Articles | Volume 13, issue 9
https://doi.org/10.5194/amt-13-4773-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-4773-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Application of TXRF in monitoring trace metals in particulate matter and cloud water
Khanneh Wadinga Fomba
Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstraße 15, 04318, Leipzig, Germany
Nabil Deabji
Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstraße 15, 04318, Leipzig, Germany
Faculty of Science, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, B.P 1040, 10100 Rabat, Morocco
Sayf El Islam Barcha
Faculty of Science, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, B.P 1040, 10100 Rabat, Morocco
Ibrahim Ouchen
Faculty of Science, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, B.P 1040, 10100 Rabat, Morocco
El Mehdi Elbaramoussi
Faculty of Science, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, B.P 1040, 10100 Rabat, Morocco
Rajaa Cherkaoui El Moursli
Faculty of Science, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, B.P 1040, 10100 Rabat, Morocco
Mimoun Harnafi
Scientific Institute, Mohammed V University in Rabat, Av. Ibn Battouta, B.P 703, 10106 Rabat, Morocco
Souad El Hajjaji
Faculty of Science, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, B.P 1040, 10100 Rabat, Morocco
Abdelwahid Mellouki
Institut de Combustion Aérothermique Réactivité et
Environnement, OSUC-CNRS, 1C Avenue de la Recherche Scientifique, 45071
Orléans CEDEX 2, France
Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstraße 15, 04318, Leipzig, Germany
Related authors
Olenka Jibaja Valderrama, Daniele Scheres Firak, Thomas Schaefer, Manuela van Pinxteren, Khanneh Wadinga Fomba, and Hartmut Herrmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4066, https://doi.org/10.5194/egusphere-2025-4066, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The present study explores the influence of biological activity in the photochemistry of the sea-surface microlayer (SML) and its implications for the emission of volatile organic compounds (VOCs) to the marine atmosphere. Experimental evidence of enhanced photochemical activity of carbonyl compounds in the SML is provided, particularly in periods of higher biological productivity, thereby offering new insights to integrate biological processes and photochemistry in the air-sea boundary.
Matthew James Rowlinson, Lucy J. Carpenter, Mat J. Evans, James D. Lee, Simone Andersen, Tomas Sherwen, Anna B. Callaghan, Roberto Sommariva, William Bloss, Siqi Hou, Leigh R. Crilley, Klaus Pfeilsticker, Benjamin Weyland, Thomas B. Ryerson, Patrick R. Veres, Pedro Campuzano-Jost, Hongyu Guo, Benjamin A. Nault, Jose L. Jimenez, and Khanneh Wadinga Fomba
EGUsphere, https://doi.org/10.5194/egusphere-2025-830, https://doi.org/10.5194/egusphere-2025-830, 2025
Short summary
Short summary
HONO is key to tropospheric chemistry. Observations show high HONO concentrations in remote air, possibly explained by nitrate aerosol photolysis. We use observational data to parameterize nitrate photolysis, evaluating simulated HONO against observations from multiple sources. We show improved agreement with observed HONO, but large overestimates in NOx and O3, beyond observational constraints. This implies a large uncertainty in the NOx budget and our understanding of atmospheric chemistry.
Manuela van Pinxteren, Sebastian Zeppenfeld, Khanneh Wadinga Fomba, Nadja Triesch, Sanja Frka, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6571–6590, https://doi.org/10.5194/acp-23-6571-2023, https://doi.org/10.5194/acp-23-6571-2023, 2023
Short summary
Short summary
Important marine organic carbon compounds were identified in the Atlantic Ocean and marine aerosol particles. These compounds were strongly enriched in the atmosphere. Their enrichment was, however, not solely explained via sea-to-air transfer but also via atmospheric in situ formation. The identified compounds constituted about 50 % of the organic carbon on the aerosol particles, and a pronounced coupling between ocean and atmosphere for this oligotrophic region could be concluded.
Lady Mateus-Fontecha, Angela Vargas-Burbano, Rodrigo Jimenez, Nestor Y. Rojas, German Rueda-Saa, Dominik van Pinxteren, Manuela van Pinxteren, Khanneh Wadinga Fomba, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 8473–8495, https://doi.org/10.5194/acp-22-8473-2022, https://doi.org/10.5194/acp-22-8473-2022, 2022
Short summary
Short summary
This study reports the chemical composition of regionally representative PM2.5 in an area densely populated and substantially industrialized, located in the inter-Andean valley, with the highest sugarcane yield in the world and where sugarcane is burned and harvested year round. We found that sugarcane burning is not portrayed as a distinguishable sample composition component. Instead, the composition analysis revealed multiple associations among sugarcane burning components and other sources.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Nabil Deabji, Khanneh Wadinga Fomba, Souad El Hajjaji, Abdelwahid Mellouki, Laurent Poulain, Sebastian Zeppenfeld, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 18147–18174, https://doi.org/10.5194/acp-21-18147-2021, https://doi.org/10.5194/acp-21-18147-2021, 2021
Short summary
Short summary
Mountain and high-altitude sites provide representative data for the lower free troposphere, various pathways for aerosol interactions, and changing boundary layer heights useful in understanding atmospheric composition. However, only few studies exist in African regions despite diversity in both natural and anthropogenic emissions. This study provides detailed atmospheric studies in the northern African high-altitude region.
Olenka Jibaja Valderrama, Daniele Scheres Firak, Thomas Schaefer, Manuela van Pinxteren, Khanneh Wadinga Fomba, and Hartmut Herrmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4066, https://doi.org/10.5194/egusphere-2025-4066, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The present study explores the influence of biological activity in the photochemistry of the sea-surface microlayer (SML) and its implications for the emission of volatile organic compounds (VOCs) to the marine atmosphere. Experimental evidence of enhanced photochemical activity of carbonyl compounds in the SML is provided, particularly in periods of higher biological productivity, thereby offering new insights to integrate biological processes and photochemistry in the air-sea boundary.
