Articles | Volume 14, issue 1
https://doi.org/10.5194/amt-14-737-2021
https://doi.org/10.5194/amt-14-737-2021
Research article
 | 
29 Jan 2021
Research article |  | 29 Jan 2021

Improving cloud type classification of ground-based images using region covariance descriptors

Yuzhu Tang, Pinglv Yang, Zeming Zhou, Delu Pan, Jianyu Chen, and Xiaofeng Zhao

Related authors

Cloud classification of ground-based infrared images combining manifold and texture features
Qixiang Luo, Yong Meng, Lei Liu, Xiaofeng Zhao, and Zeming Zhou
Atmos. Meas. Tech., 11, 5351–5361, https://doi.org/10.5194/amt-11-5351-2018,https://doi.org/10.5194/amt-11-5351-2018, 2018
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Peering into the heart of thunderstorm clouds: insights from cloud radar and spectral polarimetry
Ho Yi Lydia Mak and Christine Unal
Atmos. Meas. Tech., 18, 1209–1242, https://doi.org/10.5194/amt-18-1209-2025,https://doi.org/10.5194/amt-18-1209-2025, 2025
Short summary
Retrieving cloud-base height and geometric thickness using the oxygen A-band channel of GCOM-C/SGLI
Takashi M. Nagao, Kentaroh Suzuki, and Makoto Kuji
Atmos. Meas. Tech., 18, 773–792, https://doi.org/10.5194/amt-18-773-2025,https://doi.org/10.5194/amt-18-773-2025, 2025
Short summary
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025,https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary

Cited articles

Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C., and Popp, J.: Sample size planning for classification models, Anal. Chim. Acta, 760C, 25–33, https://doi.org/10.1016/j.aca.2012.11.007, 2013. 
Calbó, J. and Sabburg, J.: Feature Extraction from Whole-Sky Ground-Based Images for Cloud-Type Recognition, J. Atmos. Ocean. Technol., 25, 3–14, https://doi.org/10.1175/2007JTECHA959.1, 2008. 
Carreira, J., Caseiro, R., Batista, J., and Sminchisescu, C.: Free-Form Region Description with Second-Order Pooling, IEEE T. Pattern Anal., 37, 1177–1189, https://doi.org/10.1109/TPAMI.2014.2361137, 2015. 
Chang, C.-C. and Lin, C.-J.: LIBSVM: A library for support vector machines, ACM T. Intell. Syst. Technol., 2, 1–39, https://doi.org/10.1145/1961189.1961199, 2007. 
Chen, T., Rossow, W. B., and Zhang, Y.: Radiative Effects of Cloud-Type Variations, J. Clim., 13, 264–286, https://doi.org/10.1175/1520-0442(2000)013<0264:reoctv>2.0.co;2, 2000. 
Download
Short summary
An automatic cloud classification method on whole-sky images is presented. We first extract multiple pixel-level features to form region covariance descriptors (RCovDs) and then encode RCovDs by the Riemannian bag-of-feature (BoF) method to output the histogram representation. Reults show that a very high prediction accuracy can be obtained with a small number of training samples, which validate the proposed method and exhibit the competitive performance against state-of-the-art methods.
Share