Cai, C., Stebounova, L. V., Peate, D. W., and Peters, T. M.: Evaluation of a
Portable Aerosol Collector and Spectrometer to measure particle concentration by composition and size, Aerosol Sci. Tech., 53, 675–687,
https://doi.org/10.1080/02786826.2019.1600654, 2019.
a
Castarède, D. and Thomson, E. S.: A thermodynamic description for the hygroscopic growth of atmospheric aerosol particles, Atmos. Chem. Phys., 18, 14939–14948,
https://doi.org/10.5194/acp-18-14939-2018, 2018.
a
Cavaliere, A., Carotenuto, F., Di Gennaro, F., Gioli, B., Gualtieri, G.,
Martelli, F., Matese, A., Toscano, P., Vagnoli, C., and Zaldei, A.:
Development of Low-Cost Air Quality Stations for Next Generation Monitoring
Networks: Calibration and Validation of PM
2.5 and PM10 Sensors, Sensors, 18, 2843,
https://doi.org/10.3390/s18092843, 2018.
a
Chatzidiakou, L., Krause, A., Popoola, O. A. M., Di Antonio, A., Kellaway, M., Han, Y., Squires, F. A., Wang, T., Zhang, H., Wang, Q., Fan, Y., Chen, S., Hu, M., Quint, J. K., Barratt, B., Kelly, F. J., Zhu, T., and Jones, R. L.: Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments, Atmos. Meas. Tech., 12, 4643–4657,
https://doi.org/10.5194/amt-12-4643-2019, 2019.
a
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720,
https://doi.org/10.5194/amt-11-709-2018, 2018.
a
Crilley, L. R., Singh, A., Kramer, L. J., Shaw, M. D., Alam, M. S., Apte, J. S., Bloss, W. J., Hildebrandt Ruiz, L., Fu, P., Fu, W., Gani, S., Gatari, M., Ilyinskaya, E., Lewis, A. C., Ng'ang'a, D., Sun, Y., Whitty, R. C. W., Yue, S., Young, S., and Pope, F. D.: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors, Atmos. Meas. Tech., 13, 1181–1193,
https://doi.org/10.5194/amt-13-1181-2020, 2020.
a
Di Antonio, A., Popoola, O. A. M., Ouyang, B., Saffell, J., and Jones, R. L.:
Developing a relative humidity correction for low-cost sensors measuring
ambient particulate matter, Sensors, 18, 2790,
https://doi.org/10.3390/s18092790, 2018.
a
Downward, G. S., van Nunen, E. J. H. M., Kerckhoffs, J., Vineis, P.,
Brunekreef, B., Boer, J. M. A., Messier, K. P., Roy, A., Verschuren, W.
M. M., van der Schouw, Y. T., Sluijs, I., Gulliver, J., Hoek, G., and
Vermeulen, R.: Long-term exposure to ultrafine particles and incidence of
cardiovascular and cerebrovascular disease in a prospective study of a Dutch cohort, Environ. Health Persp., 126, 1–8,
https://doi.org/10.1289/EHP3047, 2018.
a
Granados-Muñoz, M. J., Navas-Guzmán, F., Bravo-Aranda, J. A., Guerrero-Rascado, J. L., Lyamani, H., Valenzuela, A., Titos, G., Fernández-Gálvez, J., and Alados-Arboledas, L.: Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements: selected cases in southeastern Spain, Atmos. Meas. Tech., 8, 705–718,
https://doi.org/10.5194/amt-8-705-2015, 2015.
a
Hafkenscheid, T. L. and Vonk, J.: Evaluation of equivalence of the MetOne
BAM-1020 for the measurement of PM
2.5 in ambient air, RIVM Letter report 2014-0078), National Institute for Public Health and the Environment, Bilthoven, the Netherlands, 37 pp., 2014.
a,
b
Hagler, G. S. W., Williams, R., Papapostolou, V., and Polidori, A.: Air Quality Sensors and Data Adjustment Algorithms: When Is It No Longer a Measurement?, Environ. Sci. Tech., 52, 5530–5531,
https://doi.org/10.1021/acs.est.8b01826, 2018.
a
Hänel, G.: The properties of atmospheric aerosol particles as functions of
the relative humidity at thermodynamic equilibrium with the surrounding moist air, Adv. Geophys., 19, 73–188,
https://doi.org/10.1016/S0065-2687(08)60142-9, 1976.
a
Holstius, D. M., Pillarisetti, A., Smith, K. R., and Seto, E.: Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California, Atmos. Meas. Tech., 7, 1121–1131,
https://doi.org/10.5194/amt-7-1121-2014, 2014.
a
Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., and Morawska, L.: The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog, Atmos. Meas. Tech., 11, 4883–4890,
https://doi.org/10.5194/amt-11-4883-2018, 2018.
