Articles | Volume 14, issue 7
https://doi.org/10.5194/amt-14-5199-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-5199-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cloud height measurement by a network of all-sky imagers
Institut für Solarforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Paseo de Almería, 73, 2, 04001 Almeria, Spain
Institut für Vernetzte Energiesysteme, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Carl-von-Ossietzky-Straße 15, 26129 Oldenburg, Germany
Bijan Nouri
Institut für Solarforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Paseo de Almería, 73, 2, 04001 Almeria, Spain
Stefan Wilbert
Institut für Solarforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Paseo de Almería, 73, 2, 04001 Almeria, Spain
Thomas Schmidt
Institut für Vernetzte Energiesysteme, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Carl-von-Ossietzky-Straße 15, 26129 Oldenburg, Germany
Ontje Lünsdorf
Institut für Vernetzte Energiesysteme, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Carl-von-Ossietzky-Straße 15, 26129 Oldenburg, Germany
Jonas Stührenberg
Institut für Vernetzte Energiesysteme, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Carl-von-Ossietzky-Straße 15, 26129 Oldenburg, Germany
Detlev Heinemann
Institut für Vernetzte Energiesysteme, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Carl-von-Ossietzky-Straße 15, 26129 Oldenburg, Germany
Andreas Kazantzidis
Laboratory of Atmospheric Physics, Department of Physics, University of Patras, 26500 Patras, Greece
Robert Pitz-Paal
Institut für Solarforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Linder Höhe, 51147 Cologne, Germany
Related authors
Yann Fabel, Bijan Nouri, Stefan Wilbert, Niklas Blum, Rudolph Triebel, Marcel Hasenbalg, Pascal Kuhn, Luis F. Zarzalejo, and Robert Pitz-Paal
Atmos. Meas. Tech., 15, 797–809, https://doi.org/10.5194/amt-15-797-2022, https://doi.org/10.5194/amt-15-797-2022, 2022
Short summary
Short summary
This work presents a new approach to exploit unlabeled image data from ground-based sky observations to train neural networks. We show that our model can detect cloud classes within images more accurately than models trained with conventional methods using small, labeled datasets only. Novel machine learning techniques as applied in this work enable training with much larger datasets, leading to improved accuracy in cloud detection and less need for manual image labeling.
Kyriakoula Papachristopoulou, Ilias Fountoulakis, Alkiviadis F. Bais, Basil E. Psiloglou, Nikolaos Papadimitriou, Ioannis-Panagiotis Raptis, Andreas Kazantzidis, Charalampos Kontoes, Maria Hatzaki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 1851–1877, https://doi.org/10.5194/amt-17-1851-2024, https://doi.org/10.5194/amt-17-1851-2024, 2024
Short summary
Short summary
The upgraded systems SENSE2 and NextSENSE2 focus on improving the quality of solar nowcasting and forecasting. SENSE2 provides real-time estimates of solar irradiance across a wide region every 15 min. NextSENSE2 offers short-term forecasts of irradiance up to 3 h ahead. Evaluation with actual data showed that the instantaneous comparison yields the most discrepancies due to the uncertainties of cloud-related information and satellite versus ground-based spatial representativeness limitations.
Akriti Masoom, Ilias Fountoulakis, Stelios Kazadzis, Ioannis-Panagiotis Raptis, Anna Kampouri, Basil E. Psiloglou, Dimitra Kouklaki, Kyriakoula Papachristopoulou, Eleni Marinou, Stavros Solomos, Anna Gialitaki, Dimitra Founda, Vasileios Salamalikis, Dimitris Kaskaoutis, Natalia Kouremeti, Nikolaos Mihalopoulos, Vassilis Amiridis, Andreas Kazantzidis, Alexandros Papayannis, Christos S. Zerefos, and Kostas Eleftheratos
Atmos. Chem. Phys., 23, 8487–8514, https://doi.org/10.5194/acp-23-8487-2023, https://doi.org/10.5194/acp-23-8487-2023, 2023
Short summary
Short summary
We analyse the spatial and temporal aerosol spectral optical properties during the extreme wildfires of August 2021 in Greece and assess their effects on air quality and solar radiation quantities related to health, agriculture, and energy. Different aerosol conditions are identified (pure smoke, pure dust, dust–smoke together); the largest impact on solar radiation quantities is found for cases with mixed dust–smoke aerosols. Such situations are expected to occur more frequently in the future.
Yann Fabel, Bijan Nouri, Stefan Wilbert, Niklas Blum, Rudolph Triebel, Marcel Hasenbalg, Pascal Kuhn, Luis F. Zarzalejo, and Robert Pitz-Paal
Atmos. Meas. Tech., 15, 797–809, https://doi.org/10.5194/amt-15-797-2022, https://doi.org/10.5194/amt-15-797-2022, 2022
Short summary
Short summary
This work presents a new approach to exploit unlabeled image data from ground-based sky observations to train neural networks. We show that our model can detect cloud classes within images more accurately than models trained with conventional methods using small, labeled datasets only. Novel machine learning techniques as applied in this work enable training with much larger datasets, leading to improved accuracy in cloud detection and less need for manual image labeling.
Stavros-Andreas Logothetis, Vasileios Salamalikis, Antonis Gkikas, Stelios Kazadzis, Vassilis Amiridis, and Andreas Kazantzidis
Atmos. Chem. Phys., 21, 16499–16529, https://doi.org/10.5194/acp-21-16499-2021, https://doi.org/10.5194/acp-21-16499-2021, 2021
Short summary
Short summary
This study investigates the temporal trends of dust optical depth (DOD; 550 nm) on global, regional and seasonal scales over a 15-year period (2003–2017) using the MIDAS (ModIs Dust AeroSol) dataset. The findings of this study revealed that the DOD was increased across the central Sahara and the Arabian Peninsula, with opposite trends over the eastern and western Sahara, the Thar and Gobi deserts, in the Bodélé Depression, and in the southern Mediterranean.
Pascal Kuhn, Stefan Wilbert, Christoph Prahl, Dominik Garsche, David Schüler, Thomas Haase, Lourdes Ramirez, Luis Zarzalejo, Angela Meyer, Philippe Blanc, and Robert Pitz-Paal
Adv. Sci. Res., 15, 11–14, https://doi.org/10.5194/asr-15-11-2018, https://doi.org/10.5194/asr-15-11-2018, 2018
Short summary
Short summary
Downward-facing shadow cameras might play a major role in future energy meteorology. Shadow cameras image shadows directly on the ground from an elevated position. They are used to validate other systems (e.g. all-sky imager based nowcasting systems, cloud speed sensors or satellite forecasts) and can potentially provide short term forecasts for solar power plants. Such forecasts are needed for electricity grids with high penetrations of renewable energy and solar power plants.