Amavi N. Silva, Surandokht Nikzad, Theresa Barthelmeß, Anja Engel, Hartmut Hermann, Manuela van Pinxteren, Kai Wirtz, Oliver Wurl, and Markus Schartau
EGUsphere, https://doi.org/10.5194/egusphere-2025-4050, https://doi.org/10.5194/egusphere-2025-4050, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We conducted the first meta-analysis combining marine and freshwater studies to understand organic matter enrichment in the surface microlayer. Nitrogen-rich, particulate compounds are often enriched, with patterns varying by multiple factors. We recommend tracking both absolute concentrations and normalized enrichment patterns to better assess ecological conditions. Our study also introduces improved statistical methods for analyzing and comparing surface microlayer data.
Yaru Wang, Dominik van Pinxteren, Andreas Tilgner, Erik Hans Hoffmann, Max Hell, Susanne Bastian, and Hartmut Herrmann
Atmos. Chem. Phys., 25, 8907–8927, https://doi.org/10.5194/acp-25-8907-2025, https://doi.org/10.5194/acp-25-8907-2025, 2025
Short summary
Short summary
Tropospheric ground-level ozone (O3) is a global air quality pollutant and greenhouse gas. Long-term O3 trends from 16 stations in Saxony, Germany, were compared over three periods, revealing worsened O3 pollution over the last decade. O3 formation has been volatile organic compound (VOC)-limited at traffic and urban sites for the past 20 years. To mitigate O3 pollution, moderate nitrogen oxides and additional VOC controls, particularly in solvent use, should be prioritized in the coming years.
Vikram Pratap, Christopher J. Hennigan, Bastian Stieger, Andreas Tilgner, Laurent Poulain, Dominik van Pinxteren, Gerald Spindler, and Hartmut Herrmann
Atmos. Chem. Phys., 25, 8871–8889, https://doi.org/10.5194/acp-25-8871-2025, https://doi.org/10.5194/acp-25-8871-2025, 2025
Short summary
Short summary
In this work, we characterize trends in aerosol pH and its controlling factors during the period 2010–2019 at the Melpitz research station in eastern Germany. We find strong trends in aerosol pH and major inorganic species in response to changing emissions. We conduct a detailed thermodynamic analysis of the aerosol system and discuss implications for controlling particulate matter in the region.
Donger Lai, Yanxin Bai, Zijing Zhang, Pui-Kin So, Yong Jie Li, Ying-Lung Steve Tse, Ying-Yeung Yeung, Thomas Schaefer, Hartmut Herrmann, Jian Zhen Yu, Yuchen Wang, and Man Nin Chan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2743, https://doi.org/10.5194/egusphere-2025-2743, 2025
Short summary
Short summary
Aqueous-phase •OH oxidation can potentially act as an important atmospheric sink for α-pinene-derived organosulfates (OSs). Such oxidation can also generate a variety of new OS products, and can be as a potential source for some atmospheric OSs with previously unknown origins.
Peng Cheng, Gilles Mailhot, Mohamed Sarakha, Guillaume Voyard, Daniele Scheres Firak, Thomas Schaefer, Hartmut Herrmann, and Marcello Brigante
EGUsphere, https://doi.org/10.5194/egusphere-2025-1744, https://doi.org/10.5194/egusphere-2025-1744, 2025
Short summary
Short summary
This study investigates the complexation of Fe(II) and Fe(III) with glutamic acid under cloud water conditions and the effect on Fenton and photo-Fenton reactions, hydroxyl radical formation, and their impact on amino acid oxidation.
Hanna Wiedenhaus, Roland Schrödner, Ralf Wolke, Marie L. Luttkus, Shubhi Arora, Laurent Poulain, Radek Lhotka, Petr Vodička, Jaroslav Schwarz, Petra Pokorna, Jakub Ondráček, Vladimir Ždímal, Hartmut Herrmann, and Ina Tegen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1225, https://doi.org/10.5194/egusphere-2025-1225, 2025
Short summary
Short summary
This study examines winter air quality in Central Europe, focusing on the impact of domestic heating. Using a chemical transport model and measurements, it was found that the model underestimated organic particle concentrations. This was due to an underestimation of gases from domestic heating that form secondary organic particles. Improving the model by increasing these emissions and the particle formation led to better results, demonstrating the important role of heating emissions in winter.
Matthew James Rowlinson, Lucy J. Carpenter, Mat J. Evans, James D. Lee, Simone Andersen, Tomas Sherwen, Anna B. Callaghan, Roberto Sommariva, William Bloss, Siqi Hou, Leigh R. Crilley, Klaus Pfeilsticker, Benjamin Weyland, Thomas B. Ryerson, Patrick R. Veres, Pedro Campuzano-Jost, Hongyu Guo, Benjamin A. Nault, Jose L. Jimenez, and Khanneh Wadinga Fomba
EGUsphere, https://doi.org/10.5194/egusphere-2025-830, https://doi.org/10.5194/egusphere-2025-830, 2025
Short summary
Short summary
HONO is key to tropospheric chemistry. Observations show high HONO concentrations in remote air, possibly explained by nitrate aerosol photolysis. We use observational data to parameterize nitrate photolysis, evaluating simulated HONO against observations from multiple sources. We show improved agreement with observed HONO, but large overestimates in NOx and O3, beyond observational constraints. This implies a large uncertainty in the NOx budget and our understanding of atmospheric chemistry.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
Atmos. Chem. Phys., 25, 741–758, https://doi.org/10.5194/acp-25-741-2025, https://doi.org/10.5194/acp-25-741-2025, 2025
Short summary
Short summary
Aerosol hygroscopicity has been investigated at a sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data, 16, 4267–4290, https://doi.org/10.5194/essd-16-4267-2024, https://doi.org/10.5194/essd-16-4267-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is a crucial natural reactive gas in the global climate system due to its great contribution to aerosols and subsequent impact on clouds over remote oceans. Leveraging machine learning techniques, we constructed a long-term global sea surface DMS gridded dataset with daily resolution. Compared to previous datasets, our new dataset holds promise for improving atmospheric chemistry modeling and advancing our comprehension of the climate effects associated with oceanic DMS.