a,
b
Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler,
F., Redon, N., Crunaire, S., and Borowiak, A.: Review of the Performance of
Low-Cost Sensors for Air Quality Monitoring, Atmosphere-Basel, 10, 506,
https://doi.org/10.3390/atmos10090506, 2019.
a
Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D.,
Martin, R., and Butterfield, A.: Ambient and laboratory evaluation of a
low-cost particulate matter sensor, Environ. Pollut., 221, 491–500,
https://doi.org/10.1016/j.envpol.2016.12.039, 2017.
a
Kosmopoulos, G., Salamalikis, V., Pandis, S. N., Yannopoulos, P., Bloutsos,
A. A., and Kazantzidis, A.: Low-cost sensors for measuring airborne
particulate matter: Field evaluation and calibration at a South-Eastern
European site, Sci. Total Environ., 748, 141396,
https://doi.org/10.1016/j.scitotenv.2020.141396, 2020.
a,
b,
c
Kuula, J., Makela, T., Hillamo, R., and Timonen, H.: Response characterization of an inexpensive aerosol sensor, Sensors, 17, 2915,
https://doi.org/10.3390/s17122915, 2017.
a
Kuula, J., Mäkelä, T., Aurela, M., Teinilä, K., Varjonen, S., González, Ó., and Timonen, H.: Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors, Atmos. Meas. Tech., 13, 2413–2423,
https://doi.org/10.5194/amt-13-2413-2020, 2020.
a,
b,
c,
d
Li, H. Z., Gu, P., Ye, Q., Zimmerman, N., Robinsona, E. S., Subramanian, R.,
Apte, J. S., Robinsona, A. L., and Presto, A. A.: Spatially dense air
pollutant sampling: Implications of spatial variability on the
representativeness of stationary air pollutant monitors, Atmos.
Environ., 2, 1–13,
https://doi.org/10.1016/j.aeaoa.2019.100012, 2019.
a
Magi, B. I., Cupini, C., Francis, J., Green, M., and Hauser, C.: Evaluation of PM
2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent
Method Beta Attenuation Monitor, Aerosol Sci. Tech., 54, 147–159,
https://doi.org/10.1080/02786826.2019.1619915, 2020.
a,
b,
c
Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L., Presto,
A. A., and Subramanian, R.: Fine particle mass monitoring with low-cost
sensors: Corrections and long-term performance evaluation, Aerosol Sci. Tech., 54, 160–174,
https://doi.org/10.1080/02786826.2019.1623863, 2020.
a
Martin, R. V., Brauer, M., van Donkelaar, A., Shaddick, G., Narain, U., and
Dey, S.: No one knows which city has the highest concentration of fine
particulate matter, Atmos. Environ., 3, 1–5,
https://doi.org/10.1016/j.aeaoa.2019.100040, 2019.
a
Masic, A., Bibic, D., Pikula, B., Dzaferovic-Masic, E., and Musemic, R.:
Experimental study of temperature inversions above urban area using unmanned aerial vehicle, Therm. Sci., 23, 3327–3338,
https://doi.org/10.2298/TSCI180227250M, 2019.
a
Masic, A., Bibic, D., Pikula, B., Blazevic, A., Huremovic, J., and Zero S.: Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution, Zenodo,
https://doi.org/10.5281/zenodo.3897379, 2020.
a
Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler
Metallösungen (contributions to the optics of diffuse media, especially
colloid metal solutions, Ann. Phys., 25, 377–445,
https://doi.org/10.1002/andp.19083300302, 1908 (in German).
a
Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova,
A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., Mullins, B., Rahman, M. M., Ristovski, Z., Shafiei, M., Tjondronegoro, D., Westerdahl, D., and Williams, R.: Applications of
low-cost sensing technologies for air quality monitoring and exposure
assessment: How far have they gone?, Environ. Int., 116,
286–299,
https://doi.org/10.1016/j.envint.2018.04.018, 2018.
a
Mukherjee, A., Stanton, L. G., Graham, A. R., and Roberts, P. T.: Assessing the utility of low-cost particulate matter sensors over a 12-week period in the Cuyama Valley of California, Sensors, 17, 1805,
https://doi.org/10.3390/s17081805, 2017.
a,
b
Mukherjee, A., Brown, S. G., McCarthy, M. C., Pavlovic, N. R., Stanton, L. G., Snyder, J. L., D'Andrea, S., and Hafner, H. R.: Measuring Spatial and
Temporal PM
2.5 Variations in Sacramento, California, Communities Using a Network of Low-Cost Sensors, Sensors, 19, 4701,
https://doi.org/10.3390/s19214701, 2019.
a
Sayahi, T., Butterfield, A., and Kelly, K. E.: Long-term field evaluation of
the Plantower PMS low-cost particulate matter sensors, Environ.