Wilko Jessen, Stefan Wilbert, Bijan Nouri, Norbert Geuder, and Holger Fritz
Atmos. Meas. Tech., 9, 1601–1612, https://doi.org/10.5194/amt-9-1601-2016, https://doi.org/10.5194/amt-9-1601-2016, 2016
Short summary
Short summary
This paper covers procedures and requirements of two calibration methods and examines the necessary duration of acquisition of test measurements.
Site-specific seasonal changes of environmental conditions cause small but noticeable fluctuation of calibration results. Calibration results within certain periods show a higher likelihood of deviation. These effects can partially be attenuated by including more measurements from outside these periods.
N. Hanrieder, S. Wilbert, R. Pitz-Paal, C. Emde, J. Gasteiger, B. Mayer, and J. Polo
Atmos. Meas. Tech., 8, 3467–3480, https://doi.org/10.5194/amt-8-3467-2015, https://doi.org/10.5194/amt-8-3467-2015, 2015
B. Reinhardt, R. Buras, L. Bugliaro, S. Wilbert, and B. Mayer
Atmos. Meas. Tech., 7, 823–838, https://doi.org/10.5194/amt-7-823-2014, https://doi.org/10.5194/amt-7-823-2014, 2014
C. S. Zerefos, P. Tetsis, A. Kazantzidis, V. Amiridis, S. C. Zerefos, J. Luterbacher, K. Eleftheratos, E. Gerasopoulos, S. Kazadzis, and A. Papayannis
Atmos. Chem. Phys., 14, 2987–3015, https://doi.org/10.5194/acp-14-2987-2014, https://doi.org/10.5194/acp-14-2987-2014, 2014
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Empirical model for backscattering polarimetric variables in rain at W-band: motivation and implications
JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: the CPR_CLP, AC_CLP, and ACM_CLP products
Peering into the heart of thunderstorm clouds: insights from cloud radar and spectral polarimetry
Retrieving cloud-base height and geometric thickness using the oxygen A-band channel of GCOM-C/SGLI
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Satellite-based detection of deep convective clouds: the sensitivity of infrared methods, and implications for cloud climatology
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
Tomographic reconstruction algorithms for retrieving two-dimensional ice cloud microphysical parameters using along-track (sub)millimeter-wave radiometer observations
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Contrail altitude estimation using GOES-16 ABI data and deep learning
The Ice Cloud Imager: retrieval of frozen water column properties
Supercooled liquid water cloud classification using lidar backscatter peak properties
Marine cloud base height retrieval from MODIS cloud properties using machine learning
Wet-Radome Attenuation in ARM Cloud Radars and Its Utilization in Radar Calibration Using Disdrometer Measurements
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Radiative Closure Assessment of Retrieved Cloud and Aerosol Properties for the EarthCARE Mission: The ACMB-DF Product
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Bayesian cloud-top phase determination for Meteosat Second Generation
Mitigation of satellite OCO-2 CO2 biases in the vicinity of clouds with 3D calculations using the Education and Research 3D Radiative Transfer Toolbox (EaR3T)
Lidar–radar synergistic method to retrieve ice, supercooled water and mixed-phase cloud properties
Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network
A new approach to crystal habit retrieval from far-infrared spectral radiance measurements
Multiple-scattering effects on single-wavelength lidar sounding of multi-layered clouds
Algorithm for continual monitoring of fog life cycles based on geostationary satellite imagery as a basis for solar energy forecasting
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Infrared Radiometric Image Classification and Segmentation of Cloud Structure Using Deep-learning Framework for Ground-based Infrared Thermal Camera Observations
Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar
Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
The EarthCARE mission: science data processing chain overview
Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products
Cloud top heights and aerosol columnar properties from combined EarthCARE lidar and imager observations: the AM-CTH and AM-ACD products
Raman lidar-derived optical and microphysical properties of ice crystals within thin Arctic clouds during PARCS campaign
Evaluation of four ground-based retrievals of cloud droplet number concentration in marine stratocumulus with aircraft in situ measurements
Deep convective cloud system size and structure across the global tropics and subtropics
A neural-network-based method for generating synthetic 1.6 µm near-infrared satellite images
Numerical model generation of test frames for pre-launch studies of EarthCARE's retrieval algorithms and data management system
Segmentation of polarimetric radar imagery using statistical texture
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech., 18, 1621–1640, https://doi.org/10.5194/amt-18-1621-2025, https://doi.org/10.5194/amt-18-1621-2025, 2025
Short summary
Short summary
The study examines the use of the spheroidal shape approximation for calculating cloud radar observables in rain and identifies some limitations. To address these, it introduces the empirical scattering model (ESM) based on high-quality Doppler spectra from a 94 GHz radar. The ESM offers improved accuracy and directly incorporates natural rain's microphysical effects. This new model can enhance retrieval and calibration methods, benefiting cloud radar polarimetry experts and scattering modelers.
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025, https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Short summary
This study introduces the JAXA EarthCARE Level 2 (L2) cloud product using satellite observations and simulated EarthCARE data. The outputs from the product feature a 3D global view of the dominant ice habit categories and corresponding microphysics. Habit and size distribution transitions from cloud to precipitation are quantified by the L2 cloud algorithms. With Doppler data, the products can be beneficial for further understanding of the coupling of cloud microphysics, radiation, and dynamics.
Ho Yi Lydia Mak and Christine Unal
Atmos. Meas. Tech., 18, 1209–1242, https://doi.org/10.5194/amt-18-1209-2025, https://doi.org/10.5194/amt-18-1209-2025, 2025
Short summary
Short summary
The dynamics of thunderclouds are studied using cloud radar. Supercooled liquid water and conical graupel are likely present, while chain-like ice crystals may occur at cloud top. Ice crystals are vertically aligned seconds before lightning and resume their usual horizontal alignment afterwards in some cases. Updrafts and downdrafts are found near cloud core and edges respectively. Turbulence is strong. Radar measurement modes that are more suited for investigating thunderstorms are recommended.