Anil Kumar Mandariya, Junteng Wu, Anne Monod, Paola Formenti, Bénédicte Picquet-Varrault, Mathieu Cazaunau, Stephan Mertes, Laurent Poulain, Antonin Berge, Edouard Pangui, Andreas Tilgner, Thomas Schaefer, Liang Wen, Hartmut Herrmann, and Jean-François Doussin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-206, https://doi.org/10.5194/amt-2023-206, 2024
Publication in AMT not foreseen
Short summary
Short summary
An optimized and controlled protocol for generating quasi-adiabatic expansion clouds under simulated dark and light conditions was presented. The irradiated clouds clearly showed a gradual activation of seed particles into droplets. In contrast, non-irradiated clouds faced a flash activation. This paper will lay the foundation for multiphase photochemical studies implying water-soluble volatile organic compounds and particulate matter formation during cloud formation-evaporation cycles.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Moritz Zeising, Astrid Bracher, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 15561–15587, https://doi.org/10.5194/acp-23-15561-2023, https://doi.org/10.5194/acp-23-15561-2023, 2023
Short summary
Short summary
Marine carbohydrates are produced in the surface of the ocean, enter the atmophere as part of sea spray aerosol particles, and potentially contribute to the formation of fog and clouds. Here, we present the results of a sea–air transfer study of marine carbohydrates conducted in the high Arctic. Besides a chemo-selective transfer, we observed a quick atmospheric aging of carbohydrates, possibly as a result of both biotic and abiotic processes.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Samira Atabakhsh, Laurent Poulain, Gang Chen, Francesco Canonaco, André S. H. Prévôt, Mira Pöhlker, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6963–6988, https://doi.org/10.5194/acp-23-6963-2023, https://doi.org/10.5194/acp-23-6963-2023, 2023
Short summary
Short summary
The study focuses on the aerosol chemical variations found in the rural-background station of Melpitz based on ACSM and MAAP measurements. Source apportionment on both organic aerosol (OA) and black carbon (eBC) was performed, and source seasonality was also linked to air mass trajectories. Overall, three anthropogenic sources were identified in OA and eBC plus two additional aged OA. Our results demonstrate the influence of transported coal-combustion-related OA even during summer time.
Manuela van Pinxteren, Sebastian Zeppenfeld, Khanneh Wadinga Fomba, Nadja Triesch, Sanja Frka, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6571–6590, https://doi.org/10.5194/acp-23-6571-2023, https://doi.org/10.5194/acp-23-6571-2023, 2023
Short summary
Short summary
Important marine organic carbon compounds were identified in the Atlantic Ocean and marine aerosol particles. These compounds were strongly enriched in the atmosphere. Their enrichment was, however, not solely explained via sea-to-air transfer but also via atmospheric in situ formation. The identified compounds constituted about 50 % of the organic carbon on the aerosol particles, and a pronounced coupling between ocean and atmosphere for this oligotrophic region could be concluded.
Yuan Wang, Silvia Henning, Laurent Poulain, Chunsong Lu, Frank Stratmann, Yuying Wang, Shengjie Niu, Mira L. Pöhlker, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 15943–15962, https://doi.org/10.5194/acp-22-15943-2022, https://doi.org/10.5194/acp-22-15943-2022, 2022
Short summary
Short summary
Aerosol particle activation affects cloud, precipitation, radiation, and thus the global climate. Its long-term measurements are important but still scarce. In this study, more than 4 years of measurements at a central European station were analyzed. The overall characteristics and seasonal changes of aerosol particle activation are summarized. The power-law fit between particle hygroscopicity factor and diameter was recommended for predicting cloud
condensation nuclei number concentration.
Lady Mateus-Fontecha, Angela Vargas-Burbano, Rodrigo Jimenez, Nestor Y. Rojas, German Rueda-Saa, Dominik van Pinxteren, Manuela van Pinxteren, Khanneh Wadinga Fomba, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 8473–8495, https://doi.org/10.5194/acp-22-8473-2022, https://doi.org/10.5194/acp-22-8473-2022, 2022
Short summary
Short summary
This study reports the chemical composition of regionally representative PM2.5 in an area densely populated and substantially industrialized, located in the inter-Andean valley, with the highest sugarcane yield in the world and where sugarcane is burned and harvested year round. We found that sugarcane burning is not portrayed as a distinguishable sample composition component. Instead, the composition analysis revealed multiple associations among sugarcane burning components and other sources.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Kristina Glojek, Griša Močnik, Honey Dawn C. Alas, Andrea Cuesta-Mosquera, Luka Drinovec, Asta Gregorič, Matej Ogrin, Kay Weinhold, Irena Ježek, Thomas Müller, Martin Rigler, Maja Remškar, Dominik van Pinxteren, Hartmut Herrmann, Martina Ristorini, Maik Merkel, Miha Markelj, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 5577–5601, https://doi.org/10.5194/acp-22-5577-2022, https://doi.org/10.5194/acp-22-5577-2022, 2022
Short summary
Short summary
A pilot study to determine the emissions of wood burning under
real-world laboratoryconditions was conducted. We found that measured black carbon (eBC) and particulate matter (PM) in rural shallow terrain depressions with residential wood burning could be much greater than predicted by models. The exceeding levels are a cause for concern since similar conditions can be expected in numerous hilly and mountainous regions across Europe, where approximately 20 % of the total population lives.
Nabil Deabji, Khanneh Wadinga Fomba, Souad El Hajjaji, Abdelwahid Mellouki, Laurent Poulain, Sebastian Zeppenfeld, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 18147–18174, https://doi.org/10.5194/acp-21-18147-2021, https://doi.org/10.5194/acp-21-18147-2021, 2021
Short summary
Short summary
Mountain and high-altitude sites provide representative data for the lower free troposphere, various pathways for aerosol interactions, and changing boundary layer heights useful in understanding atmospheric composition. However, only few studies exist in African regions despite diversity in both natural and anthropogenic emissions. This study provides detailed atmospheric studies in the northern African high-altitude region.