Poll., 245, 932–940,
https://doi.org/10.1016/j.envpol.2018.11.065, 2019.
a
Si, M., Xiong, Y., Du, S., and Du, K.: Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods, Atmos. Meas. Tech., 13, 1693–1707,
https://doi.org/10.5194/amt-13-1693-2020, 2020.
a
Sousan, S., Koehler, K., Hallett, L., and Peters, T. M.: Evaluation of the
Alphasense optical particle counter (OPC-N2) and the Grimm portable aerosol
spectrometer (PAS-1.108), Aerosol Sci. Tech., 50, 1352–1365,
https://doi.org/10.1080/02786826.2016.1232859, 2016a.
a,
b
Sousan, S., Koehler, K., Thomas, G., Park, J. H., Hillman, M., Halterman, A.,
and Peters, T. M.: Inter-comparison of low-cost sensors for measuring the
mass concentration of occupational aerosols, Aerosol Sci. Tech.,
50, 462–473,
https://doi.org/10.1080/02786826.2016.1162901, 2016b.
a
Sousan, S., Gray, A., Zuidema, C., Stebounova, L., Thomas, G., Koehler, K., and Peters, T.: Sensor selection to improve estimates of particulate matter
concentration from a low-cost network, Sensors, 18, 3008,
https://doi.org/10.3390/s18093008, 2018.
a
Tanzer, R., Malings, C., Hauryliuk, A., Subramanian, R., and Presto, A. A.:
Demonstration of a low-cost multi-pollutant network to quantify intra-urban
spatial variations in air pollutant source impacts and to evaluate
environmental justice, Int. J. Environ. Res.
Public He., 16, 2523,
https://doi.org/10.3390/ijerph16142523, 2019.
a,
b
Tasic, V., Jovasevic-Stojanovic, M., Vardoulakis, S., Milosevic, N. Kovacevic, R., and Petrovic, J.: Comparative assessment of a real-time particle monitor against the reference gravimetric method for PM10 and PM
2.5 in indoor air, Atmos. Environ., 54, 358–364,
https://doi.org/10.1016/j.atmosenv.2012.02.030, 2012.
a
Tiszenkel, L., Stangl, C., Krasnomowitz, J., Ouyang, Q., Yu, H., Apsokardu, M. J., Johnston, M. V., and Lee, S.-H.: Temperature effects on sulfuric acid aerosol nucleation and growth: initial results from the TANGENT study, Atmos. Chem. Phys., 19, 8915–8929,
https://doi.org/10.5194/acp-19-8915-2019, 2019.
a
Tryner, J., L'Orange, C., Mehaffy, J., Miller-Lionberg, D., Hofstetter, J. C., Wilson, A., and Volckens, J.: Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers, Atmos. Environ., 220, 117067,
https://doi.org/10.1016/j.atmosenv.2019.117067, 2020.
a,
b
U.S. EPA: AirNow, available at:
https://www.airnow.gov/?city=Sarajevo&country=BIH, last access: 26 November 2020. a
Walser, A., Sauer, D., Spanu, A., Gasteiger, J., and Weinzierl, B.: On the parametrization of optical particle counter response including instrument-induced broadening of size spectra and a self-consistent evaluation of calibration measurements, Atmos. Meas. Tech., 10, 4341–4361,
https://doi.org/10.5194/amt-10-4341-2017, 2017.
a
Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., and Biswas, P.: Laboratory
evaluation and calibration of three low-cost particle sensors for particulate matter measurement, Aerosol Sci. Tech., 49, 1063–1077,
https://doi.org/10.1080/02786826.2015.1100710, 2015.
a
Zhang, J., Marto, J. P., and Schwab, J. J.: Exploring the applicability and limitations of selected optical scattering instruments for PM mass measurement, Atmos. Meas. Tech., 11, 2995–3005,
https://doi.org/10.5194/amt-11-2995-2018, 2018.
a
Zhao, A., Bollasina, M. A., Crippa, M., and Stevenson, D. S.: Significant climate impacts of aerosol changes driven by growth in energy use and advances in emission control technology, Atmos. Chem. Phys., 19, 14517–14533,
https://doi.org/10.5194/acp-19-14517-2019, 2019.
a
Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmos. Meas. Tech., 11, 4823–4846,
https://doi.org/10.5194/amt-11-4823-2018, 2018.
a
Zheng, T., Bergin, M. H., Sutaria, R., Tripathi, S. N., Caldow, R., and Carlson, D. E.: Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi, Atmos. Meas. Tech., 12, 5161–5181,
https://doi.org/10.5194/amt-12-5161-2019, 2019.
a