Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1733-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-1733-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Performance of open-path GasFinder3 devices for CH4 concentration measurements close to ambient levels
School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Zollikofen, 3052, Switzerland
Marcel Bühler
School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Zollikofen, 3052, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, 3012, Switzerland
Institute of Geography, University of Bern, Bern, 3012, Switzerland
Albrecht Neftel
Neftel Research Expertise, Wohlen b. Bern, 3033, Switzerland
Christof Ammann
Climate and Agriculture Group, Agroscope, Zürich, 8046,
Switzerland
Thomas Kupper
School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Zollikofen, 3052, Switzerland
Related authors
Mubaraq Olarewaju Abdulwahab, Christophe Flechard, Yannick Fauvel, Christoph Häni, Adrien Jacotot, Anne-Isabelle Graux, Nadège Edouard, Pauline Buysse, Valérie Viaud, and Albrecht Neftel
Biogeosciences, 22, 6669–6693, https://doi.org/10.5194/bg-22-6669-2025, https://doi.org/10.5194/bg-22-6669-2025, 2025
Short summary
Short summary
Pastures are an important source of ammonia, a major atmospheric pollutant with manifold environmental impacts. Ammonia is emitted from the decomposition of cattle urine in soils during grazing. We used micrometeorological methods to measure emissions over four grazing seasons. The results show the influence of weather and grassland management on emission processes. Emission factors, used to compile regional inventories, are hugely variable and still very uncertain despite decades of research.
Marcel Bühler, Christoph Häni, Albrecht Neftel, Patrice Bühler, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 17, 4649–4658, https://doi.org/10.5194/amt-17-4649-2024, https://doi.org/10.5194/amt-17-4649-2024, 2024
Short summary
Short summary
Methane was released from an artificial source inside a barn to test the applicability of the inverse dispersion method (IDM). Multiple open-path concentration devices and ultrasonic anemometers were used at the site. It is concluded that, for the present study case, the effect of a building and a tree in the main wind axis led to a systematic underestimation of the IDM-derived emission rate probably due to deviations in the wind field and turbulent dispersion from the ideal assumptions.
Yolanda Maria Lemes, Christoph Häni, Jesper Nørlem Kamp, and Anders Feilberg
Atmos. Meas. Tech., 16, 1295–1309, https://doi.org/10.5194/amt-16-1295-2023, https://doi.org/10.5194/amt-16-1295-2023, 2023
Short summary
Short summary
The implementation of a new method, line-averaged concentration measurement with a closed-path analyzer, will enable the measurement of fluxes of multiple gases from different types of sources and will evaluate the effects of mitigation strategies on emissions. In addition, this method allows for continuous online measurements that resolve temporal variation in ammonia emissions and the peak emissions of methane.
Marsailidh M. Twigg, Augustinus J. C. Berkhout, Nicholas Cowan, Sabine Crunaire, Enrico Dammers, Volker Ebert, Vincent Gaudion, Marty Haaima, Christoph Häni, Lewis John, Matthew R. Jones, Bjorn Kamps, John Kentisbeer, Thomas Kupper, Sarah R. Leeson, Daiana Leuenberger, Nils O. B. Lüttschwager, Ulla Makkonen, Nicholas A. Martin, David Missler, Duncan Mounsor, Albrecht Neftel, Chad Nelson, Eiko Nemitz, Rutger Oudwater, Celine Pascale, Jean-Eudes Petit, Andrea Pogany, Nathalie Redon, Jörg Sintermann, Amy Stephens, Mark A. Sutton, Yuk S. Tang, Rens Zijlmans, Christine F. Braban, and Bernhard Niederhauser
Atmos. Meas. Tech., 15, 6755–6787, https://doi.org/10.5194/amt-15-6755-2022, https://doi.org/10.5194/amt-15-6755-2022, 2022
Short summary
Short summary
Ammonia (NH3) gas in the atmosphere impacts the environment, human health, and, indirectly, climate. Historic NH3 monitoring was labour intensive, and the instruments were complicated. Over the last decade, there has been a rapid technology development, including “plug-and-play” instruments. This study is an extensive field comparison of the currently available technologies and provides evidence that for routine monitoring, standard operating protocols are required for datasets to be comparable.