Takashi M. Nagao, Kentaroh Suzuki, and Makoto Kuji
Atmos. Meas. Tech., 18, 773–792, https://doi.org/10.5194/amt-18-773-2025, https://doi.org/10.5194/amt-18-773-2025, 2025
Short summary
Short summary
In satellite remote sensing, estimating cloud-base height (CBH) is more challenging than estimating cloud-top height because the cloud base is obscured by the cloud itself. We developed an algorithm using the specific channel (known as the oxygen A-band channel) of the SGLI on JAXA’s GCOM-C satellite to estimate CBHs together with other cloud properties. This algorithm can provide global distributions of CBH across various cloud types, including liquid, ice, and mixed-phase clouds.
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025, https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over 2 years at the BCO is presented.
Andrzej Zbigniew Kotarba and Izabela Wojciechowska
EGUsphere, https://doi.org/10.5194/egusphere-2024-3693, https://doi.org/10.5194/egusphere-2024-3693, 2025
Short summary
Short summary
The research investigates methods for detecting deep convective clouds (DCCs) using satellite infrared data, essential for understanding long-term climate trends. By validating three popular detection methods against lidar-radar data, it found moderate accuracy (below 75 %), emphasizing the importance of fine-tuning thresholds regionally. The study discovers how small threshold changes significantly affect climatology of severe storms.
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025, https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Short summary
Our study investigates the impact of cloud shadows on satellite-based aerosol index measurements over Europe by TROPOMI. Using a cloud shadow detection algorithm and simulations, we found that the overall effect on the aerosol index is minimal. Interestingly, we found that cloud shadows are significantly bluer than their shadow-free surroundings, but the traditional algorithm already (partly) automatically corrects for this increased blueness.
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024, https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
Short summary
This study introduces a cloud property retrieval method which integrates traditional radiative transfer simulations with a machine learning method. Retrievals from a machine learning algorithm are used to provide a priori states, and a radiative transfer model is used to create lookup tables for later iteration processes. The new method combines the advantages of traditional and machine learning algorithms, and it is applicable to both daytime and nighttime conditions.
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024, https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Short summary
Measuring the shape of clouds helps scientists understand how the Earth will continue to respond to climate change. Satellites measure clouds in different ways. One way is to take pictures of clouds from multiple angles and to use the differences between the pictures to measure cloud structure. However, doing this accurately can be challenging. We propose a way to use machine learning to recover the shape of clouds from multi-angle satellite data.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024, https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Short summary
This article presents a novel technique to estimate liquid water content (LWC) profiles in shallow warm clouds using a pair of collocated Ka-band (35 GHz) and G-band (239 GHz) radars. We demonstrate that the use of a G-band radar allows retrieving the LWC with 3 times better accuracy than previous works reported in the literature, providing improved ability to understand the vertical profile of LWC and characterize microphysical and dynamical processes more precisely in shallow clouds.
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024, https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Short summary
We introduce an innovative method to retrieve the cloud fraction and optical thickness of liquid water clouds over the ocean based on polarimetry. This is well suited for satellite observations providing multi-angle polarization measurements. Cloud fraction and cloud optical thickness can be derived from measurements at two viewing angles: one within the cloudbow and one in the sun glint region.
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024, https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Short summary
This study demonstrates the potential of enhancing severe-hail detection through the application of convolutional neural networks (CNNs) to dual-polarization radar data. It is shown that current methods can be calibrated to significantly enhance their performance for severe-hail detection. This study establishes the foundation for the solution of a more complex problem: the estimation of the maximum size of hailstones on the ground using deep learning applied to radar data.
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024, https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary
Short summary
This study presents a method for estimating cloud cover from FY-4A AGRI observations using random forest (RF) and multilayer perceptron (MLP) algorithms. The results demonstrate excellent performance in distinguishing clear-sky scenes and reducing errors in cloud cover estimation. It shows significant improvements compared to existing methods.
Yuli Liu and Ian S. Adams
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-188, https://doi.org/10.5194/amt-2024-188, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This paper presents our latest development in tomographic cloud reconstruction algorithms that use multi-angle TB observations to reconstruct the spatial distribution of ice clouds. Compared to nadir-only retrievals, the tomographic technique provides a detailed reconstruction of ice clouds’ inner structure with high spatial resolution and significantly improves retrieval accuracy. Also, the tomography technique effectively increases detection sensitivity for small ice cloud particles.
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024, https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
Short summary
In this study, we present a toolkit of two Python algorithms to extract information from Doppler spectra measured by ground-based cloud radars. In these Doppler spectra, several peaks can be formed due to populations of droplets/ice particles with different fall velocities coexisting in the same measurement time and height. The two algorithms can detect peaks and assign them to certain particle types, such as small cloud droplets or fast-falling ice particles like graupel.
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024, https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Short summary
This paper describes a new treatment of the spatial misregistration of cloud properties for Sentinel-5 Precursor, when the footprints of different spectral bands are not perfectly aligned. The methodology exploits synergies between spectrometers and imagers, like TROPOMI and VIIRS. The largest improvements have been identified for heterogeneous scenes at cloud edges. This approach is generic and can also be applied to future Sentinel-4 and Sentinel-5 instruments.
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024, https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
Short summary
Aviation's climate impact is partly due to contrails: the clouds that form behind aircraft and which can linger for hours under certain atmospheric conditions. Accurately forecasting these conditions could allow aircraft to avoid forming these contrails and thus reduce their environmental footprint. Our research uses deep learning to identify three-dimensional contrail locations in two-dimensional satellite imagery, which can be used to assess and improve these forecasts.
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024, https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Short summary
The upcoming Ice Cloud Imager (ICI) mission is set to improve measurements of atmospheric ice through passive microwave and sub-millimetre wave observations. In this study, we perform detailed simulations of ICI observations. Machine learning is used to characterise the atmospheric ice present for a given simulated observation. This study acts as a final pre-launch assessment of ICI's capability to measure atmospheric ice, providing valuable information to climate and weather applications.
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024, https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Short summary
Supercooled liquid water cloud is important to represent in weather and climate models, particularly in the Southern Hemisphere. Previous work has developed a new machine learning method for measuring supercooled liquid water in Antarctic clouds using simple lidar observations. We evaluate this technique using a lidar dataset from Christchurch, New Zealand, and develop an updated algorithm for accurate supercooled liquid water detection at mid-latitudes.