Andreas Tilgner, Thomas Schaefer, Becky Alexander, Mary Barth, Jeffrey L. Collett Jr., Kathleen M. Fahey, Athanasios Nenes, Havala O. T. Pye, Hartmut Herrmann, and V. Faye McNeill
Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021, https://doi.org/10.5194/acp-21-13483-2021, 2021
Short summary
Short summary
Feedbacks of acidity and atmospheric multiphase chemistry in deliquesced particles and clouds are crucial for the tropospheric composition, depositions, climate, and human health. This review synthesizes the current scientific knowledge on these feedbacks using both inorganic and organic aqueous-phase chemistry. Finally, this review outlines atmospheric implications and highlights the need for future investigations with respect to reducing emissions of key acid precursors in a changing world.
R. Anthony Cox, Markus Ammann, John N. Crowley, Paul T. Griffiths, Hartmut Herrmann, Erik H. Hoffmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Christopher J. Penkett, Andreas Tilgner, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 13011–13018, https://doi.org/10.5194/acp-21-13011-2021, https://doi.org/10.5194/acp-21-13011-2021, 2021
Short summary
Short summary
The term open-air factor was coined in the 1960s, establishing that rural air had powerful germicidal properties possibly resulting from immediate products of the reaction of ozone with alkenes, unsaturated compounds ubiquitously present in natural and polluted environments. We have re-evaluated those early experiments, applying the recently substantially improved knowledge, and put them into the context of the lifetime of aerosol-borne pathogens that are so important in the Covid-19 pandemic.
Markus Hartmann, Xianda Gong, Simonas Kecorius, Manuela van Pinxteren, Teresa Vogl, André Welti, Heike Wex, Sebastian Zeppenfeld, Hartmut Herrmann, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021, https://doi.org/10.5194/acp-21-11613-2021, 2021
Short summary
Short summary
Ice-nucleating particles (INPs) are not well characterized in the Arctic despite their importance for the Arctic energy budget. Little is known about their nature (mineral or biological) and sources (terrestrial or marine, long-range transport or local). We find indications that, at the beginning of the melt season, a local, biogenic, probably marine source is likely, but significant enrichment of INPs has to take place from the ocean to the aerosol phase.
Anke Mutzel, Yanli Zhang, Olaf Böge, Maria Rodigast, Agata Kolodziejczyk, Xinming Wang, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 8479–8498, https://doi.org/10.5194/acp-21-8479-2021, https://doi.org/10.5194/acp-21-8479-2021, 2021
Short summary
Short summary
This study investigates secondary organic aerosol (SOA) formation and particle growth from α-pinene, limonene, and m-cresol oxidation through NO3 and OH radicals and the effect of relative humidity. The formed SOA is comprehensively characterized with respect to the content of OC / EC, WSOC, SOA-bound peroxides, and SOA marker compounds. The findings present new insights and implications of nighttime chemistry, which can form SOA more efficiently than OH radical reaction during daytime.
Abdelwahid Mellouki, Markus Ammann, R. Anthony Cox, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, https://doi.org/10.5194/acp-21-4797-2021, 2021
Short summary
Short summary
Volatile organic compounds play an important role in atmospheric chemistry. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4) including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. These data are important for atmospheric models.
Nadja Triesch, Manuela van Pinxteren, Sanja Frka, Christian Stolle, Tobias Spranger, Erik Hans Hoffmann, Xianda Gong, Heike Wex, Detlef Schulz-Bull, Blaženka Gašparović, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 4267–4283, https://doi.org/10.5194/acp-21-4267-2021, https://doi.org/10.5194/acp-21-4267-2021, 2021
Short summary
Short summary
To investigate the source of lipids and their representatives in the marine atmosphere, concerted measurements of seawater and submicrometer aerosol particle sampling were carried out on the Cabo Verde islands. This field study describes the biogenic sources of lipids, their selective transfer from the ocean into the atmosphere and their enrichment as part of organic matter. A strong enrichment of the studied representatives of the lipid classes on submicrometer aerosol particles was observed.
Laurent Poulain, Benjamin Fahlbusch, Gerald Spindler, Konrad Müller, Dominik van Pinxteren, Zhijun Wu, Yoshiteru Iinuma, Wolfram Birmili, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 3667–3684, https://doi.org/10.5194/acp-21-3667-2021, https://doi.org/10.5194/acp-21-3667-2021, 2021
Short summary
Short summary
We present results from source apportionment analysis on the carbonaceous aerosol particles, including organic aerosol (OA) and equivalent black carbon (eBC), allowing us to distinguish local emissions from long-range transport for OA and eBC sources. By merging online chemical measurements and considering particle number size distribution, the different air masses reaching the sampling place were described and discussed, based on their respective chemical composition and size distribution.
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary
Short summary
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in the lower troposphere. Ensuing radical chemistry leads to decarboxylation, and the production of peroxides, and oxygenated volatile compounds, resulting in particle mass loss due to release of the volatile products to the gas phase. We investigated kinetic transport limitations due to high particle viscosity under low relative humidity conditions. For quantification a numerical model was developed.
Nadja Triesch, Manuela van Pinxteren, Anja Engel, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 163–181, https://doi.org/10.5194/acp-21-163-2021, https://doi.org/10.5194/acp-21-163-2021, 2021
Short summary
Short summary
To investigate the sources of free amino acids (FAAs) in the marine atmosphere, concerted measurements (the simultaneous investigation of seawater, size-segregated aerosol particles and cloud water) were performed at the Cabo Verde islands. This study describes the transfer of FAAs as part of organic matter from the ocean into the atmosphere on a molecular level. In the investigated marine environment, a high enrichment of FAAs in submicron aerosol particles and in cloud droplets was observed.
Jiarong Li, Chao Zhu, Hui Chen, Defeng Zhao, Likun Xue, Xinfeng Wang, Hongyong Li, Pengfei Liu, Junfeng Liu, Chenglong Zhang, Yujing Mu, Wenjin Zhang, Luming Zhang, Hartmut Herrmann, Kai Li, Min Liu, and Jianmin Chen
Atmos. Chem. Phys., 20, 13735–13751, https://doi.org/10.5194/acp-20-13735-2020, https://doi.org/10.5194/acp-20-13735-2020, 2020
Short summary
Short summary
Based on a field study at Mt. Tai, China, the simultaneous variations of cloud microphysics, aerosol microphysics and their potential interactions during cloud life cycles were discussed. Results demonstrated that clouds on clean days were more susceptible to the concentrations of particle number, while clouds formed on polluted days might be more sensitive to meteorological parameters. Particles larger than 150 nm played important roles in forming cloud droplets with sizes of 5–10 μm.
