Research article
18 Mar 2022
Research article
| 18 Mar 2022
Impact of 3D cloud structures on the atmospheric trace gas products from UV–Vis sounders – Part 1: Synthetic dataset for validation of trace gas retrieval algorithms
Claudia Emde et al.
Related authors
Huan Yu, Claudia Emde, Arve Kylling, Ben Veihelmann, Bernhard Mayer, Kerstin Stebel, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 5743–5768, https://doi.org/10.5194/amt-15-5743-2022, https://doi.org/10.5194/amt-15-5743-2022, 2022
Short summary
Short summary
In this study, we have investigated the impact of 3D clouds on the tropospheric NO2 retrieval from UV–visible sensors. We applied standard NO2 retrieval methods including cloud corrections to synthetic data generated by the 3D radiative transfer model. A sensitivity study was done for synthetic data, and dependencies on various parameters were investigated. Possible mitigation strategies were investigated and compared based on 3D simulations and observed data.
Veronika Pörtge, Tobias Kölling, Anna Weber, Lea Volkmer, Claudia Emde, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-245, https://doi.org/10.5194/amt-2022-245, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
In this work, we analyze polarized cloudbow observations of the airborne camera system specMACS to retrieve the cloud droplet size distribution, defined by the effective radius (reff) and the effective variance (veff). Two case studies of trade wind cumulus clouds measured during the EUREC4A field campaign are presented. The results are combined into maps of reff and veff with a very high spatial resolution (100 m by 100 m), that give new insights into the spatial distribution of the parameters.
Arve Kylling, Claudia Emde, Huan Yu, Michel van Roozendael, Kerstin Stebel, Ben Veihelmann, and Bernhard Mayer
Atmos. Meas. Tech., 15, 3481–3495, https://doi.org/10.5194/amt-15-3481-2022, https://doi.org/10.5194/amt-15-3481-2022, 2022
Short summary
Short summary
Atmospheric trace gases such as nitrogen dioxide (NO2) may be measured by satellite instruments sensitive to solar ultraviolet–visible radiation reflected from Earth and its atmosphere. For a single pixel, clouds in neighbouring pixels may affect the radiation and hence the retrieved trace gas amount. We found that for a solar zenith angle less than about 40° this cloud-related NO2 bias is typically below 10 %, while for larger solar zenith angles the NO2 bias is on the order of tens of percent.
Marc Schwaerzel, Dominik Brunner, Fabian Jakub, Claudia Emde, Brigitte Buchmann, Alexis Berne, and Gerrit Kuhlmann
Atmos. Meas. Tech., 14, 6469–6482, https://doi.org/10.5194/amt-14-6469-2021, https://doi.org/10.5194/amt-14-6469-2021, 2021
Short summary
Short summary
NO2 maps from airborne imaging remote sensing often appear much smoother than one would expect from high-resolution model simulations of NO2 over cities, despite the small ground-pixel size of the sensors. Our case study over Zurich, using the newly implemented building module of the MYSTIC radiative transfer solver, shows that the 3D effect can explain part of the smearing and that building shadows cause a noticeable underestimation and noise in the measured NO2 columns.
Daniel Zawada, Ghislain Franssens, Robert Loughman, Antti Mikkonen, Alexei Rozanov, Claudia Emde, Adam Bourassa, Seth Dueck, Hannakaisa Lindqvist, Didier Ramon, Vladimir Rozanov, Emmanuel Dekemper, Erkki Kyrölä, John P. Burrows, Didier Fussen, and Doug Degenstein
Atmos. Meas. Tech., 14, 3953–3972, https://doi.org/10.5194/amt-14-3953-2021, https://doi.org/10.5194/amt-14-3953-2021, 2021
Short summary
Short summary
Satellite measurements of atmospheric composition often rely on computer tools known as radiative transfer models to model the propagation of sunlight within the atmosphere. Here we have performed a detailed inter-comparison of seven different radiative transfer models in a variety of conditions. We have found that the models agree remarkably well, at a level better than previously reported. This result provides confidence in our understanding of atmospheric radiative transfer.
Marc Schwaerzel, Claudia Emde, Dominik Brunner, Randulph Morales, Thomas Wagner, Alexis Berne, Brigitte Buchmann, and Gerrit Kuhlmann
Atmos. Meas. Tech., 13, 4277–4293, https://doi.org/10.5194/amt-13-4277-2020, https://doi.org/10.5194/amt-13-4277-2020, 2020
Short summary
Short summary
Horizontal homogeneity is often assumed for trace gases remote sensing, although it is not valid where trace gas concentrations have high spatial variability, e.g., in cities. We show the importance of 3D effects for MAX-DOAS and airborne imaging spectrometers using 3D-box air mass factors implemented in the MYSTIC radiative transfer solver. In both cases, 3D information is invaluable for interpreting the measurements, as not considering 3D effects can lead to misinterpretation of measurements.
