laboratory Testing of an
Automated Monitor for the Measurement of Atmospheric Particle-Bound Reactive
Oxygen Species (ROS), Aerosol Sci. Technol., 42, 629–635,
https://doi.org/10.1080/02786820802227345, 2008.
Venkatachari, P., Hopke, P. K., Brune, W. H., Ren, X., Lesher, R., Mao, J.,
and Mitchell, M.: Characterization of Wintertime Reactive Oxygen Species
Concentrations in Flushing, New York, Aerosol Sci. Technol., 41, 97–111,
https://doi.org/10.1080/02786820601116004, 2007.
Verma, V., Rico-Martinez, R., Kotra, N., King, L., Liu, J., Snell, T. W., and
Weber, R. J.: Contribution of water-soluble and insoluble components and
their hydrophobic/hydrophilic subfractions to the reactive oxygen
species-generating potential of fine ambient aerosols, Environ. Sci.
Technol., 46, 11384–11392, https://doi.org/10.1021/es302484r, 2012.
Wang, Y., Hopke, P. K., Sun, L., Chalupa, D. C., and Utell, M. J.: Laboratory
and field testing of an automated atmospheric particle-bound reactive oxygen
species sampling-analysis system, J. Toxicol., 2011, 419476–419479,
https://doi.org/10.1155/2011/419476, 2011.
Weber, R. J., Orsini, D., Daun, Y., Lee, Y.-N. N., Klotz, P. J., and
Brechtel, F.: A Particle-into-Liquid Collector for Rapid Measurement of
Aerosol Bulk Chemical Composition, Aerosol Sci. Technol., 35, 718–727,
https://doi.org/10.1080/02786820152546761, 2001.
Wragg, F. P. H., Fuller, S. J., Freshwater, R., Green, D. C., Kelly, F. J.,
and Kalberer, M.: An automated online instrument to quantify aerosol-bound
reactive oxygen species (ROS) for ambient measurement and health-relevant
aerosol studies, Atmos. Meas. Tech., 9, 4891–4900,
https://doi.org/10.5194/amt-9-4891-2016, 2016.
Zhao, J. Y. and Hopke, P. K.: Concentration of Reactive Oxygen Species (ROS)
in Mainstream and Sidestream Cigarette Smoke, Aerosol Sci. Technol., 46,
191–197, https://doi.org/10.1080/02786826.2011.617795, 2012.
Zhou, J., Bruns, E. A., Zotter, P., Stefenelli, G., Pévôt, A. S. H.,
Baltensperger, U., El-Haddad, I., and Dommen, J.: Development,
characterization and first deployment of an improved online reactive oxygen
species analyzer, Atmos. Meas. Tech., 11, 65–80,
https://doi.org/10.5194/amt-11-65-2018, 2018.
Short summary
The paper details the design and characterization of a novel instrument for the measurement of particle reactivity and potential bioactivity, the PINQ. It continuously collects particles, regardless of size or composition, directly into a very small amount of liquid with a collection efficiency of > 0.97 and a cut-off size of 20 nm. PINQ has the highest time resolution, of only 1 min, and is very sensitive to various reactive species from the air.
The paper details the design and characterization of a novel instrument for the measurement of...