Articles | Volume 14, issue 6
https://doi.org/10.5194/amt-14-4171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-4171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detection of ship plumes from residual fuel operation in emission control areas using single-particle mass spectrometry
Johannes Passig
CORRESPONDING AUTHOR
Joint Mass Spectrometry Centre, Helmholtz Zentrum München, 85764 Neuherberg, Germany
Joint Mass Spectrometry Centre, Analytical Chemistry, University Rostock, 18059 Rostock, Germany
Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
Julian Schade
Joint Mass Spectrometry Centre, Analytical Chemistry, University Rostock, 18059 Rostock, Germany
Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
Robert Irsig
Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
Photonion GmbH, 19061 Schwerin, Germany
Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
Guangzhou Hexin Instrument Co., Ltd, Guangzhou 510530, China
Xue Li
Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
Guangzhou Hexin Instrument Co., Ltd, Guangzhou 510530, China
Zhen Zhou
Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
Guangzhou Hexin Instrument Co., Ltd, Guangzhou 510530, China
Thomas Adam
Joint Mass Spectrometry Centre, Helmholtz Zentrum München, 85764 Neuherberg, Germany
Universität der Bundeswehr München, 85577 Neubiberg, Germany
Ralf Zimmermann
Joint Mass Spectrometry Centre, Helmholtz Zentrum München, 85764 Neuherberg, Germany
Joint Mass Spectrometry Centre, Analytical Chemistry, University Rostock, 18059 Rostock, Germany
Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
Related authors
Marco Schmidt, Haseeb Hakkim, Lukas Anders, Aleksandrs Kalamašņikovs, Thomas Kröger-Badge, Robert Irsig, Norbert Graf, Reinhard Kelnberger, Johannes Passig, and Ralf Zimmermann
Atmos. Meas. Tech., 18, 2425–2437, https://doi.org/10.5194/amt-18-2425-2025, https://doi.org/10.5194/amt-18-2425-2025, 2025
Short summary
Short summary
Laser desorption of individual particles prior to ionization is the key to reveal their organic composition. The CO2 lasers required are bulky and maintenance-intensive, limiting their use in the field. We have developed a compact solid-state IR laser that is easily aligned with the particle beam. Mass spectra and hit rates are similar to those of the CO2 laser. For combined characterization of organic and inorganic particle compositions, both lasers are superior to conventional single UV pulses.
Guanzhong Wang, Heinrich Ruser, Julian Schade, Johannes Passig, Thomas Adam, Günther Dollinger, and Ralf Zimmermann
Atmos. Meas. Tech., 17, 299–313, https://doi.org/10.5194/amt-17-299-2024, https://doi.org/10.5194/amt-17-299-2024, 2024
Short summary
Short summary
This research aims to develop a novel warning system for the real-time monitoring of pollutants in the atmosphere. The system is capable of sampling and investigating airborne aerosol particles on-site, utilizing artificial intelligence to learn their chemical signatures and to classify them in real time. We applied single-particle mass spectrometry for analyzing the chemical composition of aerosol particles and suggest several supervised algorithms for highly reliable automatic classification.
Johannes Passig, Julian Schade, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Thomas Adam, Henrik Fallgren, Jana Moldanova, Martin Sklorz, Thorsten Streibel, and Ralf Zimmermann
Atmos. Chem. Phys., 22, 1495–1514, https://doi.org/10.5194/acp-22-1495-2022, https://doi.org/10.5194/acp-22-1495-2022, 2022
Short summary
Short summary
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was studied at the Swedish coast in autumn. We found PAHs bound to long-range transported particles from eastern and central Europe and also from ship emissions and local sources. This is the first field study using a new technology revealing single-particle data from both inorganic components and PAHs. We discuss PAH profiles that are indicative of several sources and atmospheric aging processes.
Jinwen Zhang, Yongjian Liang, Chenglei Pei, Bo Huang, Yingyan Huang, Xiufeng Lian, Shaojie Song, Chunlei Cheng, Cheng Wu, Zhen Zhou, Junjie Li, and Mei Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-3215, https://doi.org/10.5194/egusphere-2025-3215, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Inadequate characterization of carbon dioxide (CO2) dynamics limits understanding of coastal megacity carbon cycles. Using a novel framework integrating high-precision observations, this study reveals nonlinear sea–land breeze effects, quantifies urban vegetation’s role in CO2 budgets, and tracks policy-driven combustion efficiency via declining ΔCO/ΔCO2 ratios, offering new insights into coastal CO2 cycling.
Xiufeng Lian, Yongjiang Xu, Fengxian Liu, Long Peng, Xiaodong Hu, Guigang Tang, Xu Dao, Hui Guo, Liwei Wang, Bo Huang, Chunlei Cheng, Lei Li, Guohua Zhang, Xinhui Bi, Xiaofei Wang, Zhen Zhou, and Mei Li
Atmos. Chem. Phys., 25, 8891–8905, https://doi.org/10.5194/acp-25-8891-2025, https://doi.org/10.5194/acp-25-8891-2025, 2025
Short summary
Short summary
In this study, we analyzed the mixing state and atmospheric chemical processes of Pb-rich single particles in Beijing. We focused on analyzing the differences in Pb-rich particles between the heating period and non-heating period, as well as the formation mechanism of lead nitrate after coal-to-gas conversion. Our results highlighted the improvement of Pb levels in the particulate as a result of coal-to-gas conversion.
Junhong Huang, Lei Li, Xue Li, Zhengxu Huang, and Zhi Cheng
Atmos. Meas. Tech., 18, 2739–2749, https://doi.org/10.5194/amt-18-2739-2025, https://doi.org/10.5194/amt-18-2739-2025, 2025
Short summary
Short summary
We developed a sampling system that extends the transmission range of the five-stage lens to 10 µm. This innovative design reduces the beam incidence angle and narrows the width. Using polystyrene latex spheres, we validated the high transmission efficiency. Additionally, a standard dust test demonstrated consistency with the aerodynamic particle sizer. This study introduces a novel design framework that not only enhances transmission range and efficiency but also supports instrument miniaturization.
Marco Schmidt, Haseeb Hakkim, Lukas Anders, Aleksandrs Kalamašņikovs, Thomas Kröger-Badge, Robert Irsig, Norbert Graf, Reinhard Kelnberger, Johannes Passig, and Ralf Zimmermann
Atmos. Meas. Tech., 18, 2425–2437, https://doi.org/10.5194/amt-18-2425-2025, https://doi.org/10.5194/amt-18-2425-2025, 2025
Short summary
Short summary
Laser desorption of individual particles prior to ionization is the key to reveal their organic composition. The CO2 lasers required are bulky and maintenance-intensive, limiting their use in the field. We have developed a compact solid-state IR laser that is easily aligned with the particle beam. Mass spectra and hit rates are similar to those of the CO2 laser. For combined characterization of organic and inorganic particle compositions, both lasers are superior to conventional single UV pulses.