Paul Ockenfuß, Claudia Emde, Bernhard Mayer, and Germar Bernhard
Atmos. Chem. Phys., 20, 1961–1976, https://doi.org/10.5194/acp-20-1961-2020, https://doi.org/10.5194/acp-20-1961-2020, 2020
Short summary
Short summary
We model solar radiation as it would be measured on the Earth's surface in the core shadow of a total solar eclipse. Subsequently, we compare our results to observations during the total eclipse 2017 for ultraviolet, visible and near-infrared wavelengths. Moreover, we analyze the effect of the surface reflectance, the ozone profile, aerosol and the topography and give a visualization of the prevailing photons paths in the atmosphere during the eclipse.
Hans Grob, Claudia Emde, Matthias Wiegner, Meinhard Seefeldner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 13, 239–258, https://doi.org/10.5194/amt-13-239-2020, https://doi.org/10.5194/amt-13-239-2020, 2020
Short summary
Short summary
Polarimetry has been established as an enhancement to classical photometry in aerosol remote sensing over the past years. We propose a fast and exact radiometric and polarimetric calibration method for polarized photometers. Additionally, a technique for correcting an alt-azimuthal mount is introduced.
These methods are applied to measurements obtained with our SSARA instrument during the A-LIFE field campaign. For 2 d, the data are subjected to an inversion of aerosol optical properties.
Tobias Zinner, Petra Hausmann, Florian Ewald, Luca Bugliaro, Claudia Emde, and Bernhard Mayer
Atmos. Meas. Tech., 9, 4615–4632, https://doi.org/10.5194/amt-9-4615-2016, https://doi.org/10.5194/amt-9-4615-2016, 2016
Short summary
Short summary
A new retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from transmittance measurements is presented. A visible range spectral slope is used to resolve the transmittance optical thickness ambiguity. Retrieval sensitivity to ice crystal habit, aerosol, albedo, sensor accuracy and lookup table interpolation is presented as well as an application of the method and comparison to satellite products for 2 days.
Claudia Emde, Robert Buras-Schnell, Arve Kylling, Bernhard Mayer, Josef Gasteiger, Ulrich Hamann, Jonas Kylling, Bettina Richter, Christian Pause, Timothy Dowling, and Luca Bugliaro
Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, https://doi.org/10.5194/gmd-9-1647-2016, 2016
Short summary
Short summary
libradtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. This paper gives an overview of libradtran version 2.0 with focus on new features (e.g. polarization, Raman scattering, absorption parameterization, cloud and aerosol optical properties). libRadtran is freely available at http://www.libradtran.org.
N. Hanrieder, S. Wilbert, R. Pitz-Paal, C. Emde, J. Gasteiger, B. Mayer, and J. Polo
Atmos. Meas. Tech., 8, 3467–3480, https://doi.org/10.5194/amt-8-3467-2015, https://doi.org/10.5194/amt-8-3467-2015, 2015
A. Kylling, N. Kristiansen, A. Stohl, R. Buras-Schnell, C. Emde, and J. Gasteiger
Atmos. Meas. Tech., 8, 1935–1949, https://doi.org/10.5194/amt-8-1935-2015, https://doi.org/10.5194/amt-8-1935-2015, 2015
Short summary
Short summary
Water and ice clouds affect detection and retrieval of volcanic ash clouds by satellite instruments. Synthetic infrared satellite images were generated for the Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions by combining weather forecast, ash transport and radiative transfer modelling. Clouds decreased the number of pixels identified as ash and generally increased the retrieved ash-mass loading compared to the cloudless case; however, large differences were seen between scenes.
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
A. Kylling, R. Buras, S. Eckhardt, C. Emde, B. Mayer, and A. Stohl
Atmos. Meas. Tech., 6, 649–660, https://doi.org/10.5194/amt-6-649-2013, https://doi.org/10.5194/amt-6-649-2013, 2013
Behrooz Keshtgar, Aiko Voigt, Corinna Hoose, Michael Riemer, and Bernhard Mayer
Weather Clim. Dynam., 4, 115–132, https://doi.org/10.5194/wcd-4-115-2023, https://doi.org/10.5194/wcd-4-115-2023, 2023
Short summary
Short summary
Forecasting extratropical cyclones is challenging due to many physical factors influencing their behavior. One such factor is the impact of heating and cooling of the atmosphere by the interaction between clouds and radiation. In this study, we show that cloud-radiative heating (CRH) increases the intensity of an idealized cyclone and affects its predictability. We find that CRH affects the cyclone mostly via increasing latent heat release and subsequent changes in the synoptic circulation.