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024, https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
Short summary
Clouds play a key role in the regulation of the Earth's climate. Aspects like the height of their base are of essential interest to quantify their radiative effects but remain difficult to derive from satellite data. In this study, we combine observations from the surface and satellite retrievals of cloud properties to build a robust and accurate method to retrieve the cloud base height, based on a computer vision model and ordinal regression.
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2615, https://doi.org/10.5194/egusphere-2024-2615, 2024
Short summary
Short summary
A relative calibration technique is developed for the cloud radar by monitoring the intercept of the wet-radome attenuation (WRA) logarithmic behavior as a function of rainfall rates in light and moderate rain conditions. This WRA technique is applied to the measurements during the ARM TRACER campaign and reports Ze offsets that compare favorably with results from other traditional calibration methods.
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024, https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
Short summary
This study uses radiative transfer calculations to characterize the relation of two satellite channel combinations (namely infrared window brightness temperature differences – BTDs – of SEVIRI) to the thermodynamic cloud phase. A sensitivity analysis reveals the complex interplay of cloud parameters and their contribution to the observed phase dependence of BTDs. This knowledge helps to design optimal cloud-phase retrievals and to understand their potential and limitations.
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1651, https://doi.org/10.5194/egusphere-2024-1651, 2024
Short summary
Short summary
Measurements made by three instruments aboard EarthCARE are used to retrieve estimates of cloud and aerosol properties. A radiative closure assessment of these retrievals is performed by the ACMB-DF processor. Radiative transfer models acting on retrieved information produce broadband radiances commensurate with measurements made by EarthCARE’s broadband radiometer. Measured and modelled radiances for small domains are compared and the likelihood of them differing by 10 W/m2 defines the closure.
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024, https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Short summary
ampycloud is a new algorithm developed at MeteoSwiss to characterize the height and sky coverage fraction of cloud layers above aerodromes via ceilometer data. This algorithm was devised as part of a larger effort to fully automate the creation of meteorological aerodrome reports (METARs) at Swiss civil airports. The ampycloud algorithm is implemented as a Python package that is made publicly available to the community under the 3-Clause BSD license.
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024, https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
Short summary
Ultraviolet imaging technology has significantly advanced the research and development of polar mesospheric clouds (PMCs). In this study, we proposed the wide-field-of-view ultraviolet imager (WFUI) and built a forward model to evaluate the detection capability and efficiency. The results demonstrate that the WFUI performs well in PMC detection and has high detection efficiency. The relationship between ice water content and detection efficiency follows an exponential function distribution.
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024, https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
Short summary
The representation of clouds in numerical weather and climate models remains a major challenge that is difficult to address because of the limitations of currently available data records of cloud properties. In this work, we address this issue by using machine learning to extract novel information on ice clouds from a long record of satellite observations. Through extensive validation, we show that this novel approach provides surprisingly accurate estimates of clouds and their properties.
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024, https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Short summary
This study proposes an inversion method for atmospheric-aerosol or cloud microphysical parameters based on dual-wavelength lidar data. It is suitable for the inversion of uniformly mixed and single-property aerosol layers or small cloud droplets. For aerosol particles, the inversion range that this algorithm can achieve is 0.3–1.7 μm. For cloud droplets, it is 1.0–10 μm. This algorithm can quickly obtain the microphysical parameters of atmospheric particles and has better robustness.
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024, https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Short summary
ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) is a method to detect clouds and their thermodynamic phase with a geostationary satellite, distinguishing between clear sky and ice, mixed-phase, supercooled and warm liquid clouds. It uses a Bayesian approach based on the lidar–radar product DARDAR. The method allows studying cloud phases, especially mixed-phase and supercooled clouds, rarely observed from geostationary satellites. This can be used for comparison with climate models.
Yu-Wen Chen, K. Sebastian Schmidt, Hong Chen, Steven T. Massie, Susan S. Kulawik, and Hironobu Iwabuchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1936, https://doi.org/10.5194/egusphere-2024-1936, 2024
Short summary
Short summary
Retrievals of CO2 column-averaged dry air mole fractions from space can be done with spaceborne spectrometers such as OCO-2. Clouds in the vicinity of a footprint lead to spectral perturbations that bias those retrievals well beyond the required accuracy for global assessments of CO2 sources and sinks. This paper presents two physics-based mitigation techniques for these biases based on accompanying imagery, which can be used operationally.
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024, https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Short summary
Radar–lidar synergy is used to retrieve ice, supercooled water and mixed-phase cloud properties, making the most of the radar sensitivity to ice crystals and the lidar sensitivity to supercooled droplets. A first analysis of the output of the algorithm run on the satellite data is compared with in situ data during an airborne Arctic field campaign, giving a mean percent error of 49 % for liquid water content and 75 % for ice water content.
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024, https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
Short summary
The number of cloud droplets per unit volume, Nd, in a cloud is important for understanding aerosol–cloud interaction. In this study, we develop techniques to derive cloud droplet number concentration from lidar measurements combined with other remote sensing measurements such as cloud radar and microwave radiometers. We show that deriving Nd is very uncertain, although a synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024, https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Short summary
This paper describes a method to improve the detection of liquid clouds that are easily missed by the CloudSat satellite radar. To address this, we use machine learning techniques to estimate cloud properties (optical depth and droplet size) based on other satellite measurements. The results are compared with data from the MODIS instrument on the Aqua satellite, showing good correlations.
Sunny Sun-Mack, Patrick Minnis, Yan Chen, Gang Hong, and William L. Smith Jr.
Atmos. Meas. Tech., 17, 3323–3346, https://doi.org/10.5194/amt-17-3323-2024, https://doi.org/10.5194/amt-17-3323-2024, 2024
Short summary
Short summary
Multilayer clouds (MCs) affect the radiation budget differently than single-layer clouds (SCs) and need to be identified in satellite images. A neural network was trained to identify MCs by matching imagery with lidar/radar data. This method correctly identifies ~87 % SCs and MCs with a net accuracy gain of 7.5 % over snow-free surfaces. It is more accurate than most available methods and constitutes a first step in providing a reasonable 3-D characterization of the cloudy atmosphere.
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024, https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Short summary
This work aims to define a new approach to retrieve the distribution of the main ice crystal shapes occurring inside ice and cirrus clouds from infrared spectral measurements. The capability of retrieving these shapes of the ice crystals from satellites will allow us to extend the currently available climatologies to be used as physical constraints in general circulation models. This could could allow us to improve their accuracy and prediction performance.