Liangbin Wu, Cheng Wu, Tao Deng, Dui Wu, Mei Li, Yong Jie Li, and Zhen Zhou
Atmos. Meas. Tech., 17, 2917–2936, https://doi.org/10.5194/amt-17-2917-2024, https://doi.org/10.5194/amt-17-2917-2024, 2024
Short summary
Short summary
Field comparison of dual-spot (AE33) and single-spot (AE31) Aethalometers by full-year collocated measurements suggests that site-specific correction factors are needed to ensure the long-term data continuity for AE31-to-AE33 transition in black carbon monitoring networks; babs agrees well between AE33 and AE31, with slight variations by wavelength (slope: 0.87–1.04; R2: 0.95–0.97). A ~ 20 % difference in secondary brown carbon light absorption was found between AE33 and AE31.
Satish Basnet, Anni Hartikainen, Aki Virkkula, Pasi Yli-Pirilä, Miika Kortelainen, Heikki Suhonen, Laura Kilpeläinen, Mika Ihalainen, Sampsa Väätäinen, Juho Louhisalmi, Markus Somero, Jarkko Tissari, Gert Jakobi, Ralf Zimmermann, Antti Kilpeläinen, and Olli Sippula
Atmos. Chem. Phys., 24, 3197–3215, https://doi.org/10.5194/acp-24-3197-2024, https://doi.org/10.5194/acp-24-3197-2024, 2024
Short summary
Short summary
Brown carbon (BrC) emissions were estimated, for residential wood combustion (RWC) from various northern European appliances, utilizing an extensive seven-wavelength aethalometer dataset and thermal–optical carbon analysis. The contribution of BrC370–950 to the absorption of visible light varied between 1 % and 21 %, and was linked with fuel moisture content and combustion efficiency. This study provides important information required for assessing the climate effects of RWC emissions.
Xubing Du, Qinhui Xie, Qing Huang, Xuan Li, Junlin Yang, Zhihui Hou, Jingjing Wang, Xue Li, Zhen Zhou, Zhengxu Huang, Wei Gao, and Lei Li
Atmos. Meas. Tech., 17, 1037–1050, https://doi.org/10.5194/amt-17-1037-2024, https://doi.org/10.5194/amt-17-1037-2024, 2024
Short summary
Short summary
Currently, the limitations of single-particle mass spectrometry detection capabilities render it not yet well suited for analyzing complex aerosol components in low-concentration environments. In this study, a new high-performance single-particle aerosol mass spectrometer (HP-SPAMS) is developed to enhance instrument performance regarding the number of detected particles, transmission efficiency, resolution, and sensitivity, which will help in aerosol science.
Guanzhong Wang, Heinrich Ruser, Julian Schade, Johannes Passig, Thomas Adam, Günther Dollinger, and Ralf Zimmermann
Atmos. Meas. Tech., 17, 299–313, https://doi.org/10.5194/amt-17-299-2024, https://doi.org/10.5194/amt-17-299-2024, 2024
Short summary
Short summary
This research aims to develop a novel warning system for the real-time monitoring of pollutants in the atmosphere. The system is capable of sampling and investigating airborne aerosol particles on-site, utilizing artificial intelligence to learn their chemical signatures and to classify them in real time. We applied single-particle mass spectrometry for analyzing the chemical composition of aerosol particles and suggest several supervised algorithms for highly reliable automatic classification.
Aodong Du, Jiaxing Sun, Hang Liu, Weiqi Xu, Wei Zhou, Yuting Zhang, Lei Li, Xubing Du, Yan Li, Xiaole Pan, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 23, 13597–13611, https://doi.org/10.5194/acp-23-13597-2023, https://doi.org/10.5194/acp-23-13597-2023, 2023
Short summary
Short summary
We characterized the impacts of emission controls on particle mixing state and density during the Beijing Olympic Winter Games using a SPAMS in tandem with a DMA and an AAC. OC and sulfate-containing particles increased, while those from primary emissions decreased. The effective particle densities increased and varied largely for different particles, highlighting the impacts of aging and formation processes on the changes of particle density and mixing state.
Bojiang Su, Xinhui Bi, Zhou Zhang, Yue Liang, Congbo Song, Tao Wang, Yaohao Hu, Lei Li, Zhen Zhou, Jinpei Yan, Xinming Wang, and Guohua Zhang
Atmos. Chem. Phys., 23, 10697–10711, https://doi.org/10.5194/acp-23-10697-2023, https://doi.org/10.5194/acp-23-10697-2023, 2023
Short summary
Short summary
During the R/V Xuelong cruise observation over the Ross Sea, Antarctica, the mass concentrations of water-soluble Ca2+ and the mass spectra of individual calcareous particles were measured. Our results indicated that lower temperature, lower wind speed, and the presence of sea ice may facilitate Ca2+ enrichment in sea spray aerosols and highlighted the potential contribution of organically complexed calcium to calcium enrichment, which is inaccurate based solely on water-soluble Ca2+ estimation.
Guohua Zhang, Xiaodong Hu, Wei Sun, Yuxiang Yang, Ziyong Guo, Yuzhen Fu, Haichao Wang, Shengzhen Zhou, Lei Li, Mingjin Tang, Zongbo Shi, Duohong Chen, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 22, 9571–9582, https://doi.org/10.5194/acp-22-9571-2022, https://doi.org/10.5194/acp-22-9571-2022, 2022
Short summary
Short summary
We show a significant enhancement of nitrate mass fraction in cloud water and relative intensity of nitrate in the cloud residual particles and highlight that hydrolysis of N2O5 serves as the critical route for the in-cloud formation of nitrate, even during the daytime. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates may improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.
Xuan Li, Lei Li, Zeming Zhuo, Guohua Zhang, Xubing Du, Xue Li, Zhengxu Huang, Zhen Zhou, and Zhi Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2022-598, https://doi.org/10.5194/egusphere-2022-598, 2022
Preprint archived
Short summary
Short summary
The particle size and chemical composition of bioaerosol were analyzed based on single particle aerosol mass spectrometer. Fungal aerosol of 10 μm was measured for the first time and the characteristic spectrum of bioaerosol was updated. The ion peak ratio method can distinguish bioaerosols from interferers by 97 %. The factors influencing the differentiation of bioaerosols are also discussed. Single particle mass spectrometry can be a new method for real-time identification of bioaerosols.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Haoyu Jiang, Yingyao He, Yiqun Wang, Sheng Li, Bin Jiang, Luca Carena, Xue Li, Lihua Yang, Tiangang Luan, Davide Vione, and Sasho Gligorovski
Atmos. Chem. Phys., 22, 4237–4252, https://doi.org/10.5194/acp-22-4237-2022, https://doi.org/10.5194/acp-22-4237-2022, 2022
Short summary
Short summary
Heterogeneous oxidation of SO2 is suggested to be one of the most important pathways for sulfate formation during extreme haze events in China, yet the exact mechanism remains highly uncertain. Our study reveals that ubiquitous compounds at the sea surface PAHS and DMSO, when exposed to SO2 under simulated sunlight irradiation, generate abundant organic sulfur compounds, providing implications for air-sea interaction and secondary organic aerosols formation processes.