Rodriguez Yombo Phaka, Alexis Merlaud, Gaia Pinardi, Martina M. Friedrich, François Hendrick, Jean-François Müller, Jenny Stavrakou, Isabelle De Smedt, Ermioni Dimitropoulou, Richard Bopili Mbotia Lepiba, Edmond Phuku Phuati, Buenimio Lomami Djibi, Lars Jacob, Caroline Fayt, Michel Van Roozendael, Jean-Perre Mbungu Tsumbu, and Emmanuel Mahieu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-327, https://doi.org/10.5194/amt-2022-327, 2023
Preprint under review for AMT
Short summary
Short summary
We present air quality measurements in Kinshasa, Democratic Republic of the Congo, performed with a newly developed instrument which was installed on a roof of the University of Kinshasa in November 2019. The instrument records spectra of the scattered sun light, from which we derive the abundances of nitrogen dioxide and formaldehyde, two important pollutants. We compare our ground-based measurements with those of a satellite, namely TROPOMI; and TROPOMI with a chemistry model, GEOS-Chem.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-313, https://doi.org/10.5194/amt-2022-313, 2022
Preprint under review for AMT
Short summary
Short summary
The paper presents the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by 9 limb and occultation satellite instruments – SAGE II, OSIRIS, MIPAS, SCIAMACHY, GOMOS, ACE-FTS, OMPS-LP, POAM III and SAGE III/ISS. The update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets, and introduces data from additional sensors (POAM III, SAGE III/ISS) and retrieval processors (OMPS-LP).
Miriam Latsch, Andreas Richter, Henk Eskes, Maarten Sneep, Ping Wang, Pepijn Veefkind, Ronny Lutz, Diego Loyola, Athina Argyrouli, Pieter Valks, Thomas Wagner, Holger Sihler, Michel van Roozendael, Nicolas Theys, Huan Yu, Richard Siddans, and John P. Burrows
Atmos. Meas. Tech., 15, 6257–6283, https://doi.org/10.5194/amt-15-6257-2022, https://doi.org/10.5194/amt-15-6257-2022, 2022
Short summary
Short summary
The article investigates different S5P TROPOMI cloud retrieval algorithms for tropospheric trace gas retrievals. The cloud products show differences primarily over snow and ice and for scenes under sun glint. Some issues regarding across-track dependence are found for the cloud fractions as well as for the cloud heights.
Kezia Lange, Andreas Richter, Anja Schönhardt, Andreas C. Meier, Tim Bösch, André Seyler, Kai Krause, Lisa K. Behrens, Folkard Wittrock, Alexis Merlaud, Frederik Tack, Caroline Fayt, Martina M. Friedrich, Ermioni Dimitropoulou, Michel Van Roozendael, Vinod Kumar, Sebastian Donner, Steffen Dörner, Bianca Lauster, Maria Razi, Christian Borger, Katharina Uhlmannsiek, Thomas Wagner, Thomas Ruhtz, Henk Eskes, Birger Bohn, Daniel Santana Diaz, Nader Abuhassan, Dirk Schüttemeyer, and John P. Burrows
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-264, https://doi.org/10.5194/amt-2022-264, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
We present airborne imaging DOAS, ground-based stationary and car DOAS measurements conducted during the S5P-VAL-DE-Ruhr campaign in the Rhine-Ruhr region. The measurements are used to validate space-borne NO2 data products from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI). Auxiliary data of the TROPOMI NO2 retrieval, such as spatially higher resolved a priori NO2 vertical profiles, surface reflectivity and the cloud treatment are investigated to evaluate their impact.
Huan Yu, Claudia Emde, Arve Kylling, Ben Veihelmann, Bernhard Mayer, Kerstin Stebel, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 5743–5768, https://doi.org/10.5194/amt-15-5743-2022, https://doi.org/10.5194/amt-15-5743-2022, 2022
Short summary
Short summary
In this study, we have investigated the impact of 3D clouds on the tropospheric NO2 retrieval from UV–visible sensors. We applied standard NO2 retrieval methods including cloud corrections to synthetic data generated by the 3D radiative transfer model. A sensitivity study was done for synthetic data, and dependencies on various parameters were investigated. Possible mitigation strategies were investigated and compared based on 3D simulations and observed data.
Ka Lok Chan, Pieter Valks, Klaus-Peter Heue, Ronny Lutz, Pascal Hedelt, Diego Loyola, Gaia Pinardi, Michel Van Roozendael, François Hendrick, Thomas Wagner, Vinod Kumar, Alkis Bais, Ankie Piters, Hitoshi Irie, Yugo Kanaya, Hisahiro Takashima, Yongjoo Choi, Kihong Park, Jihyo Chong, Alexander Cede, Udo Frieß, Andreas Richter, Jianzhong Ma, Nuria Benavent, Robert Holla, Oleg Postylyakov, Claudia Rivera Cárdenas, and Mark Wenig
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-315, https://doi.org/10.5194/essd-2022-315, 2022
Preprint under review for ESSD
Short summary
Short summary
This paper is to present the theoretical basis as well as the verification and validation of the GOME-2 daily and monthly level 3 products.