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024, https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary
Short summary
We performed Monte Carlo simulations of single-wavelength lidar signals from multi-layered clouds with special attention focused on the multiple-scattering (MS) effect in regions of the cloud-free molecular atmosphere. The MS effect on lidar signals always decreases with the increasing distance from the cloud far edge. The decrease is the direct consequence of the fact that the forward peak of particle phase functions is much larger than the receiver field of view.
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
EGUsphere, https://doi.org/10.5194/egusphere-2023-2885, https://doi.org/10.5194/egusphere-2023-2885, 2024
Short summary
Short summary
Fog and low stratus (FLS) are both persistent clouds close to the Earth’s surface. In the context of photovoltaic power production, FLS is particularly important, as FLS, impact large regions simultaneously, making regional power grid balancing hard. This study introduces a new machine leanring based algorithm developed for the MSG geostationary satellites that can provide a coherent and detailed view of FLS development over large areas over the 24 H day cycle.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Kélian Sommer, Wassim Kabalan, and Romain Brunet
EGUsphere, https://doi.org/10.5194/egusphere-2024-101, https://doi.org/10.5194/egusphere-2024-101, 2024
Short summary
Short summary
Our research introduces a novel deep-learning approach for classifying and segmenting ground-based infrared thermal images, a crucial step in cloud monitoring. Tests on self-captured data showcase its excellent accuracy in distinguishing image types and in structure segmentation. With potential applications in astronomical observations, our work pioneers a robust solution for ground-based sky quality assessment, promising advancements in the photometric observations experiments.
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024, https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Short summary
In this paper, a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. The cloud optical depth, effective column lidar ratio and linear cloud depolarisation ratio have been calculated by a new approach to the two-way transmittance method, which is valid for both ground-based and spaceborne lidar systems. Their associated errors are also provided.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024, https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
Short summary
We apply the Res-UNet to derive a comprehensive 3D cloud tomography from 2D satellite data over heterogeneous landscapes. We combine observational data from passive and active remote sensing sensors by an automated matching algorithm. These data are fed into a neural network to predict cloud reflectivities on the whole satellite domain between 2.4 and 24 km height. With an average RMSE of 2.99 dBZ, we contribute to closing data gaps in the representation of clouds in observational data.
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024, https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary
Short summary
The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) is an ESA–JAXA satellite mission to be launched in 2024. We presented an overview of the EarthCARE processors' development, with processors developed by teams in Europe, Japan, and Canada. EarthCARE will allow scientists to evaluate the representation of cloud, aerosol, precipitation, and radiative flux in weather forecast and climate models, with the objective to better understand cloud processes and improve weather and climate models.
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024, https://doi.org/10.5194/amt-17-261-2024, 2024
Short summary
Short summary
The ESA cloud, aerosol and radiation mission EarthCARE will provide active profiling and passive imaging measurements from a single satellite platform. The passive multi-spectral imager (MSI) will add information in the across-track direction. We present the cloud optical and physical properties algorithm, which combines the visible to infrared MSI channels to determine the cloud top pressure, optical thickness, particle size and water path.
Moritz Haarig, Anja Hünerbein, Ulla Wandinger, Nicole Docter, Sebastian Bley, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5953–5975, https://doi.org/10.5194/amt-16-5953-2023, https://doi.org/10.5194/amt-16-5953-2023, 2023
Short summary
Short summary
The atmospheric lidar (ATLID) and Multi-Spectral Imager (MSI) will be carried by the EarthCARE satellite. The synergistic ATLID–MSI Column Products (AM-COL) algorithm described in the paper combines the strengths of ATLID in vertically resolved profiles of aerosol and clouds (e.g., cloud top height) with the strengths of MSI in observing the complete scene beside the satellite track and in extending the lidar information to the swath. The algorithm is validated against simulated test scenes.
Patrick Chazette and Jean-Christophe Raut
Atmos. Meas. Tech., 16, 5847–5861, https://doi.org/10.5194/amt-16-5847-2023, https://doi.org/10.5194/amt-16-5847-2023, 2023
Short summary
Short summary
The vertical profiles of the effective radii of ice crystals and ice water content in Arctic semi-transparent stratiform clouds were assessed using quantitative ground-based lidar measurements. The field campaign was part of the Pollution in the ARCtic System (PARCS) project which took place from 13 to 26 May 2016 in Hammerfest (70° 39′ 48″ N, 23° 41′ 00″ E). We show that under certain cloud conditions, lidar measurement combined with a dedicated algorithmic approach is an efficient tool.
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023, https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Short summary
Cloud droplet number concentration can be retrieved from remote sensing measurements. Aircraft measurements are used to validate four ground-based retrievals of cloud droplet number concentration. We demonstrate that retrieved cloud droplet number concentrations align well with aircraft measurements for overcast clouds, but they may substantially differ for broken clouds. The ensemble of various retrievals can help quantify retrieval uncertainties and identify reliable retrieval scenarios.
Eric M. Wilcox, Tianle Yuan, and Hua Song
Atmos. Meas. Tech., 16, 5387–5401, https://doi.org/10.5194/amt-16-5387-2023, https://doi.org/10.5194/amt-16-5387-2023, 2023
Short summary
Short summary
A new database is constructed from over 20 years of satellite records that comprises millions of deep convective clouds and spans the global tropics and subtropics. The database is a collection of clouds ranging from isolated cells to giant cloud systems. The cloud database provides a means of empirically studying the factors that determine the spatial structure and coverage of convective cloud systems, which are strongly related to the overall radiative forcing by cloud systems.
Florian Baur, Leonhard Scheck, Christina Stumpf, Christina Köpken-Watts, and Roland Potthast
Atmos. Meas. Tech., 16, 5305–5326, https://doi.org/10.5194/amt-16-5305-2023, https://doi.org/10.5194/amt-16-5305-2023, 2023
Short summary
Short summary
Near-infrared satellite images have information on clouds that is complementary to what is available from the visible and infrared parts of the spectrum. Using this information for data assimilation and model evaluation requires a fast, accurate forward operator to compute synthetic images from numerical weather prediction model output. We discuss a novel, neural-network-based approach for the 1.6 µm near-infrared channel that is suitable for this purpose and also works for other solar channels.
