Articles | Volume 12, issue 10
Atmos. Meas. Tech., 12, 5655–5668, 2019
https://doi.org/10.5194/amt-12-5655-2019
Atmos. Meas. Tech., 12, 5655–5668, 2019
https://doi.org/10.5194/amt-12-5655-2019
Research article
24 Oct 2019
Research article | 24 Oct 2019

Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space

Daniel H. Cusworth et al.

Related authors

Detecting high-emitting methane sources in oil/gas fields using satellite observations
Daniel H. Cusworth, Daniel J. Jacob, Jian-Xiong Sheng, Joshua Benmergui, Alexander J. Turner, Jeremy Brandman, Laurent White, and Cynthia A. Randles
Atmos. Chem. Phys., 18, 16885–16896, https://doi.org/10.5194/acp-18-16885-2018,https://doi.org/10.5194/acp-18-16885-2018, 2018
Short summary
Aerosol trends as a potential driver of regional climate in the central United States: evidence from observations
Daniel H. Cusworth, Loretta J. Mickley, Eric M. Leibensperger, and Michael J. Iacono
Atmos. Chem. Phys., 17, 13559–13572, https://doi.org/10.5194/acp-17-13559-2017,https://doi.org/10.5194/acp-17-13559-2017, 2017
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A new machine-learning-based analysis for improving satellite-retrieved atmospheric composition data: OMI SO2 as an example
Can Li, Joanna Joiner, Fei Liu, Nickolay A. Krotkov, Vitali Fioletov, and Chris McLinden
Atmos. Meas. Tech., 15, 5497–5514, https://doi.org/10.5194/amt-15-5497-2022,https://doi.org/10.5194/amt-15-5497-2022, 2022
Short summary
Complementing XCO2 imagery with ground-based CO2 and 14CO2 measurements to monitor CO2 emissions from fossil fuels on a regional to local scale
Elise Potier, Grégoire Broquet, Yilong Wang, Diego Santaren, Antoine Berchet, Isabelle Pison, Julia Marshall, Philippe Ciais, François-Marie Bréon, and Frédéric Chevallier
Atmos. Meas. Tech., 15, 5261–5288, https://doi.org/10.5194/amt-15-5261-2022,https://doi.org/10.5194/amt-15-5261-2022, 2022
Short summary
On the potential of a neural-network-based approach for estimating XCO2 from OCO-2 measurements
François-Marie Bréon, Leslie David, Pierre Chatelanaz, and Frédéric Chevallier
Atmos. Meas. Tech., 15, 5219–5234, https://doi.org/10.5194/amt-15-5219-2022,https://doi.org/10.5194/amt-15-5219-2022, 2022
Short summary
The Space Carbon Observatory (SCARBO) concept: assessment of XCO2 and XCH4 retrieval performance
Matthieu Dogniaux, Cyril Crevoisier, Silvère Gousset, Étienne Le Coarer, Yann Ferrec, Laurence Croizé, Lianghai Wu, Otto Hasekamp, Bojan Sic, and Laure Brooker
Atmos. Meas. Tech., 15, 4835–4858, https://doi.org/10.5194/amt-15-4835-2022,https://doi.org/10.5194/amt-15-4835-2022, 2022
Short summary
Improved retrieval of SO2 plume height from TROPOMI using an iterative Covariance-Based Retrieval Algorithm
Nicolas Theys, Christophe Lerot, Hugues Brenot, Jeroen van Gent, Isabelle De Smedt, Lieven Clarisse, Mike Burton, Matthew Varnam, Catherine Hayer, Benjamin Esse, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 4801–4817, https://doi.org/10.5194/amt-15-4801-2022,https://doi.org/10.5194/amt-15-4801-2022, 2022
Short summary