Veronika Pörtge, Tobias Kölling, Anna Weber, Lea Volkmer, Claudia Emde, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-245, https://doi.org/10.5194/amt-2022-245, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
In this work, we analyze polarized cloudbow observations of the airborne camera system specMACS to retrieve the cloud droplet size distribution, defined by the effective radius (reff) and the effective variance (veff). Two case studies of trade wind cumulus clouds measured during the EUREC4A field campaign are presented. The results are combined into maps of reff and veff with a very high spatial resolution (100 m by 100 m), that give new insights into the spatial distribution of the parameters.
John T. Sullivan, Arnoud Apituley, Nora Mettig, Karin Kreher, K. Emma Knowland, Marc Allaart, Ankie Piters, Michel Van Roozendael, Pepijn Veefkind, Jerry R. Ziemke, Natalya Kramarova, Mark Weber, Alexei Rozanov, Laurence Twigg, Grant Sumnicht, and Thomas J. McGee
Atmos. Chem. Phys., 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022, https://doi.org/10.5194/acp-22-11137-2022, 2022
Short summary
Short summary
A TROPOspheric Monitoring Instrument (TROPOMI) validation campaign (TROLIX-19) was held in the Netherlands in September 2019. The research presented here focuses on using ozone lidars from NASA’s Goddard Space Flight Center to better evaluate the characterization of ozone throughout TROLIX-19 as compared to balloon-borne, space-borne and ground-based passive measurements, as well as a global coupled chemistry meteorology model.
Nicolas Theys, Christophe Lerot, Hugues Brenot, Jeroen van Gent, Isabelle De Smedt, Lieven Clarisse, Mike Burton, Matthew Varnam, Catherine Hayer, Benjamin Esse, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 4801–4817, https://doi.org/10.5194/amt-15-4801-2022, https://doi.org/10.5194/amt-15-4801-2022, 2022
Short summary
Short summary
Sulfur dioxide plume height after a volcanic eruption is an important piece of information for many different scientific studies and applications. Satellite UV retrievals are useful in this respect, but available algorithms have shown so far limited sensitivity to SO2 height. Here we present a new technique to improve the retrieval of SO2 plume height for SO2 columns as low as 5 DU. We demonstrate the algorithm using TROPOMI measurements and compare with other height estimates.
Pieternel F. Levelt, Deborah C. Stein Zweers, Ilse Aben, Maite Bauwens, Tobias Borsdorff, Isabelle De Smedt, Henk J. Eskes, Christophe Lerot, Diego G. Loyola, Fabian Romahn, Trissevgeni Stavrakou, Nicolas Theys, Michel Van Roozendael, J. Pepijn Veefkind, and Tijl Verhoelst
Atmos. Chem. Phys., 22, 10319–10351, https://doi.org/10.5194/acp-22-10319-2022, https://doi.org/10.5194/acp-22-10319-2022, 2022
Short summary
Short summary
Using the COVID-19 lockdown periods as an example, we show how Sentinel-5P/TROPOMI trace gas data (NO2, SO2, CO, HCHO and CHOCHO) can be used to understand impacts on air quality for regions and cities around the globe. We also provide information for both experienced and inexperienced users about how we created the data using state-of-the-art algorithms, where to get the data, methods taking meteorological and seasonal variability into consideration, and insights for future studies.
Ermioni Dimitropoulou, François Hendrick, Martina Michaela Friedrich, Frederik Tack, Gaia Pinardi, Alexis Merlaud, Caroline Fayt, Christian Hermans, Frans Fierens, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 4503–4529, https://doi.org/10.5194/amt-15-4503-2022, https://doi.org/10.5194/amt-15-4503-2022, 2022
Short summary
Short summary
A total of 2 years of dual-scan ground-based MAX-DOAS measurements of tropospheric NO2 and aerosols in Uccle (Belgium) have been used to develop a new optimal-estimation-based inversion approach to retrieve horizontal profiles of surface NO2 concentration and aerosol extinction profiles. We show that the combination of an appropriate sampling of TROPOMI pixels by ground-based measurements and an adequate a priori NO2 profile shape in TROPOMI retrievals improves the agreement between datasets.
Leonie Bernet, Tove Svendby, Georg Hansen, Yvan Orsolini, Arne Dahlback, Florence Goutail, Andrea Pazmiño, Boyan Petkov, and Arve Kylling
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-488, https://doi.org/10.5194/acp-2022-488, 2022
Preprint under review for ACP
Short summary
Short summary
After the severe destruction of the ozone layer, the amount of ozone in the stratosphere is expected to increase again. At northern high-latitudes, however, such a recovery has not been detected yet. To assess ozone changes in that region, we analyse the amount of ozone above specific locations (total ozone) measured at three stations in Norway. We found that total ozone increases significantly at two Arctic stations, which may be an indication for ozone recovery at northern high-latitudes.