Zhi-Hui Zhang, Elena Hartner, Battist Utinger, Benjamin Gfeller, Andreas Paul, Martin Sklorz, Hendryk Czech, Bin Xia Yang, Xin Yi Su, Gert Jakobi, Jürgen Orasche, Jürgen Schnelle-Kreis, Seongho Jeong, Thomas Gröger, Michal Pardo, Thorsten Hohaus, Thomas Adam, Astrid Kiendler-Scharr, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Atmos. Chem. Phys., 22, 1793–1809, https://doi.org/10.5194/acp-22-1793-2022, https://doi.org/10.5194/acp-22-1793-2022, 2022
Short summary
Short summary
Using a novel setup, we comprehensively characterized the formation of particle-bound reactive oxygen species (ROS) in anthropogenic and biogenic secondary organic aerosols (SOAs). We found that more than 90 % of all ROS components in both SOA types have a short lifetime. Our results also show that photochemical aging promotes particle-bound ROS production and enhances the oxidative potential of the aerosols. We found consistent results between chemical-based and biological-based ROS analyses.
Johannes Passig, Julian Schade, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Thomas Adam, Henrik Fallgren, Jana Moldanova, Martin Sklorz, Thorsten Streibel, and Ralf Zimmermann
Atmos. Chem. Phys., 22, 1495–1514, https://doi.org/10.5194/acp-22-1495-2022, https://doi.org/10.5194/acp-22-1495-2022, 2022
Short summary
Short summary
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was studied at the Swedish coast in autumn. We found PAHs bound to long-range transported particles from eastern and central Europe and also from ship emissions and local sources. This is the first field study using a new technology revealing single-particle data from both inorganic components and PAHs. We discuss PAH profiles that are indicative of several sources and atmospheric aging processes.
Brix Raphael Go, Yan Lyu, Yan Ji, Yong Jie Li, Dan Dan Huang, Xue Li, Theodora Nah, Chun Ho Lam, and Chak K. Chan
Atmos. Chem. Phys., 22, 273–293, https://doi.org/10.5194/acp-22-273-2022, https://doi.org/10.5194/acp-22-273-2022, 2022
Short summary
Short summary
Biomass burning (BB) is a global phenomenon that releases large quantities of pollutants such as phenols and aromatic carbonyls into the atmosphere. These compounds can form secondary organic aerosols (SOAs) which play an important role in the Earth’s energy budget. In this work, we demonstrated that the direct irradiation of vanillin (VL) could generate aqueous SOA (aqSOA) such as oligomers. In the presence of nitrate, VL photo-oxidation can also form nitrated compounds.
Qi En Zhong, Chunlei Cheng, Zaihua Wang, Lei Li, Mei Li, Dafeng Ge, Lei Wang, Yuanyuan Li, Wei Nie, Xuguang Chi, Aijun Ding, Suxia Yang, Duohong Chen, and Zhen Zhou
Atmos. Chem. Phys., 21, 17953–17967, https://doi.org/10.5194/acp-21-17953-2021, https://doi.org/10.5194/acp-21-17953-2021, 2021
Short summary
Short summary
Particulate amines play important roles in new particle formation, aerosol acidity, and hygroscopicity. Most of the field observations did not distinguish the different behavior of each type amine under the same ambient influencing factors. In this study, two amine-containing single particles exhibited different mixing states and disparate enrichment of secondary organics, which provide insight into the discriminated fates of organics during the formation and evolution processes.
Xiansheng Liu, Hadiatullah Hadiatullah, Xun Zhang, L. Drew Hill, Andrew H. A. White, Jürgen Schnelle-Kreis, Jan Bendl, Gert Jakobi, Brigitte Schloter-Hai, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 5139–5151, https://doi.org/10.5194/amt-14-5139-2021, https://doi.org/10.5194/amt-14-5139-2021, 2021
Short summary
Short summary
A monitoring campaign was conducted in Augsburg to determine a suitable noise reduction algorithm for the MA200 Aethalometer. Results showed that centred moving average (CMA) post-processing effectively removed spurious negative concentrations without major bias and reliably highlighted effects from local sources, effectively increasing spatio-temporal resolution in mobile measurements. Evaluation of each method on peak sample reduction and background correction further supports the reliability.
Dac-Loc Nguyen, Hendryk Czech, Simone M. Pieber, Jürgen Schnelle-Kreis, Martin Steinbacher, Jürgen Orasche, Stephan Henne, Olga B. Popovicheva, Gülcin Abbaszade, Guenter Engling, Nicolas Bukowiecki, Nhat-Anh Nguyen, Xuan-Anh Nguyen, and Ralf Zimmermann
Atmos. Chem. Phys., 21, 8293–8312, https://doi.org/10.5194/acp-21-8293-2021, https://doi.org/10.5194/acp-21-8293-2021, 2021
Short summary
Short summary
Southeast Asia is well-known for emission-intense and recurring wildfires and after-harvest crop residue burning during the pre-monsoon season from February to April. We describe a biomass burning (BB) plume arriving at remote Pha Din meteorological station, outline its carbonaceous particulate matter (PM) constituents based on more than 50 target compounds and discuss possible BB sources. This study adds valuable information on chemical PM composition for a region with scarce data availability.
Long Peng, Lei Li, Guohua Zhang, Xubing Du, Xinming Wang, Ping'an Peng, Guoying Sheng, and Xinhui Bi
Atmos. Chem. Phys., 21, 5605–5613, https://doi.org/10.5194/acp-21-5605-2021, https://doi.org/10.5194/acp-21-5605-2021, 2021
Short summary
Short summary
We build a novel system that utilizes an aerodynamic aerosol classifier (AAC) combined with a single-particle aerosol mass spectrometry (SPAMS) to simultaneously characterize the volume equivalent diameter (Dve), chemical compositions, and effective density (ρe) of individual particles in real time. A test of the AAC-SPAMS with both spherical and aspherical particles shows that the deviations between the measured and theoretical values are less than 6 %.
Yuzhen Fu, Qinhao Lin, Guohua Zhang, Yuxiang Yang, Yiping Yang, Xiufeng Lian, Long Peng, Feng Jiang, Xinhui Bi, Lei Li, Yuanyuan Wang, Duohong Chen, Jie Ou, Xinming Wang, Ping'an Peng, Jianxi Zhu, and Guoying Sheng
Atmos. Chem. Phys., 20, 14063–14075, https://doi.org/10.5194/acp-20-14063-2020, https://doi.org/10.5194/acp-20-14063-2020, 2020
Short summary
Short summary
Based on the analysis of the morphology and mixing structure of the activated and unactivated particles, our results emphasize the role of in-cloud processes in the chemistry and microphysical properties of individual activated particles. Given that organic coatings may determine the particle hygroscopicity and heterogeneous chemical reactivity, the increase of OM-shelled particles upon in-cloud processes should have considerable implications for their evolution and climate impact.