Zhipeng Qu, David P. Donovan, Howard W. Barker, Jason N. S. Cole, Mark W. Shephard, and Vincent Huijnen
Atmos. Meas. Tech., 16, 4927–4946, https://doi.org/10.5194/amt-16-4927-2023, https://doi.org/10.5194/amt-16-4927-2023, 2023
Short summary
Short summary
The EarthCARE satellite mission Level 2 algorithm development requires realistic 3D cloud and aerosol scenes along the satellite orbits. One of the best ways to produce these scenes is to use a high-resolution numerical weather prediction model to simulate atmospheric conditions at 250 m horizontal resolution. This paper describes the production and validation of three EarthCARE test scenes.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
Atmos. Meas. Tech., 16, 4571–4588, https://doi.org/10.5194/amt-16-4571-2023, https://doi.org/10.5194/amt-16-4571-2023, 2023
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Cited articles
Aides, A., Levis, A., Holodovsky, V., Schechner, Y. Y., Althausen, D., and
Vainiger, A.: Distributed Sky Imaging Radiometry and Tomography, in: IEEE
Xplore/ 2020 IEEE International Conference on Computational Photography
(ICCP), Saint Louis, MO, USA, 24–26 April 2020, pp. 1–12, 2020. a
Allmen, M. C. and Kegelmeyer Jr., W. P.: The Computation of Cloud-Base Height
from Paired Whole-Sky Imaging Cameras, J. Atmos. Ocean.
Tech., 13, 97–113,
https://doi.org/10.1175/1520-0426(1996)013<0097:TCOCBH>2.0.CO;2, 1996. a, b
Beekmans, C., Schneider, J., Läbe, T., Lennefer, M., Stachniss, C., and Simmer, C.: Cloud photogrammetry with dense stereo for fisheye cameras, Atmos. Chem. Phys., 16, 14231–14248, https://doi.org/10.5194/acp-16-14231-2016, 2016. a, b
Bieliński, T.: A parallax shift effect correction based on cloud height for
geostationary satellites and radar observations, Remote Sens., 12, 365,
https://doi.org/10.3390/rs12030365, 2020. a
Blanc, P., Massip, P., Kazantzidis, A., Tzoumanikas, P., Kuhn, P., Wilbert, S.,
Schüler, D., and Prahl, C.: Short-term forecasting of high resolution
local DNI maps with multiple fish-eye cameras in stereoscopic mode, AIP
Conf. Proc., 1850, 140004, https://doi.org/10.1063/1.4984512, 2017. a, b, c
Blum, N., Schmidt, T., Nouri, B., Wilbert, S., Heinemann, D., Schmidt, T.,
Kuhn, P., Zarzalejo, L. F., and Pitz-Paal, R.: Optimierte Gruppierung
verschiedener Wolkenkameras im Oldenburger Nowcasting Netzwerk, in:
Tagungsunterlagen/ 34. PV-Symposium Bad Staffelstein, Bad
Staffelstein, Germany, 19–21 March 2019, pp. 552–562, 2019a. a
Blum, N., Schmidt, T., Nouri, B., Wilbert, S., Peerlings, E., Heinemann, D.,
Schmidt, T., Kuhn, P., Kazantzidis, A., Zarzalejo, L. F., and Pitz-Paal, R.:
Nowcasting of Irradiance Using a Network of All-Sky-Imagers, in: EU PVSEC
2019 Proceedings/ 36th European Photovoltaic Solar Energy Conference and
Exhibition, Marseille, France, 9–13 September 2019, pp. 1403–1409,
https://doi.org/10.4229/EUPVSEC20192019-5DO.2.1, 2019b. a
Chan, K. L., Wiegner, M., Flentje, H., Mattis, I., Wagner, F., Gasteiger, J., and Geiß, A.: Evaluation of ECMWF-IFS (version 41R1) operational model forecasts of aerosol transport by using ceilometer network measurements, Geosci. Model Dev., 11, 3807–3831, https://doi.org/10.5194/gmd-11-3807-2018, 2018. a
Cirés, E., Marcos, J., de la Parra, I., García, M., and Marroyo, L.:
The potential of forecasting in reducing the LCOE in PV plants under
ramp-rate restrictions, Energy, 188, 116053,
https://doi.org/10.1016/j.energy.2019.116053, 2019. a
Costa-Surós, M., Calbó, J., González, J., and Martin-Vide, J.:
Behavior of cloud base height from ceilometer measurements, Atmos.
Res., 127, 64–76, https://doi.org/10.1016/j.atmosres.2013.02.005, 2013. a
de Haij, M., Apituley, A., Koetse, W., and Bloemink, H.: Transition towards a
new ceilometer network in the Netherlands: challenges and experiences, in:
Instruments and Observing Methods Report No. 125/ WMO Technical Conference on
Meteorological and Environmental Instruments and Methods of Observation (CIMO
TECO 2016), Madrid, Spain, 27–30 September 2016,
available at: https://library.wmo.int/index.php?lvl=notice_display&id=19676#.XirnGzJKiUk (last access: 28 May 2021),
2016. a, b, c, d, e
Fabel, Y., Nouri, B., Wilbert, S., Blum, N., Triebel, R., Hasenbalg, M., Kuhn, P., Zarzalejo, L. F., and Pitz-Paal, R.: Applying self-supervised learning for semantic cloud segmentation of all-sky images, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-1, in review, 2021. a
Ghosh, S., Rahman, S., and Pipattanasomporn, M.: Distribution voltage
regulation through active power curtailment with PV inverters and solar
generation forecasts, IEEE T. Sustain. Energ., 8, 13–22,
https://doi.org/10.1109/TSTE.2016.2577559, 2016. a
Görsdorf, U., Mattis, I., Pittke, G., Bravo-Aranda, J. A., Brettle, M.,
Cermak, J., Drouin, M.-A., Geiß, A., Haefele, A., and Hervo, M.: The
ceilometer inter-comparison campaign CeiLinEx2015 — Cloud detection and
cloud base height, in: Instruments and Observing Methods Report No. 125/ WMO
Technical Conference on Meteorological and Environmental Instruments and
Methods of Observation (CIMO TECO 2016), Madrid, Spain, 27–30 September 2016, pp. 27–30, available at:
https://library.wmo.int/index.php?lvl=notice_display&id=19676#.XirnGzJKiUk (last access: 28 May 2021),
2016. a, b, c
Hamann, U., Walther, A., Baum, B., Bennartz, R., Bugliaro, L., Derrien, M., Francis, P. N., Heidinger, A., Joro, S., Kniffka, A., Le Gléau, H., Lockhoff, M., Lutz, H.-J., Meirink, J. F., Minnis, P., Palikonda, R., Roebeling, R., Thoss, A., Platnick, S., Watts, P., and Wind, G.: Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms, Atmos. Meas. Tech., 7, 2839–2867, https://doi.org/10.5194/amt-7-2839-2014, 2014. a
Heese, B., Flentje, H., Althausen, D., Ansmann, A., and Frey, S.: Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech., 3, 1763–1770, https://doi.org/10.5194/amt-3-1763-2010, 2010. a
Hogan, R. J., O'Connor, E. J., and Illingworth, A. J.: Verification of
cloud-fraction forecasts, Q. J. Roy. Meteor.