Arve Kylling, Claudia Emde, Huan Yu, Michel van Roozendael, Kerstin Stebel, Ben Veihelmann, and Bernhard Mayer
Atmos. Meas. Tech., 15, 3481–3495, https://doi.org/10.5194/amt-15-3481-2022, https://doi.org/10.5194/amt-15-3481-2022, 2022
Short summary
Short summary
Atmospheric trace gases such as nitrogen dioxide (NO2) may be measured by satellite instruments sensitive to solar ultraviolet–visible radiation reflected from Earth and its atmosphere. For a single pixel, clouds in neighbouring pixels may affect the radiation and hence the retrieved trace gas amount. We found that for a solar zenith angle less than about 40° this cloud-related NO2 bias is typically below 10 %, while for larger solar zenith angles the NO2 bias is on the order of tens of percent.
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Andreas Richter, Pieter Valks, Ramina Alwarda, Kristof Bognar, Udo Frieß, José Granville, Myojeong Gu, Paul Johnston, Cristina Prados-Roman, Richard Querel, Kimberly Strong, Thomas Wagner, Folkard Wittrock, and Margarita Yela Gonzalez
Atmos. Meas. Tech., 15, 3439–3463, https://doi.org/10.5194/amt-15-3439-2022, https://doi.org/10.5194/amt-15-3439-2022, 2022
Short summary
Short summary
We report on the GOME-2A and GOME-2B OClO dataset (2007 to 2016, from the EUMETSAT's AC SAF) validation using data from nine NDACC zenith-scattered-light DOAS (ZSL-DOAS) instruments distributed in both the Arctic and Antarctic. Specific sensitivity tests are performed on the ground-based data to estimate the impact of the different OClO DOAS analysis settings and their typical errors. Good agreement is found for both the inter-annual variability and the overall OClO seasonal behavior.
Melanie Coldewey-Egbers, Diego G. Loyola, Christophe Lerot, and Michel Van Roozendael
Atmos. Chem. Phys., 22, 6861–6878, https://doi.org/10.5194/acp-22-6861-2022, https://doi.org/10.5194/acp-22-6861-2022, 2022
Short summary
Short summary
Monitoring the long-term evolution of ozone and the evaluation of trends is essential to assess the efficacy of the Montreal Protocol and its amendments. The first signs of recovery as a consequence of decreasing amounts of ozone-depleting substances have been reported, but the impact needs to be investigated in more detail. In the Southern Hemisphere significant positive trends were found, but in the Northern Hemisphere the expected increase is still not yet visible.
Edward Malina, Ben Veihelmann, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, and Isamu Morino
Atmos. Meas. Tech., 15, 2377–2406, https://doi.org/10.5194/amt-15-2377-2022, https://doi.org/10.5194/amt-15-2377-2022, 2022
Short summary
Short summary
Methane retrievals from remote sensing instruments are fundamentally based on spectroscopic parameters, which indicate spectral-line positions, and their characteristics. These parameters are stored in several databases that vary in their make-up. Here we assess how concentrations of methane isotopologues measured from the same Total Carbon Column Observing Network (TCCON) instruments vary across a range of spectral windows using different spectroscopic databases and comment on the implications.
Hisahiro Takashima, Yugo Kanaya, Saki Kato, Martina M. Friedrich, Michel Van Roozendael, Fumikazu Taketani, Takuma Miyakawa, Yuichi Komazaki, Carlos A. Cuevas, Alfonso Saiz-Lopez, and Takashi Sekiya
Atmos. Chem. Phys., 22, 4005–4018, https://doi.org/10.5194/acp-22-4005-2022, https://doi.org/10.5194/acp-22-4005-2022, 2022
Short summary
Short summary
We have undertaken atmospheric iodine monoxide (IO) observations in the global marine boundary layer with a wide latitudinal coverage and sea surface temperature (SST) range. We conclude that atmospheric iodine is abundant over the Western Pacific warm pool, appearing as an iodine fountain, where ozone (O3) minima occur. Our study also found negative correlations between IO and O3 concentrations over IO maxima, which requires reconsideration of the initiation process of halogen activation.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Dimitris Karagkiozidis, Martina Michaela Friedrich, Steffen Beirle, Alkiviadis Bais, François Hendrick, Kalliopi Artemis Voudouri, Ilias Fountoulakis, Angelos Karanikolas, Paraskevi Tzoumaka, Michel Van Roozendael, Dimitris Balis, and Thomas Wagner
Atmos. Meas. Tech., 15, 1269–1301, https://doi.org/10.5194/amt-15-1269-2022, https://doi.org/10.5194/amt-15-1269-2022, 2022
Short summary
Short summary
In this study we focus on the retrieval of aerosol, NO2, and HCHO vertical profiles from multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations for the first time over Thessaloniki, Greece. We use two independent inversion algorithms for the profile retrievals. We evaluate their performance, we intercompare their results, and we validate their products with ancillary data, measured by other co-located reference instruments.