R. Anthony Cox, Markus Ammann, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 20, 13497–13519, https://doi.org/10.5194/acp-20-13497-2020, https://doi.org/10.5194/acp-20-13497-2020, 2020
Short summary
Short summary
Criegee intermediates, formed from alkene–ozone reactions, play a potentially important role as tropospheric oxidants. Evaluated kinetic data are provided for reactions governing their formation and removal for use in atmospheric models. These include their formation from reactions of simple and complex alkenes and removal by decomposition and reaction with a number of atmospheric species (e.g. H2O, SO2). An overview of the tropospheric chemistry of Criegee intermediates is also provided.
Yangang Ren, Bastian Stieger, Gerald Spindler, Benoit Grosselin, Abdelwahid Mellouki, Thomas Tuch, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 13069–13089, https://doi.org/10.5194/acp-20-13069-2020, https://doi.org/10.5194/acp-20-13069-2020, 2020
Short summary
Short summary
We present HONO measurements from the TROPOS research site in Melpitz, Germany. Investigations of HONO sources and sinks revealed the nighttime formation by heterogeneous conversion of NO2 to HONO followed by a significant surface deposition at night. The evaporation of dew was identified as the main HONO source in the morning. In the following, dew measurements with a self-made dew collector were performed to estimate the amount of evaporated HONO from dew in the atmospheric HONO distribution.
Laurent Poulain, Gerald Spindler, Achim Grüner, Thomas Tuch, Bastian Stieger, Dominik van Pinxteren, Jean-Eudes Petit, Olivier Favez, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Meas. Tech., 13, 4973–4994, https://doi.org/10.5194/amt-13-4973-2020, https://doi.org/10.5194/amt-13-4973-2020, 2020
Short summary
Short summary
The stability and the comparability between ACSM and collocated filter sampling and MPSS measurements was investigated in order to examine the instruments robustness for year-long measurements. Specific attention was paid to the influence of the upper size cutoff diameter to better understand how it might affect the data validation. Recommendations are provided for better on-site quality assurance and quality control of the ACSM, which would be useful for either long-term or intensive campaigns.
Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 10459–10475, https://doi.org/10.5194/acp-20-10459-2020, https://doi.org/10.5194/acp-20-10459-2020, 2020
Short summary
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
Ahmad Jhony Rusumdar, Andreas Tilgner, Ralf Wolke, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 10351–10377, https://doi.org/10.5194/acp-20-10351-2020, https://doi.org/10.5194/acp-20-10351-2020, 2020
Short summary
Short summary
In the present study, simulations with the SPACCIM-SpactMod multiphase chemistry model are performed. The investigations aim at assessing the impact of a detailed treatment of non-ideality in multiphase models dealing with aqueous aerosol chemistry. The model studies demonstrate that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions, oxidants, and related chemical subsystems such as organic chemistry in aqueous aerosols.
Cited articles
Bennun, L. and Sanhueza, V.: A Procedure for the Improvement in the
Determination of a TXRF Spectrometer Sensitivity Curve, Anal. Sci., 26,
331–335, https://doi.org/10.2116/analsci.26.331, 2010.
Bertin, E. P.: Principles and practice of Quantitative X-ray Flourescence Analysis, 2nd ed., Plenum Press, New York, USA, 1975.
Bianco, A., Vaitilingom, M., Bridoux, M., Chaumerliac, N., Pichon, J. M.,
Piro, J. L., and Deguillaume, L.: Trace Metals in Cloud Water Sampled at the
Puy De Dome Station, Atmosphere-Basel, 8, 225,
https://doi.org/10.3390/atmos8110225, 2017.
Bilo, F., Borgese, L., Cazzago, D., Zacco, A., Bontempi, E., Guarneri, R.,
Bernardello, M., Attuati, S., Lazo, P., and Depero, L. E.: TXRF analysis of
soils and sediments to assess environmental contamination, Environ.
Sci. Pollut. R., 21, 13208–13214,
https://doi.org/10.1007/s11356-013-2203-y, 2014.
Bilo, F., Borgese, L., Wambui, A., Assi, A., Zacco, A., Federici, S.,
Eichert, D. M., Tsuji, K., Lucchini, R. G., Placidi, D., Bontempi, E., and
Depero, L. E.: Comparison of multiple X-ray fluorescence techniques for
elemental analysis of particulate matter collected on air filters, J. Aerosol
Sci., 122, 1–10, https://doi.org/10.1016/j.jaerosci.2018.05.003, 2018.
Buck, C. S. and Paytan, A.: Evaluation of commonly used filter substrates
for the measurement of aerosol trace element solubility, Limnol
Oceanogr.-Meth., 10, 790–806, https://doi.org/10.4319/lom.2012.10.790, 2012.
Buck, C. S., Aguilar-Islas, A., Marsay, C., Kadko, D., and Landing, W. M.:
Trace element concentrations, elemental ratios, and enrichment factors
observed in aerosol samples collected during the US GEOTRACES eastern
Pacific Ocean transect (GP16), Chem. Geol., 511, 212–224,
https://doi.org/10.1016/j.chemgeo.2019.01.002, 2019.
Cardoso, J., Almeida, S. M., Nunes, T., Almeida-Silva, M., Cerqueira, M., Alves, C., Rocha, F., Chaves, P., Reis, M., Salvador, P., Artiñano, B., and Pio, C.: Source apportionment of atmospheric aerosol in a marine dusty environment by ionic/composition mass balance (IMB), Atmos. Chem. Phys., 18, 13215–13230, https://doi.org/10.5194/acp-18-13215-2018, 2018.
Cheng, Z. L., Lam, K. S., Chan, L. Y., Wang, T., and Cheng, K. K.: Chemical
characteristics of aerosols at coastal station in Hong Kong. I. Seasonal
variation of major ions, halogens and mineral dusts between 1995 and 1996,
Atmos. Environ., 34, 2771–2783, https://doi.org/10.1016/S1352-2310(99)00343-X, 2000.