Mubaraq Olarewaju Abdulwahab, Christophe Flechard, Yannick Fauvel, Christoph Häni, Adrien Jacotot, Anne-Isabelle Graux, Nadège Edouard, Pauline Buysse, Valérie Viaud, and Albrecht Neftel
Biogeosciences, 22, 6669–6693, https://doi.org/10.5194/bg-22-6669-2025, https://doi.org/10.5194/bg-22-6669-2025, 2025
Short summary
Short summary
Pastures are an important source of ammonia, a major atmospheric pollutant with manifold environmental impacts. Ammonia is emitted from the decomposition of cattle urine in soils during grazing. We used micrometeorological methods to measure emissions over four grazing seasons. The results show the influence of weather and grassland management on emission processes. Emission factors, used to compile regional inventories, are hugely variable and still very uncertain despite decades of research.
Marcel Bühler, Christoph Häni, Albrecht Neftel, Patrice Bühler, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 17, 4649–4658, https://doi.org/10.5194/amt-17-4649-2024, https://doi.org/10.5194/amt-17-4649-2024, 2024
Short summary
Short summary
Methane was released from an artificial source inside a barn to test the applicability of the inverse dispersion method (IDM). Multiple open-path concentration devices and ultrasonic anemometers were used at the site. It is concluded that, for the present study case, the effect of a building and a tree in the main wind axis led to a systematic underestimation of the IDM-derived emission rate probably due to deviations in the wind field and turbulent dispersion from the ideal assumptions.
Yolanda Maria Lemes, Christoph Häni, Jesper Nørlem Kamp, and Anders Feilberg
Atmos. Meas. Tech., 16, 1295–1309, https://doi.org/10.5194/amt-16-1295-2023, https://doi.org/10.5194/amt-16-1295-2023, 2023
Short summary
Short summary
The implementation of a new method, line-averaged concentration measurement with a closed-path analyzer, will enable the measurement of fluxes of multiple gases from different types of sources and will evaluate the effects of mitigation strategies on emissions. In addition, this method allows for continuous online measurements that resolve temporal variation in ammonia emissions and the peak emissions of methane.
Marsailidh M. Twigg, Augustinus J. C. Berkhout, Nicholas Cowan, Sabine Crunaire, Enrico Dammers, Volker Ebert, Vincent Gaudion, Marty Haaima, Christoph Häni, Lewis John, Matthew R. Jones, Bjorn Kamps, John Kentisbeer, Thomas Kupper, Sarah R. Leeson, Daiana Leuenberger, Nils O. B. Lüttschwager, Ulla Makkonen, Nicholas A. Martin, David Missler, Duncan Mounsor, Albrecht Neftel, Chad Nelson, Eiko Nemitz, Rutger Oudwater, Celine Pascale, Jean-Eudes Petit, Andrea Pogany, Nathalie Redon, Jörg Sintermann, Amy Stephens, Mark A. Sutton, Yuk S. Tang, Rens Zijlmans, Christine F. Braban, and Bernhard Niederhauser
Atmos. Meas. Tech., 15, 6755–6787, https://doi.org/10.5194/amt-15-6755-2022, https://doi.org/10.5194/amt-15-6755-2022, 2022
Short summary
Short summary
Ammonia (NH3) gas in the atmosphere impacts the environment, human health, and, indirectly, climate. Historic NH3 monitoring was labour intensive, and the instruments were complicated. Over the last decade, there has been a rapid technology development, including “plug-and-play” instruments. This study is an extensive field comparison of the currently available technologies and provides evidence that for routine monitoring, standard operating protocols are required for datasets to be comparable.
Christian Brümmer, Jeremy J. Rüffer, Jean-Pierre Delorme, Pascal Wintjen, Frederik Schrader, Burkhard Beudert, Martijn Schaap, and Christof Ammann
Earth Syst. Sci. Data, 14, 743–761, https://doi.org/10.5194/essd-14-743-2022, https://doi.org/10.5194/essd-14-743-2022, 2022
Short summary
Short summary
Field campaigns were carried out to investigate the biosphere–atmosphere exchange of selected reactive nitrogen compounds over different land surfaces using two different analytical devices for ammonia and total reactive nitrogen. The datasets improve our understanding of the temporal variability of surface–atmosphere exchange in different ecosystems, thereby providing validation opportunities for inferential models simulating the exchange of reactive nitrogen.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Cited articles
BAFU: Luftqualität 2018: Messresultate des Nationalen Beobachtungsnetzes
für Luftfremdstoffe (NABEL), Bundesamt für Umwelt BAFU, Ittigen, Switzerland, Umwelt-Zustand, UZ-1916-D, 2019.