Cited articles
Antturi, J., Hänninen, O., Jalkanen, J.-P., Johansson, L., Prank, M.,
Sofiev, M., and Ollikainen, M.: Costs and benefits of low-sulphur fuel
standard for Baltic Sea shipping, J. Environ. Manag., 184, 431–440,
https://doi.org/10.1016/j.jenvman.2016.09.064, 2016.
Arndt, J., Sciare, J., Mallet, M., Roberts, G. C., Marchand, N., Sartelet, K., Sellegri, K., Dulac, F., Healy, R. M., and Wenger, J. C.: Sources and mixing state of summertime background aerosol in the north-western Mediterranean basin, Atmos. Chem. Phys., 17, 6975–7001, https://doi.org/10.5194/acp-17-6975-2017, 2017.
Ault, A. P., Moore, M. J., Furutani, H., and Prather, K. A.: Impact of
Emissions from the Los Angeles Port Region on San Diego Air Quality during
Regional Transport Events, Environ. Sci. Technol., 43, 3500–3506,
https://doi.org/10.1021/es8018918, 2009.
Ault, A. P., Gaston, C. I., Wang, Y., Dominguez, G., Thiemens, M. H., and
Prather, K. A.: Characterization of the single particle mixing state of
individual ship plume events measured at the Port of Los Angeles, Environ.
Sci. Technol., 44, 1954–1961, https://doi.org/10.1021/es902985h, 2010.
Ausmeel, S., Eriksson, A., Ahlberg, E., and Kristensson, A.: Methods for identifying aged ship plumes and estimating contribution to aerosol exposure downwind of shipping lanes, Atmos. Meas. Tech., 12, 4479–4493, https://doi.org/10.5194/amt-12-4479-2019, 2019.
Ausmeel, S., Eriksson, A., Ahlberg, E., Sporre, M. K., Spanne, M., and Kristensson, A.: Ship plumes in the Baltic Sea Sulfur Emission Control Area: chemical characterization and contribution to coastal aerosol concentrations, Atmos. Chem. Phys., 20, 9135–9151, https://doi.org/10.5194/acp-20-9135-2020, 2020.
Badeke, R., Matthias, V., and Grawe, D.: Parameterizing the vertical downward dispersion of ship exhaust gas in the near field, Atmos. Chem. Phys., 21, 5935–5951, https://doi.org/10.5194/acp-21-5935-2021, 2021.
Balzani Lööv, J. M., Alfoldy, B., Gast, L. F. L., Hjorth, J., Lagler, F., Mellqvist, J., Beecken, J., Berg, N., Duyzer, J., Westrate, H., Swart, D. P. J., Berkhout, A. J. C., Jalkanen, J.-P., Prata, A. J., van der Hoff, G. R., and Borowiak, A.: Field test of available methods to measure remotely SOx and NOx emissions from ships, Atmos. Meas. Tech., 7, 2597–2613, https://doi.org/10.5194/amt-7-2597-2014, 2014.
Beecken, J., Mellqvist, J., Salo, K., Ekholm, J., and Jalkanen, J.-P.: Airborne emission measurements of SO2, NOx and particles from individual ships using a sniffer technique, Atmos. Meas. Tech., 7, 1957–1968, https://doi.org/10.5194/amt-7-1957-2014, 2014.
Berg, N., Mellqvist, J., Jalkanen, J.-P., and Balzani, J.: Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms, Atmos. Meas. Tech., 5, 1085–1098, https://doi.org/10.5194/amt-5-1085-2012, 2012.
Celik, S., Drewnick, F., Fachinger, F., Brooks, J., Darbyshire, E., Coe, H., Paris, J.-D., Eger, P. G., Schuladen, J., Tadic, I., Friedrich, N., Dienhart, D., Hottmann, B., Fischer, H., Crowley, J. N., Harder, H., and Borrmann, S.: Influence of vessel characteristics and atmospheric processes on the gas and particle phase of ship emission plumes: in situ measurements in the Mediterranean Sea and around the Arabian Peninsula, Atmos. Chem. Phys., 20, 4713–4734, https://doi.org/10.5194/acp-20-4713-2020, 2020.
Celo, V., Dabek-Zlotorzynska, E., and McCurdy, M.: Chemical Characterization
of Exhaust Emissions from Selected Canadian Marine Vessels: The Case of
Trace Metals and Lanthanoids, Environ. Sci. Technol., 49, 5220–5226,
https://doi.org/10.1021/acs.est.5b00127, 2015.
Chen, G., Huey, L. G., Trainer, M., Nicks, D., Corbett, J., Ryerson, T., Parrish, D., Neuman, J. A. Nowak, J., Tanner, D., Holloway, J., Brock, C., Crawford, J., Olson, J. R., Sullivan, A., Weber, R., Schauffler, S., Donnelly, S., Atlas, E., Roberts, J., Flocke, F., Hübler, G., and Fehsenfeld, F.: An investigation of the chemistry of ship emission plumes during
ITCT 2002, J. Geophys. Res., 110, D10S90, https://doi.org/10.1029/2004JD005236, 2005.
Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V.,
and Lauer, A.: Mortality from Ship Emissions: A Global Assessment, Environ.
Sci. Technol., 41, 8512–8518, https://doi.org/10.1021/es071686z, 2007.
Corbin, J. C., Mensah, A. A., Pieber, S. M., Orasche, J., Michalke, B.,
Zanatta, M., Czech, H., Massabò, D., Buatier de Mongeot, F., Mennucci,
C., El Haddad, I., Kumar, N. K., Stengel, B., Huang, Y., Zimmermann, R.,
Prévôt, A. S. H., and Gysel, M.: Trace Metals in Soot and PM2.5 from Heavy-Fuel-Oil Combustion in a Marine Engine, Environ. Sci. Technol., 52, 6714–6722, https://doi.org/10.1021/acs.est.8b01764, 2018.
Corbin, J. C., Czech, H., Massabò, D., Mongeot, F. B. de, Jakobi, G.,
Liu, F., Lobo, P., Mennucci, C., Mensah, A. A., Orasche, J., Pieber, S. M.,
Prévôt, A. S. H., Stengel, B., Tay, L.-L., Zanatta, M., Zimmermann,
R., El Haddad, I., and Gysel, M.: Infrared-absorbing carbonaceous tar can
dominate light absorption by marine-engine exhaust, npj Climate and Atmospheric Science, 2, 12, https://doi.org/10.1038/s41612-019-0069-5, 2019.