Cherif, S., Millet, M., Sanusi, A., Herckes, P., and Wortham, H.: Protocol
for analysis of trace metals and other ions in filtered and unfiltered
fogwater, Environ. Pollut., 103, 301–308, https://doi.org/10.1016/S0269-7491(98)00108-0,
1998.
Cho, K. and Wu, C. Y.: Control of molybdenum emission by sorbents:
Equilibrium analysis, J. Environ. Eng., 130, 201–204,
https://doi.org/10.1061/(Asce)0733-9372(2004)130:2(201), 2004.
Cullen, J. T. and Sherrell, R. M.: Techniques for determination of trace
metals in small samples of size-fractionated particulate matter:
phytoplankton metals off central California, Mar. Chem., 67, 233–247, https://doi.org/10.1016/S0304-4203(99)00060-2, 1999.
De La Calle, I., Cabaleiro, N., Romero, V., Lavilla, I., and Bendicho, C.:
Sample pretreatment strategies for total reflection X-ray fluorescence
analysis: A tutorial review, Spectrochim. Acta B, 90, 23–54,
https://doi.org/10.1016/j.sab.2013.10.001, 2013.
Deguillaume, L., Leriche, M., Desboeufs, K., Mailhot, G., George, C., and
Chaumerliac, N.: Transition metals in atmospheric liquid phases: Sources,
reactivity, and sensitive parameters, Chem. Rev., 105, 3388–3431, https://doi.org/10.1021/Cr040649c, 2005.
Dehghani, S., Moore, F., Vasiluk, L., and Hale, B. A.: The geochemical
fingerprinting of geogenic particles in road deposited dust from Tehran
metropolis, Iran: Implications for provenance tracking, J. Geochem. Explor.,
190, 411–423, https://doi.org/10.1016/j.gexplo.2018.04.011, 2018.
Demoz, B. B., Collett, J. L., and Daube, B. C.: On the Caltech Active Strand
Cloudwater Collectors, Atmos. Res., 41, 47–62, https://doi.org/10.1016/0169-8095(95)00044-5, 1996.
Dhara, S., Misra, N. L., Thakur, U. K., Shah, D., Sawant, R. M., Ramakumar,
K. L., and Aggarwal, S. K.: A total reflection X-ray fluorescence method for
the determination of chlorine at trace levels in nuclear materials without
sample dissolution, X-Ray Spectrom., 41, 316–320, https://doi.org/10.1002/xrs.2400, 2012.
Ervens, B.: Modeling the Processing of Aerosol and Trace Gases in Clouds and
Fogs, Chem. Rev., 115, 4157–4198, https://doi.org/10.1021/cr5005887, 2015.
Fomba, K. W., van Pinxteren, D., Müller, K., Iinuma, Y., Lee, T., Collett Jr., J. L., and Herrmann, H.: Trace metal characterization of aerosol particles and cloud water during HCCT 2010, Atmos. Chem. Phys., 15, 8751–8765, https://doi.org/10.5194/acp-15-8751-2015, 2015.
Font, A., de Hoogh, K., Leal-Sanchez, M., Ashworth, D. C., Brown, R. J. C.,
Hansell, A. L., and Fuller, G. W.: Using metal ratios to detect emissions
from municipal waste incinerators in ambient air pollution data, Atmos.
Environ., 113, 177–186, https://doi.org/10.1016/j.atmosenv.2015.05.002, 2015.
Harris, E., Sinha, B., van Pinxteren, D., Tilgner, A., Fomba, K. W.,
Schneider, J., Roth, A., Gnauk, T., Fahlbusch, B., Mertes, S., Lee, T.,
Collett, J., Foley, S., Borrmann, S., Hoppe, P., and Herrmann, H.: Enhanced
Role of Transition Metal Ion Catalysis During In-Cloud Oxidation of SO2,
Science, 340, 727–730, https://doi.org/10.1126/science.1230911, 2013.
Harrison, R. M., Jones, A. M., Gietl, J., Yin, J. X., and Green, D. C.:
Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension
to Nonexhaust Traffic Particles Derived from Atmospheric Measurements,
Environ. Sci. Technol., 46, 6523–6529, https://doi.org/10.1021/es300894r, 2012.
He, M. C., Wang, X. Q., Wu, F. C., and Fu, Z. Y.: Antimony pollution in
China, Sci. Total Environ., 421, 41–50, https://doi.org/10.1016/j.scitotenv.2011.06.009, 2012.
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich,
M., and Otto, T.: Tropospheric Aqueous-Phase Chemistry: Kinetics,
Mechanisms, and Its Coupling to a Changing Gas Phase, Chem. Rev., 115,
4259–4334, https://doi.org/10.1021/cr500447k, 2015.
Hutchings, J. W., Robinson, M. S., McIlwraith, H., Triplett Kingston, J.,
and Herckes, P.: The Chemistry of Intercepted Clouds in Northern Arizona
during the North American Monsoon Season, Water Air Soil Poll.
199, 191–202, https://doi.org/10.1007/s11270-008-9871-0, 2009.
Itoh, A., Oshiro, Y., Azechi, S., Somada, Y., Handa, D.,
Miyagi, Y., Nakano, K., Tanahara, A., and Arakaki, T.: Long-term
Monitoring of Metal Elements in Total Suspended Particle Aerosols
Simultaneously Collected at Three Islands in Okinawa, Japan, Asian Journal
of Atmospheric Environment, 12, 326–337, https://doi.org/10.5572/ajae.2018.12.4.326, 2018.
Kchih, H., Perrino, C., and Cherif, S.: Investigation of Desert Dust
Contribution to Source Apportionment of PM10 and PM2.5 from a Southern
Mediterranean Coast, Aerosol Air. Qual. Res., 15, 454–464,
https://doi.org/10.4209/aaqr.2014.10.0255, 2015.
Klockenkämper, R. and von Bohlen, A.: Worldwide distribution of Total
Reflection X-ray Fluorescence instrumentation and its different fields of
application: A survey, Spectrochim. Acta B, 99, 133–137,
https://doi.org/10.1016/j.sab.2014.06.010, 2014a.
