Articles | Volume 12, issue 11
https://doi.org/10.5194/amt-12-5845-2019
https://doi.org/10.5194/amt-12-5845-2019
Research article
 | 
08 Nov 2019
Research article |  | 08 Nov 2019

The Disdrometer Verification Network (DiVeN): a UK network of laser precipitation instruments

Ben S. Pickering, Ryan R. Neely III, and Dawn Harrison

Related authors

The NCAS mobile dual-polarisation Doppler X-band weather radar (NXPol)
Ryan R. Neely III, Lindsay Bennett, Alan Blyth, Chris Collier, David Dufton, James Groves, Daniel Walker, Chris Walden, John Bradford, Barbara Brooks, Freya I. Addison, John Nicol, and Ben Pickering
Atmos. Meas. Tech., 11, 6481–6494, https://doi.org/10.5194/amt-11-6481-2018,https://doi.org/10.5194/amt-11-6481-2018, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
The ratio of transverse to longitudinal turbulent velocity statistics for aircraft measurements
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
Atmos. Meas. Tech., 18, 93–114, https://doi.org/10.5194/amt-18-93-2025,https://doi.org/10.5194/amt-18-93-2025, 2025
Short summary
A Novel Assessment of the Vertical Velocity Correction for Non-orthogonal Sonic Anemometers
Kyaw Tha Paw U, Mary Rose Mangan, Jilmarie Stephens, Kosana Suvočarev, Jenae' Clay, Olmo Guerrero Medina, Emma Ware, Amanda Kerr-Munslow, James McGregor, John Kochendorfer, Megan McAuliffe, and Megan Metz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-152,https://doi.org/10.5194/amt-2024-152, 2024
Revised manuscript accepted for AMT
Short summary
Method development and application for the analysis of chiral organic marker species in ice-cores
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2243,https://doi.org/10.5194/egusphere-2024-2243, 2024
Short summary
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024,https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey
Atmos. Meas. Tech., 17, 4863–4889, https://doi.org/10.5194/amt-17-4863-2024,https://doi.org/10.5194/amt-17-4863-2024, 2024
Short summary

Cited articles

Abel, S. J., Cotton, R. J., Barrett, P. A., and Vance, A. K.: A comparison of ice water content measurement techniques on the FAAM BAe-146 aircraft, Atmos. Meas. Tech., 7, 3007–3022, https://doi.org/10.5194/amt-7-3007-2014, 2014. a
Adolf Thies GmbH & Co. KG: Laser Precipitation Monitor – Instruction for Use, Tech. rep., Adolf Thies GmbH & Co. KG, Hauptstraße 76, 37083 Göttingen, Germany, 2011. a
Agnew, J.: Chilbolton Facility for Atmospheric and Radio Research (CFARR) Campbell Scientific PWS100 present weather sensor data, NCAS British Atmospheric Data Centre, available at: https://catalogue.ceda.ac.uk/uuid/e490cd13d86d832bd2d62f1650d7b265 (last access: 7 August 2019), 2013. a
Al-Sakka, H., Boumahmoud, A. A., Fradon, B., Frasier, S. J., and Tabary, P.: A new fuzzy logic hydrometeor classification scheme applied to the french X-, C-, and S-band polarimetric radars, J. Appl. Meteorol. Climatol., 52, 2328–2344, https://doi.org/10.1175/JAMC-D-12-0236.1, 2013. a
Chandrasekar, V., Bringi, V., Balakrishnan, N., and Zrnić, D.: Error structure of multiparameter radar and surface measurements of rainfall, Part III: Specific differential phase, J. Atmos. Ocean Tech., 7, 621–629, https://doi.org/10.1175/1520-0426(1990)007<0621:ESOMRA>2.0.CO;2, 1990. a
Download
Short summary
A new network of precipitation instruments has been established for the UK. The instruments are capable of detecting the fall velocity and diameter of each particle that falls through a laser beam. The particle characteristics are derived from the duration and amount of decrease in beam brightness as perceived by a receiving diode. A total of 14 instruments make up the network and all instruments upload 60 s frequency data in near-real time to a publicly available website with plots.