Czech, H., Schnelle-Kreis, J., Streibel, T., and Zimmermann, R.: New
directions: Beyond sulphur, vanadium and nickel – About source
apportionment of ship emissions in emission control areas, Atmos. Environ.,
163, 190–191, https://doi.org/10.1016/j.atmosenv.2017.05.017, 2017a.
Czech, H., Stengel, B., Adam, T., Sklorz, M., Streibel, T., and Zimmermann,
R.: A chemometric investigation of aromatic emission profiles from a marine
engine in comparison with residential wood combustion and road traffic:
Implications for source apportionment inside and outside sulphur emission
control areas, Atmos. Environ., 167, 212–222,
https://doi.org/10.1016/j.atmosenv.2017.08.022, 2017b.
Dall'Osto, M., Harrison, R. M., Beddows, D. C. S., Freney, E. J., Heal, M.
R., and Donovan, R. J.: Single-Particle Detection Efficiencies of Aerosol
Time-of-Flight Mass Spectrometry during the North Atlantic Marine Boundary
Layer Experiment, Environ. Sci. Technol., 40, 5029–5035,
https://doi.org/10.1021/es050951i, 2006.
Di Wu, Li, Q., Ding, X., Sun, J., Li, D., Fu, H., Teich, M., Ye, X., and
Chen, J.: Primary Particulate Matter Emitted from Heavy Fuel and Diesel Oil
Combustion in a Typical Container Ship: Characteristics and Toxicity,
Environ. Sci. Technol., 52, 12943–12951, https://doi.org/10.1021/acs.est.8b04471, 2018.
Diesch, J.-M., Drewnick, F., Klimach, T., and Borrmann, S.: Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany, Atmos. Chem. Phys., 13, 3603–3618, https://doi.org/10.5194/acp-13-3603-2013, 2013.
Eyring, V., Isaksen, I. S., Berntsen, T., Collins, W. J., Corbett, J. J.,
Endresen, O., Grainger, R. G., Moldanova, J., Schlager, H., and Stevenson,
D. S.: Transport impacts on atmosphere and climate: Shipping, Atmos.
Environ., 44, 4735–4771, https://doi.org/10.1016/j.atmosenv.2009.04.059,
2010.
Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R. J.: Highly
Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link
between Sulfate and Aerosol Toxicity, Environ. Sci. Technol., 51,
2611–2620, https://doi.org/10.1021/acs.est.6b06151, 2017.
Fridell, E. and Salo, K.: Measurements of abatement of particles and exhaust
gases in a marine gas scrubber, Proceedings of the IMechE, 230, 154–162,
https://doi.org/10.1177/1475090214543716, 2016.
Furutani, H., Jung, J., Miura, K., Takami, A., Kato, S., Kajii, Y., and
Uematsu, M.: Single-particle chemical characterization and source
apportionment of iron-containing atmospheric aerosols in Asian outflow, J.
Geophys. Res., 116, D18204, https://doi.org/10.1029/2011JD015867, 2011.
Gaie-Levrel, F., Perrier, S., Perraudin, E., Stoll, C., Grand, N., and Schwell, M.: Development and characterization of a single particle laser ablation mass spectrometer (SPLAM) for organic aerosol studies, Atmos. Meas. Tech., 5, 225–241, https://doi.org/10.5194/amt-5-225-2012, 2012.
Gaston, C. J., Quinn, P. K., Bates, T. S., Gilman, J. B., Bon, D. M.,
Kuster, W. C., and Prather, K. A.: The impact of shipping, agricultural, and
urban emissions on single particle chemistry observed aboard the R/V
Atlantis during CalNex, J. Geophys. Res., 118, 5003–5017,
https://doi.org/10.1002/jgrd.50427, 2013.
Hatch, L. E., Pratt, K. A., Huffman, J. A., Jimenez, J. L., and Prather, K.
A.: Impacts of Aerosol Aging on Laser Desorption/Ionization in
Single-Particle Mass Spectrometers, Aerosol Sci. Technol., 48, 1050–1058,
https://doi.org/10.1080/02786826.2014.955907, 2014.
Healy, R. M., O'Connor, I. P., Hellebust, S., Allanic, A., Sodeau, J. R.,
and Wenger, J. C.: Characterisation of single particles from in-port ship
emissions, Atmos. Environ., 43, 6408–6414,
https://doi.org/10.1016/j.atmosenv.2009.07.039, 2009.
International Transport Forum Policy Papers: Reducing Sulphur Emissions from Ships: The Impact of International Regulation, Organisation for Economic Cooperation and Development (OECD) iLibrary, ISSN: 24108871, https://doi.org/10.1787/24108871, 2016.
Jonson, J. E., Gauss, M., Jalkanen, J.-P., and Johansson, L.: Effects of strengthening the Baltic Sea ECA regulations, Atmos. Chem. Phys., 19, 13469–13487, https://doi.org/10.5194/acp-19-13469-2019, 2019.
Jonson, J. E., Gauss, M., Schulz, M., Jalkanen, J.-P., and Fagerli, H.: Effects of global ship emissions on European air pollution levels, Atmos. Chem. Phys., 20, 11399–11422, https://doi.org/10.5194/acp-20-11399-2020, 2020.
Kattner, L., Mathieu-Üffing, B., Burrows, J. P., Richter, A., Schmolke, S., Seyler, A., and Wittrock, F.: Monitoring compliance with sulfur content regulations of shipping fuel by in situ measurements of ship emissions, Atmos. Chem. Phys., 15, 10087–10092, https://doi.org/10.5194/acp-15-10087-2015, 2015.
Lack, D. A., Corbett, J. J., Onasch, T., Lerner, B., Massoli, P., Quinn, P.
K., Bates, T. S., Covert, D. S., Coffman, D., Sierau, B., Herndon, S.,
Allan, J., Baynard, T., Lovejoy, E., Ravishankara, A. R., and Williams, E.:
Particulate emissions from commercial shipping: Chemical, physical, and
optical properties, J. Geophys. Res., 114, D00F04,
https://doi.org/10.1029/2008JD011300, 2009.
Lack, D. A., Cappa, C. D., Langridge, J., Bahreini, R., Buffaloe, G., Brock,
C., Cerully, K., Coffman, D., Hayden, K., Holloway, J., Lerner, B., Massoli,
P., Li, S.-M., McLaren, R., Middlebrook, A. M., Moore, R., Nenes, A.,
Nuaaman, I., Onasch, T. B., Peischl, J., Perring, A., Quinn, P. K., Ryerson,
T., Schwartz, J. P., Spackman, R., Wofsy, S. C., Worsnop, D., Xiang, B., and
Williams, E.: Impact of Fuel Quality Regulation and Speed Reductions on
Shipping Emissions: Implications for Climate and Air Quality, Environ. Sci.
Technol., 45, 9052–9060, https://doi.org/10.1021/es2013424, 2011.
Lähteenmäki-Uutela, A., Yliskylä-Peuralahti, J., Repka, S., and
Mellqvist, J.: What explains SECA compliance: rational calculation or moral
judgment?, WMU Journal of Maritime Affairs, 18, 61–78,
https://doi.org/10.1007/s13437-019-00163-1, 2019.
