Articles | Volume 13, issue 12
https://doi.org/10.5194/amt-13-6675-2020
https://doi.org/10.5194/amt-13-6675-2020
Research article
 | 
09 Dec 2020
Research article |  | 09 Dec 2020

A novel lidar gradient cluster analysis method of nocturnal boundary layer detection during air pollution episodes

Yinchao Zhang, Su Chen, Siying Chen, He Chen, and Pan Guo

Related authors

Study of the seasonal variation in Aeolus wind product performance over China using ERA5 and radiosonde data
Siying Chen, Rongzheng Cao, Yixuan Xie, Yinchao Zhang, Wangshu Tan, He Chen, Pan Guo, and Peitao Zhao
Atmos. Chem. Phys., 21, 11489–11504, https://doi.org/10.5194/acp-21-11489-2021,https://doi.org/10.5194/acp-21-11489-2021, 2021
Short summary
Comparison of air quality at different altitudes from multi-platform measurements in Beijing
Hongzhu Ji, Siying Chen, Yinchao Zhang, He Chen, Pan Guo, and Peitao Zhao
Atmos. Chem. Phys., 18, 10645–10653, https://doi.org/10.5194/acp-18-10645-2018,https://doi.org/10.5194/acp-18-10645-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Quantification of primary and secondary organic aerosol sources by combined factor analysis of extractive electrospray ionisation and aerosol mass spectrometer measurements (EESI-TOF and AMS)
Yandong Tong, Lu Qi, Giulia Stefenelli, Dongyu Simon Wang, Francesco Canonaco, Urs Baltensperger, André Stephan Henry Prévôt, and Jay Gates Slowik
Atmos. Meas. Tech., 15, 7265–7291, https://doi.org/10.5194/amt-15-7265-2022,https://doi.org/10.5194/amt-15-7265-2022, 2022
Short summary
A new method for calculating average visibility from the relationship between extinction coefficient and visibility
Zefeng Zhang, Hengnan Guo, Hanqing Kang, Jing Wang, Junlin An, Xingna Yu, Jingjing Lv, and Bin Zhu
Atmos. Meas. Tech., 15, 7259–7264, https://doi.org/10.5194/amt-15-7259-2022,https://doi.org/10.5194/amt-15-7259-2022, 2022
Short summary
In situ particle sampling relationships to surface and turbulent fluxes using large eddy simulations with Lagrangian particles
Hyungwon John Park, Jeffrey S. Reid, Livia S. Freire, Christopher Jackson, and David H. Richter
Atmos. Meas. Tech., 15, 7171–7194, https://doi.org/10.5194/amt-15-7171-2022,https://doi.org/10.5194/amt-15-7171-2022, 2022
Short summary
The effect of the averaging period for PMF analysis of aerosol mass spectrometer measurements during offline applications
Christina Vasilakopoulou, Iasonas Stavroulas, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Meas. Tech., 15, 6419–6431, https://doi.org/10.5194/amt-15-6419-2022,https://doi.org/10.5194/amt-15-6419-2022, 2022
Short summary
Calibrating networks of low-cost air quality sensors
Priyanka deSouza, Ralph Kahn, Tehya Stockman, William Obermann, Ben Crawford, An Wang, James Crooks, Jing Li, and Patrick Kinney
Atmos. Meas. Tech., 15, 6309–6328, https://doi.org/10.5194/amt-15-6309-2022,https://doi.org/10.5194/amt-15-6309-2022, 2022
Short summary

Cited articles

Banks, R. F., Tiana-Alsina, J., María Baldasano, J., and Rocadenbosch, F.: Retrieval of boundary layer height from lidar using extended Kalman filter approach, classic methods, and backtrajectory cluster analysis, edited by: Comerón, A., Kassianov, E. I., Schäfer, K., Picard, R. H., Stein, K., and Gonglewski, J. D., Amsterdam, the Netherlands, p. 92420F, 2014. 
Brooks, I. M.: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles, J. Atmos. Ocean. Tech., 20, 1092–1105, 2003. 
Caicedo, V., Rappenglück, B., Lefer, B., Morris, G., Toledo, D., and Delgado, R.: Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data, Atmos. Meas. Tech., 10, 1609–1622, https://doi.org/10.5194/amt-10-1609-2017, 2017. 
Campbell, J. R., Sassen, K., and Welton, E. J.: Elevated Cloud and Aerosol Layer Retrievals from Micropulse Lidar Signal Profiles, J. Atmos. Ocean. Tech., 25, 685–700, https://doi.org/10.1175/2007JTECHA1034.1, 2008. 
Download
Short summary
Air pollution has an important impact on human health, climatic patterns, and the ecological environment. The complexity of the nocturnal boundary layer (NBL), combined with its strong physio-chemical effect, induces worse polluted episodes. Therefore, we present a new approach named cluster analysis of gradient method (CA-GM) to overcome the multilayer structure and remove the fluctuation of NBL height using raw data resolution.