Christophe Lerot, François Hendrick, Michel Van Roozendael, Leonardo M. A. Alvarado, Andreas Richter, Isabelle De Smedt, Nicolas Theys, Jonas Vlietinck, Huan Yu, Jeroen Van Gent, Trissevgeni Stavrakou, Jean-François Müller, Pieter Valks, Diego Loyola, Hitoshi Irie, Vinod Kumar, Thomas Wagner, Stefan F. Schreier, Vinayak Sinha, Ting Wang, Pucai Wang, and Christian Retscher
Atmos. Meas. Tech., 14, 7775–7807, https://doi.org/10.5194/amt-14-7775-2021, https://doi.org/10.5194/amt-14-7775-2021, 2021
Short summary
Short summary
Global measurements of glyoxal tropospheric columns from the satellite instrument TROPOMI are presented. Such measurements can contribute to the estimation of atmospheric emissions of volatile organic compounds. This new glyoxal product has been fully characterized with a comprehensive error budget, with comparison with other satellite data sets as well as with validation based on independent ground-based remote sensing glyoxal observations.
Heike Konow, Florian Ewald, Geet George, Marek Jacob, Marcus Klingebiel, Tobias Kölling, Anna E. Luebke, Theresa Mieslinger, Veronika Pörtge, Jule Radtke, Michael Schäfer, Hauke Schulz, Raphaela Vogel, Martin Wirth, Sandrine Bony, Susanne Crewell, André Ehrlich, Linda Forster, Andreas Giez, Felix Gödde, Silke Groß, Manuel Gutleben, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Theresa Lang, Bernhard Mayer, Mario Mech, Marc Prange, Sabrina Schnitt, Jessica Vial, Andreas Walbröl, Manfred Wendisch, Kevin Wolf, Tobias Zinner, Martin Zöger, Felix Ament, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 5545–5563, https://doi.org/10.5194/essd-13-5545-2021, https://doi.org/10.5194/essd-13-5545-2021, 2021
Short summary
Short summary
The German research aircraft HALO took part in the research campaign EUREC4A in January and February 2020. The focus area was the tropical Atlantic east of the island of Barbados. We describe the characteristics of the 15 research flights, provide auxiliary information, derive combined cloud mask products from all instruments that observe clouds on board the aircraft, and provide code examples that help new users of the data to get started.
Song Liu, Pieter Valks, Gaia Pinardi, Jian Xu, Ka Lok Chan, Athina Argyrouli, Ronny Lutz, Steffen Beirle, Ehsan Khorsandi, Frank Baier, Vincent Huijnen, Alkiviadis Bais, Sebastian Donner, Steffen Dörner, Myrto Gratsea, François Hendrick, Dimitris Karagkiozidis, Kezia Lange, Ankie J. M. Piters, Julia Remmers, Andreas Richter, Michel Van Roozendael, Thomas Wagner, Mark Wenig, and Diego G. Loyola
Atmos. Meas. Tech., 14, 7297–7327, https://doi.org/10.5194/amt-14-7297-2021, https://doi.org/10.5194/amt-14-7297-2021, 2021
Short summary
Short summary
In this work, an improved tropospheric NO2 retrieval algorithm from TROPOMI measurements over Europe is presented. The stratospheric estimation is implemented with correction for the dependency of the stratospheric NO2 on the viewing geometry. The AMF calculation is implemented using improved surface albedo, a priori NO2 profiles, and cloud correction. The improved tropospheric NO2 data show good correlations with ground-based MAX-DOAS measurements.
Nicolas Theys, Vitali Fioletov, Can Li, Isabelle De Smedt, Christophe Lerot, Chris McLinden, Nickolay Krotkov, Debora Griffin, Lieven Clarisse, Pascal Hedelt, Diego Loyola, Thomas Wagner, Vinod Kumar, Antje Innes, Roberto Ribas, François Hendrick, Jonas Vlietinck, Hugues Brenot, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 16727–16744, https://doi.org/10.5194/acp-21-16727-2021, https://doi.org/10.5194/acp-21-16727-2021, 2021
Short summary
Short summary
We present a new algorithm to retrieve sulfur dioxide from space UV measurements. We apply the technique to high-resolution TROPOMI measurements and demonstrate the high sensitivity of the approach to weak SO2 emissions worldwide with an unprecedented limit of detection of 8 kt yr−1. This result has broad implications for atmospheric science studies dealing with improving emission inventories and identifying and quantifying missing sources, in the context of air quality and climate.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Marc Schwaerzel, Dominik Brunner, Fabian Jakub, Claudia Emde, Brigitte Buchmann, Alexis Berne, and Gerrit Kuhlmann
Atmos. Meas. Tech., 14, 6469–6482, https://doi.org/10.5194/amt-14-6469-2021, https://doi.org/10.5194/amt-14-6469-2021, 2021
Short summary
Short summary
NO2 maps from airborne imaging remote sensing often appear much smoother than one would expect from high-resolution model simulations of NO2 over cities, despite the small ground-pixel size of the sensors. Our case study over Zurich, using the newly implemented building module of the MYSTIC radiative transfer solver, shows that the 3D effect can explain part of the smearing and that building shadows cause a noticeable underestimation and noise in the measured NO2 columns.