Soc., 135, 1494–1511, https://doi.org/10.1002/qj.481, 2009. a
Howie, R. M., Paxman, J., Bland, P. A., Towner, M. C., Cupak, M., Sansom,
E. K., and Devillepoix, H. A.: How to build a continental scale fireball
camera network, Exp. Astron., 43, 237–266,
https://doi.org/10.1007/s10686-017-9532-7, 2017. a
Isaac, G. A., Bailey, M., Boudala, F. S., Burrows, W. R., Cober, S. G.,
Crawford, R. W., Donaldson, N., Gultepe, I., Hansen, B., Heckman, I., Huang,
L. X., Ling, A., Mailhot, J., Milbrandt, J. A., Reid, J., and Fournier, M.:
The Canadian Airport Nowcasting System (CAN-Now), Meteorol.
Appl., 21, 30–49, https://doi.org/10.1002/met.1342, 2014. a
Kaur, A., Nonnenmacher, L., Pedro, H. T., and Coimbra, C. F.: Benefits of solar
forecasting for energy imbalance markets, Renew. Energ., 86, 819–830,
https://doi.org/10.1016/j.renene.2015.09.011, 2016. a
Khlopenkov, K., Spangenberg, D., and Smith Jr., W. L.: Fusion of Surface
Ceilometer Data and Satellite Cloud Retrievals in 2D Mesh Interpolating Model
with Clustering, in: Proc. SPIE 11152, Remote Sensing of Clouds and the
Atmosphere XXIV/ SPIE Remote Sensing 2019, Strasbourg, France, 9 October 2019, p. 111521F, https://doi.org/10.1117/12.2533370, 2019. a
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the
Köppen-Geiger climate classification updated, Meteorol.
Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006. a, b
Kuhn, P., Nouri, B., Wilbert, S., Prahl, C., Kozonek, N., Schmidt, T., Yasser,
Z., Ramirez, L., Zarzalejo, L., and Meyer, A.: Validation of an all‐sky
imager–based nowcasting system for industrial PV plants, Prog.
Photovoltaics, 26, 608–621,
https://doi.org/10.1002/pip.2968, 2018a. a
Kuhn, P., Wirtz, M., Killius, N., Wilbert, S., Bosch, J. L., Hanrieder, N.,
Nouri, B., Kleissl, J., Ramirez, L., Schroedter-Homscheidt, M., Heinemann,
D., Kazantzidis, A., Blanc, P., and Pitz-Paal, R.: Benchmarking three
low-cost, low-maintenance cloud height measurement systems and ECMWF cloud
heights against a ceilometer, Sol. Energy, 168, 140–152,
https://doi.org/10.1016/j.solener.2018.02.050, 2018b. a, b, c, d, e, f
Kuhn, P., Nouri, B., Wilbert, S., Hanrieder, N., Prahl, C., Ramirez, L.,
Zarzalejo, L., Schmidt, T., Yasser, Z., Heinemann, D., Tzoumanikas, P.,
Kazantzidis, A., Kleissl, J., Blanc, P., and Pitz-Paal, R.: Determination of
the optimal camera distance for cloud height measurements with two all-sky
imagers, Sol. Energy, 179, 74–88, https://doi.org/10.1016/j.solener.2018.12.038,
2019. a, b, c, d, e, f, g, h, i, j, k
Law, E. W., Prasad, A. A., Kay, M., and Taylor, R. A.: Direct normal irradiance
forecasting and its application to concentrated solar thermal output
forecasting–A review, Sol. Energy, 108, 287–307,
https://doi.org/10.1016/j.solener.2014.07.008, 2014. a
Luhmann, T.: Nahbereichsphotogrammetrie: Grundlagen, Methoden und Anwendungen,
Wichmann Verlag, Heidelberg, Germany, 2000. a
Macke, A., Seifert, P., Baars, H., Barthlott, C., Beekmans, C., Behrendt, A., Bohn, B., Brueck, M., Bühl, J., Crewell, S., Damian, T., Deneke, H., Düsing, S., Foth, A., Di Girolamo, P., Hammann, E., Heinze, R., Hirsikko, A., Kalisch, J., Kalthoff, N., Kinne, S., Kohler, M., Löhnert, U., Madhavan, B. L., Maurer, V., Muppa, S. K., Schween, J., Serikov, I., Siebert, H., Simmer, C., Späth, F., Steinke, S., Träumner, K., Trömel, S., Wehner, B., Wieser, A., Wulfmeyer, V., and Xie, X.: The HD(CP)2 Observational Prototype Experiment (HOPE) – an overview, Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, 2017. a
Martucci, G., Milroy, C., and O'Dowd, C. D.: Detection of cloud-base height
using Jenoptik CHM15K and Vaisala CL31 ceilometers, J. Atmos.
