Articles | Volume 14, issue 6
https://doi.org/10.5194/amt-14-4593-2021
https://doi.org/10.5194/amt-14-4593-2021
Research article
 | 
21 Jun 2021
Research article |  | 21 Jun 2021

MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling

Scott M. Spuler, Matthew Hayman, Robert A. Stillwell, Joshua Carnes, Todd Bernatsky, and Kevin S. Repasky

Related authors

Expanding Observational Capabilities of A Diode-Laser-Based Lidar Through Shot-To-Shot Modification of Laser Pulse Characteristics
Robert A. Stillwell, Adam Karboski, Matthew Hayman, and Scott M. Spuler
EGUsphere, https://doi.org/10.5194/egusphere-2025-1288,https://doi.org/10.5194/egusphere-2025-1288, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor
S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir
Atmos. Meas. Tech., 8, 1073–1087, https://doi.org/10.5194/amt-8-1073-2015,https://doi.org/10.5194/amt-8-1073-2015, 2015
Short summary
Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor
W. A. Cooper, S. M. Spuler, M. Spowart, D. H. Lenschow, and R. B. Friesen
Atmos. Meas. Tech., 7, 3215–3231, https://doi.org/10.5194/amt-7-3215-2014,https://doi.org/10.5194/amt-7-3215-2014, 2014

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Instruments and Platforms
SORAS (Stratospheric Ozone RAdiometer in Seoul), a ground-based 110 GHz microwave radiometer for measuring the stratospheric ozone vertical profile
Soohyun Ka and Jung Jin Oh
Atmos. Meas. Tech., 18, 1283–1299, https://doi.org/10.5194/amt-18-1283-2025,https://doi.org/10.5194/amt-18-1283-2025, 2025
Short summary
Study of NO2 and HCHO vertical profile measurement based on fast synchronous multi-axis differential optical absorption spectroscopy (FS MAX-DOAS)
Jiangman Xu, Ang Li, Zhaokun Hu, Hairong Zhang, and Min Qin
Atmos. Meas. Tech., 18, 865–879, https://doi.org/10.5194/amt-18-865-2025,https://doi.org/10.5194/amt-18-865-2025, 2025
Short summary
Tropospheric ozone sensing with a differential absorption lidar based on a single CO2 Raman cell
Guangqiang Fan, Yibin Fu, Juntao Huo, Yan Xiang, Tianshu Zhang, Wenqing Liu, and Zhi Ning
Atmos. Meas. Tech., 18, 443–453, https://doi.org/10.5194/amt-18-443-2025,https://doi.org/10.5194/amt-18-443-2025, 2025
Short summary
The Small Mobile Ozone Lidar (SMOL): instrument description and first results
Fernando Chouza, Thierry Leblanc, Patrick Wang, Steven S. Brown, Kristen Zuraski, Wyndom Chace, Caroline C. Womack, Jeff Peischl, John Hair, Taylor Shingler, and John Sullivan
Atmos. Meas. Tech., 18, 405–419, https://doi.org/10.5194/amt-18-405-2025,https://doi.org/10.5194/amt-18-405-2025, 2025
Short summary
Design study for an airborne N2O lidar
Christoph Kiemle, Andreas Fix, Christian Fruck, Gerhard Ehret, and Martin Wirth
Atmos. Meas. Tech., 17, 6569–6578, https://doi.org/10.5194/amt-17-6569-2024,https://doi.org/10.5194/amt-17-6569-2024, 2024
Short summary

Cited articles

Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224–232, 2002. a
ARM (Atmospheric Radiation Measurement) user facility: https://adc.arm.gov/discovery/, last access: 11 February 2021. a
Cova, S., Ghioni, M., Lacaita, A., Samori, C., and Zappa, F.: Avalanche photodiodes and quenching circuits for single-photon detection, Appl. Optics, 35, 1956–1976, https://doi.org/10.1364/ao.35.001956, 1996. a
Geerts, B., Parsons, D., Ziegler, C. L., Weckwerth, T. M., Turner, D. D., Wurman, J., Kosiba, K., Rauber, R. M., McFarquhar, G. M., Parker, M. D., Schumacher, R. S., Coniglio, M. C., Haghi, K., Biggerstaff, M. I., Klein, P. M., Jr., W. A. G., Demoz, B. B., Knupp, K. R., Ferrare, R. A., Nehrir, A. R., Clark, R. D., Wang, X., Hanesiak, J. M., Pinto, J. O., and Moore, J. A.: The 2015 Plains Elevated Convection At Night (PECAN) field project, B. Am. Meteorol. Soc., 98, 767–786, https://doi.org/10.1175/BAMS-D-15-00257.1, 2016. a
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer-Verlag New York, 1st edn., https://doi.org/10.1007/978-0-387-21606-5, 2001. a
Download
Short summary
Continuous water vapor and temperature profiles are critically needed for improved understanding of the lower atmosphere and potential advances in weather forecasting skill. To address this observation need, an active remote sensing technology based on a diode-laser-based lidar architecture is being developed. We discuss the details of the lidar architecture and analyze how it addresses a national-scale profiling network's need to provide continuous thermodynamic observations.
Share