Klockenkämper, R. and von Bohlen, A.: Principles of Total Reflection XRF,
in: Total-Reflection X-Ray Fluorescence Analysis and Related Methods, John
Wiley & Sons, Hoboken, New Jersey, 79–125, https://doi.org/10.1002/9781118985953.ch02, 2014b.
Li, W. J., Wang, Y., Collett, J. L., Chen, J. M., Zhang, X. Y., Wang, Z. F.,
and Wang, W. X.: Microscopic Evaluation of Trace Metals in Cloud Droplets in
an Acid Precipitation Region (vol. 47, pg. 4172, 2013), Environ. Sci. Technol.,
47, 6067–6067, https://doi.org/10.1021/Es402145c, 2013.
Li, T., Wang, Y., Zhou, J., Wang, T., Ding, A. J., Nie, W., Xue, L. K.,
Wang, X. F., and Wang, W. X.: Evolution of trace elements in the planetary
boundary layer in southern China: Effects of dust storms and aerosol-cloud
interactions, J. Geophys. Res.-Atmos., 122, 3492–3506, https://doi.org/10.1002/2016jd025541,
2017.
Liu, X. H., Wai, K. M., Wang, Y., Zhou, J., Li, P. H., Guo, J., Xu, P. J.,
and Wang, W. X.: Evaluation of trace elements contamination in cloud/fog
water at an elevated mountain site in Northern China, Chemosphere, 88,
531–541, https://doi.org/10.1016/j.chemosphere.2012.02.015, 2012.
Losno, R.: Trace metals acting as catalysts in a marine cloud: a box model
study, Phys. Chem. Earth Pt. B, 24, 281–286, https://doi.org/10.1016/S1464-1909(98)00051-3,
1999.
Ma, C. J., Tohno, S., Kasahara, M., and Hayakawa, S.: Determination of the
chemical properties of residues retained in individual cloud droplets by XRF
microprobe at SPring-8, Nucl. Instrum. Meth. B, 217, 657–665,
https://doi.org/10.1016/j.nimb.2003.12.042, 2004.
Milando, C., Huang, L., and Batterman, S.: Trends in PM2.5 emissions,
concentrations and apportionments in Detroit and Chicago, Atmos. Environ.,
129, 197–209, https://doi.org/10.1016/j.atmosenv.2016.01.012, 2016.
Miller, A. J., Raduma, D. M., George, L. A., and Fry, J. L.: Source
apportionment of trace elements and black carbon in an urban industrial area
(Portland, Oregon), Atmos. Pollut. Res., 10, 784–794,
https://doi.org/10.1016/j.apr.2018.12.006, 2019.
Motellier, S., Lhaute, K., Guiot, A., Golanski, L., Geoffroy, C., and
Tardif, F.: Direct quantification of airborne nanoparticles composition by
TXRF after collection on filters, J. Phys. Conf. Ser.,
304, 012009, https://doi.org/10.1088/1742-6596/304/1/012009, 2011.
Okuda, T., Fujimori, E., Hatoya, K., Takada, H., Kumata, H., Nakajima, F.,
Hatakeyama, S., Uchida, M., Tanaka, S., He, K. B., Ma, Y. L., and Haraguchi,
H.: Rapid and Simple Determination of Multi-Elements in Aerosol Samples
Collected on Quartz Fiber Filters by Using EDXRF Coupled with Fundamental
Parameter Quantification Technique, Aerosol Air Qual. Res., 13, 1864–1876,
https://doi.org/10.4209/aaqr.2012.11.0308, 2013.
Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrzab, E.,
Hlawiczka, S., Panasiuk, D., Nitter, S., Pregger, T., Pfeiffer, H., and
Friedrich, R.: Current and future emissions of selected heavy metals to the
atmosphere from anthropogenic sources in Europe, Atmos. Environ., 41,
8557–8566, https://doi.org/10.1016/j.atmosenv.2007.07.040, 2007.
Pan, Y. P., Wang, Y. S., Sun, Y., Tian, S. L., and Cheng, M. T.:
Size-resolved aerosol trace elements at a rural mountainous site in Northern
China: Importance of regional transport, Sci. Total Environ., 461, 761–771,
https://doi.org/10.1016/j.scitotenv.2013.04.065, 2013.
Pant, P., and Harrison, R. M.: Estimation of the contribution of road
traffic emissions to particulate matter concentrations from field
measurements: A review, Atmos. Environ., 77, 78–97,
https://doi.org/10.1016/j.atmosenv.2013.04.028, 2013.
Passananti, M., Vinatier, V., Delort, A. M., Mailhot, G., and Brigante, M.:
Siderophores in Cloud Waters and Potential Impact on Atmospheric Chemistry:
Photoreactivity of Iron Complexes under Sun-Simulated Conditions, Environ. Sci. Technol., 50, 9324–9332, https://doi.org/10.1021/acs.est.6b02338, 2016.
Patey, M. D., Achterberg, E. P., Rijkenberg, M. J., and Pearce, R.: Aerosol
time-series measurements over the tropical Northeast Atlantic Ocean: Dust
sources, elemental composition and mineralogy, Mar. Chem., 174, 103–119,
https://doi.org/10.1016/j.marchem.2015.06.004, 2015.
Prost, J., Wobrauschek, P., and Streli, C.: Quantitative total reflection
X-ray fluorescence analysis of directly collected aerosol samples, X-Ray
Spectrom., 46, 454–460, https://doi.org/10.1002/xrs.2752, 2017.
Shelley, R. U., Morton, P. L., and Landing, W. M.: Elemental ratios and
enrichment factors in aerosols from the US-GEOTRMES North Atlantic
transects, Deep-Sea Res. Pt. II, 116, 262–272, https://doi.org/10.1016/j.dsr2.2014.12.005,
2015.
Steinhoff, G., Haupt, O., and Dannecker, W.: Fast determination of trace
elements on aerosol-loaded filters by X-ray fluorescence analysis
considering the inhomogeneous elemental distribution, Fresen. J. Anal. Chem.,
366, 174–177, https://doi.org/10.1007/s002160050034, 2000.