Ocean. Tech., 27, 305–318, https://doi.org/10.1175/2009JTECHA1326.1, 2010. a
Mejia, F. A., Kurtz, B., Levis, A., de la Parra, Í., and Kleissl, J.: Cloud
tomography applied to sky images: A virtual testbed, Sol. Energy, 176,
287–300, https://doi.org/10.1016/j.solener.2018.10.023, 2018. a, b
Mobotix: Technical Specifications MOBOTIX Q25 Hemispheric, Data sheet, Mobotix
AG, Langmeil, Germany, available at:
https://www.mobotix.com/sites/default/files/2017-10/Mx_TS_Q25_en_20170515.pdf (last access: 28 May 2021),
2017. a
Nguyen, D. and Kleissl, J.: Stereographic methods for cloud base height
determination using two sky imagers, Sol. Energy, 107, 495–509,
https://doi.org/10.1016/j.solener.2014.05.005, 2014. a, b, c
Noh, Y.-J., Forsythe, J. M., Miller, S. D., Seaman, C. J., Li, Y., Heidinger,
A. K., Lindsey, D. T., Rogers, M. A., and Partain, P. T.: Cloud-Base Height
Estimation from VIIRS. Part II: A Statistical Algorithm Based on A-Train
Satellite Data, J. Atmos. Ocean. Tech., 34, 585–598,
https://doi.org/10.1175/JTECH-D-16-0110.1, 2017. a
Nouri, B., Kuhn, P., Wilbert, S., Prahl, C., Pitz-Paal, R., Blanc, P., Schmidt,
T., Yasser, Z., Santigosa, L. R., and Heineman, D.: Nowcasting of DNI maps
for the solar field based on voxel carving and individual 3D cloud objects
from all sky images, AIP Conf. Proc., 2033, 190011,
https://doi.org/10.1063/1.5067196, 2018. a
Nouri, B., Kuhn, P., Wilbert, S., Hanrieder, N., Prahl, C., Zarzalejo, L.,
Kazantzidis, A., Blanc, P., and Pitz-Paal, R.: Cloud height and tracking
accuracy of three all sky imager systems for individual clouds, Sol. Energy,
177, 213–228, https://doi.org/10.1016/j.solener.2018.10.079, 2019a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Nouri, B., Wilbert, S., Kuhn, P., Hanrieder, N., Schroedter-Homscheidt, M.,
Kazantzidis, A., Zarzalejo, L., Blanc, P., Kumar, S., and Goswami, N.:
Real-Time Uncertainty Specification of All Sky Imager Derived Irradiance
Nowcasts, Remote Sens., 11, 1059, https://doi.org/10.3390/rs11091059,
2019b. a, b
Nouri, B., Wilbert, S., Segura, L., Kuhn, P., Hanrieder, N., Kazantzidis, A.,
Schmidt, T., Zarzalejo, L., Blanc, P., and Pitz-Paal, R.: Determination of
cloud transmittance for all sky imager based solar nowcasting, Sol. Energy,
181, 251–263, https://doi.org/10.1016/j.solener.2019.02.004, 2019c. a, b
Nouri, B., Noureldin, K., Schlichting, T., Wilbert, S., Hirsch, T.,
Schroedter-Homscheidt, M., Kuhn, P., Kazantzidis, A., Zarzalejo, L. F.,
Blanc, P., Yasser, Z., Fernández, J., and Pitz-Paal, R.: Optimization of
parabolic trough power plant operations in variable irradiance conditions
using all sky imagers, Sol. Energy, 198, 434–453,
https://doi.org/10.1016/j.solener.2020.01.045, 2020a. a, b
Nouri, B., Wilbert, S., Blum, N., Kuhn, P., Schmidt, T., Yasser, Z., Schmidt,
T., Zarzalejo, L. F., Lopes, F. M., Silva, H. G., Schroedter-Homscheidt, M.,
Kazantzidis, A., Raeder, C., Blanc, P., and Pitz-Paal, R.: Evaluation of an
All Sky Imager Based Nowcasting System for Distinct Conditions and Five
sites, AIP Conf. Proc., 2303, 180006, https://doi.org/10.1063/5.0028670,
2020b. a, b
Peng, Z., Yu, D., Huang, D., Heiser, J., Yoo, S., and Kalb, P.: 3D cloud
detection and tracking system for solar forecast using multiple sky imagers,
Sol. Energy, 118, 496–519, https://doi.org/10.1016/j.solener.2015.05.037, 2015. a, b
Reynolds, D. W., Clark, D. A., Wilson, F. W., and Cook, L.: Forecast-Based
Decision Support for San Francisco International Airport: A NextGen Prototype
System That Improves Operations during Summer Stratus Season, B.
Am. Meteorol. Soc., 93, 1503–1518,
https://doi.org/10.1175/BAMS-D-11-00038.1, 2012. a
Scaramuzza, D., Martinelli, A., and Siegwart, R.: A Toolbox for Easily
Calibrating Omnidirectional Cameras, in: 2006 IEEE/ RSJ International
Conference on Intelligent Robots and Systems, Beijing, China,
9–15 October 2006, pp. 5695–5701, https://doi.org/10.1109/IROS.2006.282372, 2006. a
Schmidt, T., Kalisch, J., Lorenz, E., and Heinemann, D.: Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts, Atmos. Chem. Phys., 16, 3399–3412, https://doi.org/10.5194/acp-16-3399-2016, 2016. a
Schmidt, T., Heinemann, D., Vogt, T., Blum, N., Nouri, B., Wilbert, S., and
Kuhn, P.: Energiemeteorologisches Wolkenkameranetzwerk für die
hochaufgelöste Kurzfristprognose der solaren Einstrahlung, in:
DACH-Tagung, Garmisch-Partenkirchen, Deutschland, 18–22 March 2019, 2019. a
Sky cameras: Homepage, https://www.solar-repository.sg/sky-cameras, last
access: 8 July 2020. a
Wang, G., Kurtz, B., and Kleissl, J.: Cloud base height from sky imager and
cloud speed sensor, Sol. Energy, 131, 208–221,
https://doi.org/10.1016/j.solener.2016.02.027, 2016. a
Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., and Roth, A.:
Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS
data, ISPRS J. Photogramm., 139, 171–182,
https://doi.org/10.1016/j.isprsjprs.2018.02.017, 2018. a
World Meteorological Organization: Guide to meteorological instruments and
methods of observation, vol. I – Measurement of Meteorological Variables of
WMO – No. 8, WMO, Geneva, Switzerland, 29 edn., 2018. a
World Meteorological Organisation: Manual on Codes – International Codes, Volume I.1, Annex II to the WMO Technical Regulations: part A – Alphanumeric Code, 2019 edn., WMO, Geneva, Switzerland, 2019. a
Short summary
Cloud base height (CBH) is important, e.g., to forecast solar irradiance and, with it, photovoltaic production. All-sky imagers (ASIs), cameras monitoring the sky above their point of installation, can provide such forecasts and also measure CBH. We present a network of ASIs to measure CBH. The network provides numerous readings of CBH simultaneously. We combine these with a statistical procedure. Validation attests to significantly higher accuracy of the combination compared to two ASIs alone.
Cloud base height (CBH) is important, e.g., to forecast solar irradiance and, with it,...