Articles | Volume 13, issue 12
https://doi.org/10.5194/amt-13-6487-2020
https://doi.org/10.5194/amt-13-6487-2020
Research article
 | 
03 Dec 2020
Research article |  | 03 Dec 2020

Simultaneous detection of atmospheric HONO and NO2 utilising an IBBCEAS system based on an iterative algorithm

Ke Tang, Min Qin, Wu Fang, Jun Duan, Fanhao Meng, Kaidi Ye, Helu Zhang, Pinhua Xie, Yabai He, Wenbin Xu, Jianguo Liu, and Wenqing Liu

Related authors

High-resolution vertical distribution and sources of HONO and NO2 in the nocturnal boundary layer in urban Beijing, China
Fanhao Meng, Min Qin, Ke Tang, Jun Duan, Wu Fang, Shuaixi Liang, Kaidi Ye, Pinhua Xie, Yele Sun, Conghui Xie, Chunxiang Ye, Pingqing Fu, Jianguo Liu, and Wenqing Liu
Atmos. Chem. Phys., 20, 5071–5092, https://doi.org/10.5194/acp-20-5071-2020,https://doi.org/10.5194/acp-20-5071-2020, 2020
Short summary
Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing)
Leigh R. Crilley, Louisa J. Kramer, Bin Ouyang, Jun Duan, Wenqian Zhang, Shengrui Tong, Maofa Ge, Ke Tang, Min Qin, Pinhua Xie, Marvin D. Shaw, Alastair C. Lewis, Archit Mehra, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Hugh Coe, James Allan, Carl J. Percival, Olalekan A. M. Popoola, Roderic L. Jones, and William J. Bloss
Atmos. Meas. Tech., 12, 6449–6463, https://doi.org/10.5194/amt-12-6449-2019,https://doi.org/10.5194/amt-12-6449-2019, 2019
Short summary
Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO2 in a polluted urban environment
Shuaixi Liang, Min Qin, Pinhua Xie, Jun Duan, Wu Fang, Yabai He, Jin Xu, Jingwei Liu, Xin Li, Ke Tang, Fanhao Meng, Kaidi Ye, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 12, 2499–2512, https://doi.org/10.5194/amt-12-2499-2019,https://doi.org/10.5194/amt-12-2499-2019, 2019
Short summary
Development of an incoherent broadband cavity-enhanced absorption spectrometer for in situ measurements of HONO and NO2
Jun Duan, Min Qin, Bin Ouyang, Wu Fang, Xin Li, Keding Lu, Ke Tang, Shuaixi Liang, Fanhao Meng, Zhaokun Hu, Pinhua Xie, Wenqing Liu, and Rolf Häsler
Atmos. Meas. Tech., 11, 4531–4543, https://doi.org/10.5194/amt-11-4531-2018,https://doi.org/10.5194/amt-11-4531-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Multiphysical description of atmospheric pressure interface chemical ionisation in MION2 and Eisele type inlets
Henning Finkenzeller, Jyri Mikkilä, Cecilia Righi, Paxton Juuti, Mikko Sipilä, Matti Rissanen, Douglas Worsnop, Aleksei Shcherbinin, Nina Sarnela, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 5989–6001, https://doi.org/10.5194/amt-17-5989-2024,https://doi.org/10.5194/amt-17-5989-2024, 2024
Short summary
A portable nitrogen dioxide instrument using cavity-enhanced absorption spectroscopy
Steven A. Bailey, Reem A. Hannun, Andrew K. Swanson, and Thomas F. Hanisco
Atmos. Meas. Tech., 17, 5903–5910, https://doi.org/10.5194/amt-17-5903-2024,https://doi.org/10.5194/amt-17-5903-2024, 2024
Short summary
Development and deployment of a mid-cost CO2 sensor monitoring network to support atmospheric inverse modeling for quantifying urban CO2 emissions in Paris
Jinghui Lian, Olivier Laurent, Mali Chariot, Luc Lienhardt, Michel Ramonet, Hervé Utard, Thomas Lauvaux, François-Marie Bréon, Grégoire Broquet, Karina Cucchi, Laurent Millair, and Philippe Ciais
Atmos. Meas. Tech., 17, 5821–5839, https://doi.org/10.5194/amt-17-5821-2024,https://doi.org/10.5194/amt-17-5821-2024, 2024
Short summary
UAV-based in situ measurements of CO2 and CH4 fluxes over complex natural ecosystems
Abdullah Bolek, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech., 17, 5619–5636, https://doi.org/10.5194/amt-17-5619-2024,https://doi.org/10.5194/amt-17-5619-2024, 2024
Short summary
A new aerial approach for quantifying and attributing methane emissions: implementation and validation
Jonathan F. Dooley, Kenneth Minschwaner, Manvendra K. Dubey, Sahar H. El Abbadi, Evan D. Sherwin, Aaron G. Meyer, Emily Follansbee, and James E. Lee
Atmos. Meas. Tech., 17, 5091–5111, https://doi.org/10.5194/amt-17-5091-2024,https://doi.org/10.5194/amt-17-5091-2024, 2024
Short summary

Cited articles

Acker, K., Möller, D., Wieprecht, W., Meixner, F. X., Bohn, B., Gilge, S., Plass-Dülmer, C., and Berresheim, H.: Strong daytime production of OH from HNO2 at a rural mountain site, Geophys. Res. Lett., 33, L02809, https://doi.org/10.1029/2005gl024643, 2006. 
Alicke, B.: Impact of nitrous acid photolysis on the total hydroxyl radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in Milan, J. Geophys. Res., 107, 8196, https://doi.org/10.1029/2000jd000075, 2002. 
Chen, L., Hou, S., Wang, W., Tong, S., Pei, K., and Ge, M.: Development of a Home-Made Long Path Absorption Photometer for the Sensitive Detection of Nitrous Acid, Acta Phys.-Chim. Sin., 30, 1408–1415, https://doi.org/10.3866/pku.whxb201406032, 2014. 
Cheng, P., Cheng, Y., Lu, K., Su, H., Yang, Q., Zou, Y., Zhao, Y., Dong, H., Zeng, L., and Zhang, Y.: An online monitoring system for atmospheric nitrous acid (HONO) based on stripping coil and ion chromatography, J. Environ. Sci., 25, 895–907, https://doi.org/10.1016/s1001-0742(12)60251-4, 2013. 
Download
Short summary
We present an improved instrument for the simultaneous detection of atmospheric nitrous acid (HONO) and nitrogen dioxide (NO2). The robustness of the system is verified by simulating the influence of the relative change in light intensity on the measurement results. The instrument's capability to make fast high-sensitivity measurements of HONO and NO2 is of great significance for understanding the source of HONO and studying its role in atmospheric chemistry.