Stosnach, H.: Environmental trace-element analysis using a benchtop total
reflection X-ray, fluorescence spectrometer, Anal. Sci., 21, 873–876, https://doi.org/10.2116/analsci.21.873, 2005.
Tian, H. Z., Zhou, J. R., Zhu, C. Y., Zhao, D., Gao, J. J., Hao, J. M., He,
M. C., Liu, K. Y., Wang, K., and Hua, S. B.: A Comprehensive Global
Inventory of Atmospheric Antimony Emissions from Anthropogenic Activities,
1995–2010, Environ. Sci. Technol., 48, 10235–10241, https://doi.org/10.1021/es405817u, 2014.
Towett, E. K., Shepherd, K. D., and Cadisch, G.: Quantification of total
element concentrations in soils using total X-ray fluorescence spectroscopy
(TXRF), Sci. Total Environ., 463, 374–388, https://doi.org/10.1016/j.scitotenv.2013.05.068,
2013.
Upadhyay, N., Majestic, B. J., Prapaipong, P., and Herckes, P.: Evaluation
of polyurethane foam, polypropylene, quartz fiber, and cellulose substrates
for multi-element analysis of atmospheric particulate matter by ICP-MS, Anal.
Bioanal. Chem., 394, 255–266, https://doi.org/10.1007/s00216-009-2671-6, 2009.
van Pinxteren, D., Fomba, K. W., Spindler, G., Muller, K., Poulain, L.,
Iinuma, Y., Loschau, G., Hausmann, A., and Herrmann, H.: Regional air
quality in Leipzig, Germany: detailed source apportionment of size-resolved
aerosol particles and comparison with the year 2000, Faraday Discuss., 189,
291–315, https://doi.org/10.1039/c5fd00228a, 2016.
VanCuren, R. A., Cahill, T., Burkhart, J., Barnes, D., Zhao, Y. J., Perry,
K., Cliff, S., and McConnell, J.: Aerosols and their sources at Summit
Greenland - First results of continuous size- and time-resolved sampling,
Atmos. Environ., 52, 82–97, https://doi.org/10.1016/j.atmosenv.2011.10.047, 2012.
Venter, A. D., van Zyl, P. G., Beukes, J. P., Josipovic, M., Hendriks, J., Vakkari, V., and Laakso, L.: Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa, Atmos. Chem. Phys., 17, 4251–4263, https://doi.org/10.5194/acp-17-4251-2017, 2017.
Vlastelic, I., Suchorski, K., Sellegri, K., Colomb, A., Nauret, F., Bouvier,
L., and Piro, J. L.: The trace metal signature of atmospheric aerosols
sampled at a European regional background site (puy de Dme, France), J Atmos
Chem, 71, 195–212, https://doi.org/10.1007/s10874-014-9290-0, 2014.
von Bohlen, A. and Fernández-Ruiz, R.: Experimental evidence of matrix
effects in total-reflection X-ray fluorescence analysis: Coke case, Talanta,
209, 120562, https://doi.org/10.1016/j.talanta.2019.120562, 2020.
Wagner, A., and Mages, M.: Total-Reflection X-ray fluorescence analysis of
elements in size-fractionated particulate matter sampled on polycarbonate
filters - Composition and sources of aerosol particles in Goteborg, Sweden,
Spectrochim. Acta B, 65, 471–477, https://doi.org/10.1016/j.sab.2010.02.007, 2010.
Wedepohl, K. H.: The Composition of the Continental-Crust, Geochim. Cosmochim.
Ac., 59, 1217–1232, 1995.
Weller, R., Woltjen, J., Piel, C., Resenberg, R., Wagenbach, D.,
Konig-Langlo, G., and Kriews, M.: Seasonal variability of crustal and marine
trace elements in the aerosol at Neumayer station, Antarctica, Tellus B, 60,
742–752, https://doi.org/10.1111/j.1600-0889.2008.00372.x, 2008.
Woelfl, S., Mages, M., and Encina, F.: Cold plasma ashing improves the trace
element detection of single Daphnia specimens by total reflection X-ray
fluorescence spectrometry, Spectrochim. Acta B, 58, 2157–2168,
https://doi.org/10.1016/S0584-8547(03)00196-4, 2003.
Xu, X. M., Chen, J. M., Zhu, C., Li, J. R., Sui, X., Liu, L., and Sun, J.
F.: Fog composition along the Yangtze River basin: Detecting emission
sources of pollutants in fog water, J. Environ. Sci.-China, 71, 2–12,
https://doi.org/10.1016/j.jes.2017.09.018, 2018.
Zhang, R., Cao, J. J., Tang, Y. R., Arimoto, R., Shen, Z. X., Wu, F., Han,
Y. M., Wang, G. H., Zhang, J. Q., and Li, G. H.: Elemental profiles and
signatures of fugitive dusts from Chinese deserts, Sci. Total Environ., 472,
1121–1129, https://doi.org/10.1016/j.scitotenv.2013.11.011, 2014.
Zhao, J. H., Yan, X., Zhou, T. Y., Wang, J., Li, H. Y., Zhang, P., Ding, H.,
and Ding, L.: Multi-throughput dynamic microwave-assisted leaching coupled
with inductively coupled plasma atomic emission spectrometry for heavy metal
analysis in soil, J. Anal. Atom. Spectrom., 30, 1920–1926, https://doi.org/10.1039/c5ja00233h,
2015.
Zhu, C., Tian, H., and Hao, J.: Global anthropogenic atmospheric emission
inventory of twelve typical hazardous trace elements, 1995–2012, Atmos. Environ., 220, 117061, https://doi.org/10.1016/j.atmosenv.2019.117061, 2019.
Short summary
As air quality monitoring networks often sample aerosol particles on quartz filters, the development and applicability of analytical methods with quartz filters are becoming important. In this study different filter preparation methods (e.g., baking, acid digestion) were investigated for quantifying trace metals on quartz and polycarbonate filters, and cloud water using the total reflection X-Ray fluorescence (TXRF) technique, with low detection limits of about 0.3 ng cm−3 for some elements.
As air quality monitoring networks often sample aerosol particles on quartz filters, the...