Lehtoranta, K., Aakko-Saksa, P., Murtonen, T., Vesala, H., Ntziachristos,
L., Rönkkö, T., Karjalainen, P., Kuittinen, N., and Timonen, H.:
Particulate Mass and Nonvolatile Particle Number Emissions from Marine
Engines Using Low-Sulfur Fuels, Natural Gas, or Scrubbers, Environ. Sci.
Technol., 53, 3315–3322, https://doi.org/10.1021/acs.est.8b05555, 2019.
Li, L., Huang, Z., Dong, J., Li, M., Gao, W., Nian, H., Fu, Z., Zhang, G.,
Bi, X., Cheng, P., and Zhou, Z.: Real time bipolar time-of-flight mass
spectrometer for analyzing single aerosol particles, Int. J. Mass Spectrom.,
303, 118–124, https://doi.org/10.1016/j.ijms.2011.01.017, 2011.
Liu, Z., Lu, X., Feng, J., Fan, Q., Zhang, Y., and Yang, X.: Influence of
Ship Emissions on Urban Air Quality: A Comprehensive Study Using Highly
Time-Resolved Online Measurements and Numerical Simulation in Shanghai,
Environ. Sci. Technol., 51, 202–211, https://doi.org/10.1021/acs.est.6b03834, 2017.
Lyyränen, J., Jokiniemi, J., Kauppinen, E. I., and Joutsensaari, J.:
Aerosol characterisation in medium-speed diesel engines operating with heavy
fuel oils, J. Aerosol Sci., 30, 771–784,
https://doi.org/10.1016/S0021-8502(98)00763-0, 1999.
Matthias, V., Arndt, J. A., Aulinger, A., Bieser, J., Denier van der Gon,
Hugo, Kranenburg, R., Kuenen, J., Neumann, D., Pouliot, G., and Quante, M.:
Modeling emissions for three-dimensional atmospheric chemistry transport
models, J. Air Waste Manage., 68, 763–800,
https://doi.org/10.1080/10962247.2018.1424057, 2018.
Mellqvist, J., Beecken, J., Conde, V., and Ekholm, J.: Surveillance of
sulphur emissions from ships in Danish waters, Report to the Danish
Environmental Protection Agency, Report no. 500251, available at: https://research.chalmers.se/publication/500251 (last access: 24 November 2020), 2017a.
Mellqvist, J., Conde, V., Beecken, J., and Ekholm, J.: Fixed remote
surveillance of fuel sulfur content in ships from fixed sites in the
Göteborg ship channel and Öresund bridge,Chalmers
University of Technology, Report no. 500248, available at: https://research.chalmers.se/en/publication/500248 (last access: 24 November 2020), 2017b.
Moffet, R. C., Qin, X., Rebotier, T., Furutani, H., and Prather, K. A.:
Chemically segregated optical and microphysical properties of ambient
aerosols measured in a single-particle mass spectrometer, J. Geophys. Res.,
113, D12213, https://doi.org/10.1029/2007JD009393, 2008.
Moldanová, J., Fridell, E., Popovicheva, O., Demirdjian, B., Tishkova,
V., Faccinetto, A., and Focsa, C.: Characterisation of particulate matter
and gaseous emissions from a large ship diesel engine, Atmos. Environ., 43, 2632–2641, https://doi.org/10.1016/j.atmosenv.2009.02.008, 2009.
Murphy, S. M., Agrawal, H., Sorooshian, A., Padró, L. T., Gates, H.,
Hersey, S., Welch, W. A., Jung, H., Miller, J. W., Cocker, D. R., Nenes, A.,
Jonsson, H. H., Flagan, R. C., and Seinfeld, J. H.: Comprehensive
Simultaneous Shipboard and Airborne Characterization of Exhaust from a
Modern Container Ship at Sea, Environ. Sci. Technol., 43, 4626–4640,
https://doi.org/10.1021/es802413j, 2009.
Neubauer, K. R., Johnston, M. V., and Wexler, A. S.: On-line analysis of
aqueous aerosols by laser desorption ionization, Int. J. Mass. Spectrom. Ion
Process., 163, 29–37, https://doi.org/10.1016/S0168-1176(96)04534-X, 1997.
Neubauer, K. R., Johnston, M. V., and Wexler, A. S.: Humidity effects on the
mass spectra of single aerosol particles, Atmos. Environ., 32, 2521–2529,
https://doi.org/10.1016/S1352-2310(98)00005-3, 1998.
Oeder, S., Kanashova, T., Sippula, O., Sapcariu, S. C., Streibel, T.,
Arteaga-Salas, J. M., Passig, J., Dilger, M., Paur, H.-R., Schlager, C.,
Mülhopt, S., Diabaté, S., Weiss, C., Stengel, B., Rabe, R.,
Harndorf, H., Torvela, T., Jokiniemi, J. K., Hirvonen, M.-R., Schmidt-Weber,
C., Traidl-Hoffmann, C., BéruBé, K. A., Wlodarczyk, A. J., Prytherch, Z., Michalke, B., Krebs, T., Prévôt, A. S. H., Kelbg, M., Tiggesbäumker, J., Karg, E., Jakobi, G., Scholtes, S., Schnelle-Kreis,
J., Lintelmann, J., Matuschek, G., Sklorz, M., Klingbeil, S., Orasche, J.,
Richthammer, P., Müller, L., Elsasser, M., Reda, A., Gröger, T.,
Weggler, B., Schwemer, T., Czech, H., Rüger, C. P., Abbaszade, G.,
Radischat, C., Hiller, K., Buters, J. T. M., Dittmar, G., and Zimmermann, R.: Particulate matter from both heavy fuel oil and diesel fuel shipping
emissions show strong biological effects on human lung cells at realistic
and comparable in vitro exposure conditions, PloS ONE, 10, e0126536,
https://doi.org/10.1371/journal.pone.0126536, 2015.
Passig, J. and Zimmermann, R.: Laser Ionization in Single-Particle Mass
Spectrometry, in: Photoionization and Photo-induced Processes in Mass
Spectrometry: Fundamentals and Applications, edited by: Hanley, L. and
Zimmermann, R., Wiley-VCH, Weinheim, 359–411,
https://doi.org/10.1002/9783527682201.ch11, 2021.
Passig, J., Schade, J., Oster, M., Fuchs, M., Ehlert, S., Jäger, C.,
Sklorz, M., and Zimmermann, R.: Aerosol Mass Spectrometer for Simultaneous
Detection of Polyaromatic Hydrocarbons and Inorganic Components from
Individual Particles, Anal. Chem., 89, 6341–6345,
https://doi.org/10.1021/acs.analchem.7b01207, 2017.