Isabelle De Smedt, Gaia Pinardi, Corinne Vigouroux, Steven Compernolle, Alkis Bais, Nuria Benavent, Folkert Boersma, Ka-Lok Chan, Sebastian Donner, Kai-Uwe Eichmann, Pascal Hedelt, François Hendrick, Hitoshi Irie, Vinod Kumar, Jean-Christopher Lambert, Bavo Langerock, Christophe Lerot, Cheng Liu, Diego Loyola, Ankie Piters, Andreas Richter, Claudia Rivera Cárdenas, Fabian Romahn, Robert George Ryan, Vinayak Sinha, Nicolas Theys, Jonas Vlietinck, Thomas Wagner, Ting Wang, Huan Yu, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 12561–12593, https://doi.org/10.5194/acp-21-12561-2021, https://doi.org/10.5194/acp-21-12561-2021, 2021
Short summary
Short summary
This paper assess the performances of the TROPOMI formaldehyde observations compared to its predecessor OMI at different spatial and temporal scales. We also use a global network of MAX-DOAS instruments to validate both satellite datasets for a large range of HCHO columns. The precision obtained with daily TROPOMI observations is comparable to monthly OMI observations. We present clear detection of weak HCHO column enhancements related to shipping emissions in the Indian Ocean.
Nina Črnivec and Bernhard Mayer
Geosci. Model Dev., 14, 3663–3682, https://doi.org/10.5194/gmd-14-3663-2021, https://doi.org/10.5194/gmd-14-3663-2021, 2021
Short summary
Short summary
This study aims to advance the cloud–radiation interplay treatment in global weather and climate prediction, focusing on cloud horizontal inhomogeneity misrepresentation. We explore the potential of the Tripleclouds method for diverse cloud types, namely the stratocumulus, cirrus and cumulonimbus. The validity of global cloud variability estimate with various condensate distribution assumptions is assessed. Optimizations for overcast and extremely heterogeneous cloudiness are further endorsed.
Daniel Zawada, Ghislain Franssens, Robert Loughman, Antti Mikkonen, Alexei Rozanov, Claudia Emde, Adam Bourassa, Seth Dueck, Hannakaisa Lindqvist, Didier Ramon, Vladimir Rozanov, Emmanuel Dekemper, Erkki Kyrölä, John P. Burrows, Didier Fussen, and Doug Degenstein
Atmos. Meas. Tech., 14, 3953–3972, https://doi.org/10.5194/amt-14-3953-2021, https://doi.org/10.5194/amt-14-3953-2021, 2021
Short summary
Short summary
Satellite measurements of atmospheric composition often rely on computer tools known as radiative transfer models to model the propagation of sunlight within the atmosphere. Here we have performed a detailed inter-comparison of seven different radiative transfer models in a variety of conditions. We have found that the models agree remarkably well, at a level better than previously reported. This result provides confidence in our understanding of atmospheric radiative transfer.
Tove M. Svendby, Bjørn Johnsen, Arve Kylling, Arne Dahlback, Germar H. Bernhard, Georg H. Hansen, Boyan Petkov, and Vito Vitale
Atmos. Chem. Phys., 21, 7881–7899, https://doi.org/10.5194/acp-21-7881-2021, https://doi.org/10.5194/acp-21-7881-2021, 2021
Short summary
Short summary
Measurements of total ozone and effective cloud transmittance (eCLT) have been performed since 1995 at three Norwegian sites with GUV multi-filter instruments. The unique data sets of high-time-resolution measurements can be used for a broad range of studies. Data analyses reveal an increase in total ozone above Norway from 1995 to 2019. Measurements of GUV eCLT indicate changes in albedo in Ny-Ålesund (Svalbard) during the past 25 years, most likely resulting from increased Arctic ice melt.
Viktoria F. Sofieva, Monika Szeląg, Johanna Tamminen, Erkki Kyrölä, Doug Degenstein, Chris Roth, Daniel Zawada, Alexei Rozanov, Carlo Arosio, John P. Burrows, Mark Weber, Alexandra Laeng, Gabriele P. Stiller, Thomas von Clarmann, Lucien Froidevaux, Nathaniel Livesey, Michel van Roozendael, and Christian Retscher
Atmos. Chem. Phys., 21, 6707–6720, https://doi.org/10.5194/acp-21-6707-2021, https://doi.org/10.5194/acp-21-6707-2021, 2021
Short summary
Short summary
The MErged GRIdded Dataset of Ozone Profiles is a long-term (2001–2018) stratospheric ozone profile climate data record with resolved longitudinal structure that combines the data from six limb satellite instruments. The dataset can be used for various analyses, some of which are discussed in the paper. In particular, regionally and vertically resolved ozone trends are evaluated, including trends in the polar regions.