Baldé, H., VanderZaag, A., Smith, W., and Desjardins, R. L.: Ammonia
emissions measured using two different GasFinder open-path lasers,
Atmosphere, 10, 261, https://doi.org/10.3390/atmos10050261, 2019.
Boreal Laser Inc.: GasFinder3-OP Operation Manual, Part No. NDC-200029-D, Edmonton, Canada, 2016.
Boreal Laser Inc.: GasFinder3-OP + ACCESSORIES, available at:
https://boreal-laser.com/wp-content/uploads/2016/02/GasFinder3-OP-Info-Package.pdf
(last access: 12 May 2020), 2018a.
Boreal Laser Inc.: GasFinder3-OP Operation Manual, Part No. NDC-200036, Edmonton, Canada, 2018b.
Boreal Laser Inc.: “Lo-Range” Methane (CH4) Monitoring, available at:
https://boreal-laser.com/gases/methane/, last access: 12 May 2020.
DeBruyn, Z. J., Wagner-Riddle, C., and VanderZaag, A.: Assessment of
open-path spectrometer accuracy at low path-integrated methane
concentrations, Atmosphere, 11, 184, https://doi.org/10.3390/atmos11020184, 2020.
Flesch, T. K., Wilson, J. D., Harper, L. A., and Crenna, B. P.: Estimating
gas emissions from a farm with an inverse-dispersion technique, Atmos.
Environ., 39, 4863–4874, https://doi.org/10.1016/j.atmosenv.2005.04.032, 2005.
Flesch, T. K., Wilson, J. D., Harper, L. A., Todd, R. W., and Cole, N. A.:
Determining ammonia emissions from a cattle feedlot with an inverse
dispersion technique, Agr. Forest Meteorol., 144, 139–155,
https://doi.org/10.1016/j.agrformet.2007.02.006, 2007.
Häni, C.: Data and code from the publication “Performance of open-path GasFinder3 devices for CH4 concentration measurements close to ambient levels” [Data set], Zenodo, https://doi.org/10.5281/zenodo.4569847, 2021.
Harper, L. A., Flesch, T. K., Weaver, K. H., and Wilson, J. D.: The effect
of biofuel production on swine farm methane and ammonia emissions, J.
Environ. Qual., 39, 1984–1992, https://doi.org/10.2134/jeq2010.0172, 2010.
McGinn, S. M., Flesch, T. K., Beauchemin, K. A., Shreck, A., and Kindermann,
M.: Micrometeorological Methods for Measuring Methane Emission Reduction at
Beef Cattle Feedlots: Evaluation of 3-Nitrooxypropanol Feed Additive, J.
Environ. Qual., 48, 1454–1461, https://doi.org/10.2134/jeq2018.11.0412, 2019.
Nelson, D. D., McManus, B., Urbanski, S., Herndon, S., and Zahniser, M. S.:
High precision measurements of atmospheric nitrous oxide and methane using
thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,
Spectrochim. Acta A, 60, 3325–3335, https://doi.org/10.1016/j.saa.2004.01.033, 2004.
VanderZaag, A. C., Flesch, T. K., Desjardins, R. L., Baldé, H., and
Wright, T.: Measuring methane emissions from two dairy farms: Seasonal and
manure-management effects, Agr. Forest Meteorol., 194,
259–267, https://doi.org/10.1016/j.agrformet.2014.02.003, 2014.
Wang, D., Wang, K., Zheng, X., Butterbach-Bahl, K., Díaz-Pinés, E.,
and Chen, H.: Applicability of a gas analyzer with dual quantum cascade
lasers for simultaneous measurements of N2O, CH4 and CO2 fluxes from
cropland using the eddy covariance technique, Science Total
Environment, 729, 138784, https://doi.org/10.1016/j.scitotenv.2020.138784, 2020.