Passig, J., Schade, J., Rosewig, E. I., Irsig, R., Kröger-Badge, T., Czech, H., Sklorz, M., Streibel, T., Li, L., Li, X., Zhou, Z., Fallgren, H., Moldanova, J., and Zimmermann, R.: Resonance-enhanced detection of metals in aerosols using single-particle mass spectrometry, Atmos. Chem. Phys., 20, 7139–7152, https://doi.org/10.5194/acp-20-7139-2020, 2020.
Petzold, A., Hasselbach, J., Lauer, P., Baumann, R., Franke, K., Gurk, C., Schlager, H., and Weingartner, E.: Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer, Atmos. Chem. Phys., 8, 2387–2403, https://doi.org/10.5194/acp-8-2387-2008, 2008.
Popovicheva, O., Kireeva, E., Persiantseva, N., Timofeev, M., Bladt, H.,
Ivleva, N. P., Niessner, R., and Moldanová, J.: Microscopic
characterization of individual particles from multicomponent ship exhaust,
J. Environ. Monit., 14, 3101–3110, https://doi.org/10.1039/c2em30338h, 2012.
Pratt, K. A. and Prather, K. A.: Mass spectrometry of atmospheric
aerosols–recent developments and applications. Part II: On-line mass
spectrometry techniques, Mass Spectrom. Rev., 31, 17–48,
https://doi.org/10.1002/mas.20330, 2012.
Pratt, K. A., Mayer, J. E., Holecek, J. C., Moffet, R. C., Sanchez, R. O.,
Rebotier, T. P., Furutani, H., Gonin, M., Fuhrer, K., Su, Y., Guazzotti, S.,
and Prather, K. A.: Development and Characterization of an Aircraft Aerosol
Time-of-Flight Mass Spectrometer, Anal. Chem., 81, 1792–1800,
https://doi.org/10.1021/ac801942r, 2009.
Reinard, M. S., Adou, K., Martini, J. M., and Johnston, M. V.: Source
characterization and identification by real-time single particle mass
spectrometry, Atmos. Environ., 41, 9397–9409,
https://doi.org/10.1016/j.atmosenv.2007.09.001, 2007.
Romay, F. J., Roberts, D. L., Marple, V. A., Liu, B. Y. H., and Olson, B.
A.: A High-Performance Aerosol Concentrator for Biological Agent Detection,
Aerosol Sci. Technol., 36, 217–226, https://doi.org/10.1080/027868202753504074, 2002.
Sakurai, H., Tobias, H. J., Park, K., Zarling, D., Docherty, K. S.,
Kittelson, D. B., McMurry, P. H., and Ziemann, P. J.: On-line measurements
of diesel nanoparticle composition and volatility, Atmos. Environ., 37,
1199–1210, https://doi.org/10.1016/S1352-2310(02)01017-8, 2003.
Schade, J., Passig, J., Irsig, R., Ehlert, S., Sklorz, M., Adam, T., Li, C.,
Rudich, Y., and Zimmermann, R.: Spatially Shaped Laser Pulses for the
Simultaneous Detection of Polycyclic Aromatic Hydrocarbons as well as
Positive and Negative Inorganic Ions in Single Particle Mass Spectrometry,
Anal. Chem., 91, 10282–10288, https://doi.org/10.1021/acs.analchem.9b02477,
2019.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, 3rd edn., Wiley, s.l., 2185 pp., ISBN: 978-1-118-94740-1, 2016.
Seyler, A., Wittrock, F., Kattner, L., Mathieu-Üffing, B., Peters, E., Richter, A., Schmolke, S., and Burrows, J. P.: Monitoring shipping emissions in the German Bight using MAX-DOAS measurements, Atmos. Chem. Phys., 17, 10997–11023, https://doi.org/10.5194/acp-17-10997-2017, 2017.
Shields, L. G., Suess, D. T., and Prather, K. A.: Determination of single
particle mass spectral signatures from heavy-duty diesel vehicle emissions
for PM2.5 source apportionment, Atmos. Environ., 41, 3841–3852,
https://doi.org/10.1016/j.atmosenv.2007.01.025, 2007.
Sippula, O., Stengel, B., Sklorz, M., Streibel, T., Rabe, R., Orasche, J.,
Lintelmann, J., Michalke, B., Abbaszade, G., Radischat, C., Gröger, T.,
Schnelle-Kreis, J., Harndorf, H., and Zimmermann, R.: Particle emissions
from a marine engine: chemical composition and aromatic emission profiles
under various operating conditions, Environ. Sci. Technol., 48,
11721–11729, https://doi.org/10.1021/es502484z, 2014.
Sofiev, M., Winebrake, J. J., Johansson, L., Carr, E. W., Prank, M., Soares,
J., Vira, J., Kouznetsov, R., Jalkanen, J.-P., and Corbett, J. J.: Cleaner
fuels for ships provide public health benefits with climate tradeoffs, Nat.
Commun., 9, 406, https://doi.org/10.1038/s41467-017-02774-9, 2018.
Song, X.-H., Hopke, P. K., Fergenson, D. P., and Prather, K. A.:
Classification of Single Particles Analyzed by ATOFMS Using an Artificial
Neural Network, ART-2A, Anal. Chem., 71, 860–865,
https://doi.org/10.1021/ac9809682, 1999.
Spencer, M. T., Shields, L. G., Sodeman, D. A., Toner, S. M., and Prather,
K. A.: Comparison of oil and fuel particle chemical signatures with particle
emissions from heavy and light duty vehicles, Atmos. Environ., 40,
5224–5235, https://doi.org/10.1016/j.atmosenv.2006.04.011, 2006.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling
System, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Streibel, T., Schnelle-Kreis, J., Czech, H., Harndorf, H., Jakobi, G.,
Jokiniemi, J., Karg, E., Lintelmann, J., Matuschek, G., Michalke, B.,
Müller, L., Orasche, J., Passig, J., Radischat, C., Rabe, R., Reda, A.,
Rüger, C., Schwemer, T., Sippula, O., Stengel, B., Sklorz, M., Torvela,
T., Weggler, B., and Zimmermann, R.: Aerosol emissions of a ship diesel
engine operated with diesel fuel or heavy fuel oil, Environ. Sci. Pollut.
Res. Int., 24, 10976–10991, https://doi.org/10.1007/s11356-016-6724-z,
2017.
Sultana, C. M., Cornwell, G. C., Rodriguez, P., and Prather, K. A.: FATES: a flexible analysis toolkit for the exploration of single-particle mass spectrometer data, Atmos. Meas. Tech., 10, 1323–1334, https://doi.org/10.5194/amt-10-1323-2017, 2017.
Tian, J., Riemer, N., West, M., Pfaffenberger, L., Schlager, H., and Petzold, A.: Modeling the evolution of aerosol particles in a ship plume using PartMC-MOSAIC, Atmos. Chem. Phys., 14, 5327–5347, https://doi.org/10.5194/acp-14-5327-2014, 2014.
Toner, S. M., Sodeman, D. A., and Prather, K. A.: Single Particle
Characterization of Ultrafine and Accumulation Mode Particles from Heavy
Duty Diesel Vehicles Using Aerosol Time-of-Flight Mass Spectrometry,
Environ. Sci. Technol., 40, 3912–3921, https://doi.org/10.1021/es051455x,
2006.
Toner, S. M., Shields, L. G., Sodeman, D. A., and Prather, K. A.: Using mass
spectral source signatures to apportion exhaust particles from gasoline and
diesel powered vehicles in a freeway study using UF-ATOFMS, Atmos. Environ., 42, 568–581, https://doi.org/10.1016/j.atmosenv.2007.08.005, 2008.
Van Roy, W. and Scheldemann, K.: Results MARPOL Annex VI Monitoring Report
Belgian Sniffer campaign 2016, CompMon, available at:
https://arkisto.trafi.fi/filebank/a/1482762219/4ba0baf93df900f6ac151919f527e2bc/23540-Results_Belgian_Sniffer_Campagin_2016-consealed.pdf, last access: 23 November 2020), 2016.
Viana, M., Amato, F., Alastuey, A., Querol, X., Moreno, T., García Dos
Santos, S., Herce, M. D., and Fernández-Patier, R.: Chemical Tracers of
Particulate Emissions from Commercial Shipping, Environ. Sci. Technol., 43,
7472–7477, https://doi.org/10.1021/es901558t, 2009.
Viana, M., Hammingh, P., Colette, A., Querol, X., Degraeuwe, B., de Vlieger, I., and van Aardenne, J.: Impact of maritime transport emissions on coastal
air quality in Europe, Atmos. Environ., 90, 96–105,
https://doi.org/10.1016/j.atmosenv.2014.03.046, 2014.
Wang, X., Shen, Y., Lin, Y., Pan, J., Zhang, Y., Louie, P. K. K., Li, M.,
and Fu, Q.: Atmospheric pollution from ships and its impact on local air
quality at a port site in Shanghai, Atmos. Chem. Phys., 19, 6315–6330,
https://doi.org/10.5194/acp-19-6315-2019, 2019.
Winebrake, J. J., Corbett, J. J., Green, E. H., Lauer, A., and Eyring, V.:
Mitigating the Health Impacts of Pollution from Oceangoing Shipping: An
Assessment of Low-Sulfur Fuel Mandates, Environ. Sci. Technol., 43,
4776–4782, https://doi.org/10.1021/es803224q, 2009.
Winnes, H., Granberg, M., Magnusson, K., Malmaeus, K., Mellin, A., Stripple,
H., Yaramenka, K., and Zhang, Y.: Scrubbers: Closing the loop; Activity 3.
Summary, IVL Swedish Environmental Research Institute, available at:
https://www.ivl.se/publikationer/publikation.html?id=5737 (last access: 30 November 2020), 2018.
Winnes, H., Fridell, E., and Moldanová, J.: Effects of Marine Exhaust
Gas Scrubbers on Gas and Particle Emissions, J. Mar. Sci. Eng., 8, 299, https://doi.org/10.3390/jmse8040299, 2020.
Xiao, Q., Li, M., Liu, H., Fu, M., Deng, F., Lv, Z., Man, H., Jin, X., Liu, S., and He, K.: Characteristics of marine shipping emissions at berth: profiles for particulate matter and volatile organic compounds, Atmos. Chem. Phys., 18, 9527–9545, https://doi.org/10.5194/acp-18-9527-2018, 2018.
Ye, D., Klein, M., Mulholland, J. A., Russell, A. G., Weber, R., Edgerton,
E. S., Chang, H. H., Sarnat, J. A., Tolbert, P. E., and Ebelt Sarnat, S.:
Estimating Acute Cardiovascular Effects of Ambient PM2.5 Metals, Environ. Health Perspect., 126, 27007, https://doi.org/10.1289/EHP2182, 2018.
Yu, C., Pasternak, D., Lee, J., Yang, M., Bell, T., Bower, K., Wu, H., Liu,
D., Reed, C., Bauguitte, S., Cliff, S., Trembath, J., Coe, H., and Allan, J.
D.: Characterizing the Particle Composition and Cloud Condensation Nuclei
from Shipping Emission in Western Europe, Environ. Sci. Technol., 54, 15604–15612, https://doi.org/10.1021/acs.est.0c04039, 2020.
Zanatta, M., Bozem, H., Köllner, F., Schneider, J., Kunkel, D., Hoor,
P., Faria, J. de, Petzold, A., Bundke, U., Hayden, K., Staebler, R. M.,
Schulz, H., and Herber, A. B.: Airborne survey of trace gases and aerosols
over the Southern Baltic Sea: from clean marine boundary layer to shipping
corridor effect, Tellus B, 72, 1–24,
https://doi.org/10.1080/16000889.2019.1695349, 2020.
Zhang, F., Chen, Y., Tian, C., Wang, X., Huang, G., Fang, Y., and Zong, Z.:
Identification and quantification of shipping emissions in Bohai Rim, China,
Sci. Total Environ., 497–498, 570–577,
https://doi.org/10.1016/j.scitotenv.2014.08.016, 2014.
Zhang, Y., Deng, F., Man, H., Fu, M., Lv, Z., Xiao, Q., Jin, X., Liu, S., He, K., and Liu, H.: Compliance and port air quality features with respect to ship fuel switching regulation: a field observation campaign, SEISO-Bohai, Atmos. Chem. Phys., 19, 4899–4916, https://doi.org/10.5194/acp-19-4899-2019, 2019.
Zhou, F., Hou, L., Zhong, R., Chen, W., Ni, X., Pan, S., Zhao, M., and An, B.: Monitoring the compliance of sailing ships with fuel sulfur content regulations using unmanned aerial vehicle (UAV) measurements of ship emissions in open water, Atmos. Meas. Tech., 13, 4899–4909, https://doi.org/10.5194/amt-13-4899-2020, 2020.
Zhou, Y., Huang, X. H., Griffith, S. M., Li, M., Li, L., Zhou, Z., Wu, C.,
Meng, J., Chan, C. K., Louie, P. K., and Yu, J. Z.: A field measurement
based scaling approach for quantification of major ions, organic carbon, and
elemental carbon using a single particle aerosol mass spectrometer, Atmos.
Environ., 143, 300–312, https://doi.org/10.1016/j.atmosenv.2016.08.054,
2016.
Short summary
Ships are major sources of air pollution; however, monitoring of ship emissions outside harbours is a challenging task. We optimized single-particle mass spectrometry (SPMS) for the detection of bunker fuel emissions and demonstrate the detection of individual ship plumes from more than 10 km in distance. The approach works independently of background air pollution and also when ships use exhaust-cleaning scrubbers. We discuss the potential and limits of SPMS-based monitoring of ship plumes.
Ships are major sources of air pollution; however, monitoring of ship emissions outside harbours...