Frederik Tack, Alexis Merlaud, Marian-Daniel Iordache, Gaia Pinardi, Ermioni Dimitropoulou, Henk Eskes, Bart Bomans, Pepijn Veefkind, and Michel Van Roozendael
Atmos. Meas. Tech., 14, 615–646, https://doi.org/10.5194/amt-14-615-2021, https://doi.org/10.5194/amt-14-615-2021, 2021
Short summary
Short summary
We assess the TROPOMI tropospheric NO2 product (OFFL v1.03.01; 3.5 km × 7 km at nadir observations) based on coinciding airborne APEX reference observations (~75 m × 120 m), acquired over polluted regions in Belgium. The TROPOMI NO2 product meets the mission requirements in terms of precision and accuracy. However, we show that TROPOMI is biased low over polluted areas, mainly due to the limited spatial resolution of a priori input for the AMF computation.
Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Wolfgang Stremme, Kimberly Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, and Claus Zehner
Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, https://doi.org/10.5194/amt-14-481-2021, 2021
Short summary
Short summary
This paper reports on the ground-based validation of the NO2 data produced operationally by the TROPOMI instrument on board the Sentinel-5 Precursor satellite. Tropospheric, stratospheric, and total NO2 columns are compared to measurements collected from MAX-DOAS, ZSL-DOAS, and PGN/Pandora instruments respectively. The products are found to satisfy mission requirements in general, though negative mean differences are found at sites with high pollution levels. Potential causes are discussed.
Martin Dameris, Diego G. Loyola, Matthias Nützel, Melanie Coldewey-Egbers, Christophe Lerot, Fabian Romahn, and Michel van Roozendael
Atmos. Chem. Phys., 21, 617–633, https://doi.org/10.5194/acp-21-617-2021, https://doi.org/10.5194/acp-21-617-2021, 2021
Short summary
Short summary
Record low ozone values were observed in March 2020. Dynamical and chemical circumstances leading to low ozone values in spring 2020 are discussed and are compared to similar dynamical conditions in the Northern Hemisphere in 1996/1997 and 2010/2011. 2019/2020 showed an unusual persistent polar vortex with low stratospheric temperatures, which were permanently below 195 K at 50 hPa. This enabled enhanced formation of polar stratospheric clouds and a subsequent clear reduction of total ozone.
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Nicolas Theys, Nader Abuhassan, Alkiviadis Bais, Folkert Boersma, Alexander Cede, Jihyo Chong, Sebastian Donner, Theano Drosoglou, Anatoly Dzhola, Henk Eskes, Udo Frieß, José Granville, Jay R. Herman, Robert Holla, Jari Hovila, Hitoshi Irie, Yugo Kanaya, Dimitris Karagkiozidis, Natalia Kouremeti, Jean-Christopher Lambert, Jianzhong Ma, Enno Peters, Ankie Piters, Oleg Postylyakov, Andreas Richter, Julia Remmers, Hisahiro Takashima, Martin Tiefengraber, Pieter Valks, Tim Vlemmix, Thomas Wagner, and Folkard Wittrock
Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020, https://doi.org/10.5194/amt-13-6141-2020, 2020
Short summary
Short summary
We validate several GOME-2 and OMI tropospheric NO2 products with 23 MAX-DOAS and 16 direct sun instruments distributed worldwide, highlighting large horizontal inhomogeneities at several sites affecting the validation results. We propose a method for quantification and correction. We show the application of such correction reduces the satellite underestimation in almost all heterogeneous cases, but a negative bias remains over the MAX-DOAS and direct sun network ensemble for both satellites.
Alexis Merlaud, Livio Belegante, Daniel-Eduard Constantin, Mirjam Den Hoed, Andreas Carlos Meier, Marc Allaart, Magdalena Ardelean, Maxim Arseni, Tim Bösch, Hugues Brenot, Andreea Calcan, Emmanuel Dekemper, Sebastian Donner, Steffen Dörner, Mariana Carmelia Balanica Dragomir, Lucian Georgescu, Anca Nemuc, Doina Nicolae, Gaia Pinardi, Andreas Richter, Adrian Rosu, Thomas Ruhtz, Anja Schönhardt, Dirk Schuettemeyer, Reza Shaiganfar, Kerstin Stebel, Frederik Tack, Sorin Nicolae Vâjâiac, Jeni Vasilescu, Jurgen Vanhamel, Thomas Wagner, and Michel Van Roozendael
Atmos. Meas. Tech., 13, 5513–5535, https://doi.org/10.5194/amt-13-5513-2020, https://doi.org/10.5194/amt-13-5513-2020, 2020
Short summary
Short summary
The AROMAT campaigns took place in Romania in 2014 and 2015. They aimed to test airborne observation systems dedicated to air quality studies and to verify the concept of such campaigns in support of the validation of space-borne atmospheric missions. We show that airborne measurements of NO2 can be valuable for the validation of air quality satellites. For H2CO and SO2, the validation should involve ground-based measurement systems at key locations that the AROMAT measurements help identify.
Ermioni Dimitropoulou, François Hendrick, Gaia Pinardi, Martina M. Friedrich, Alexis Merlaud, Frederik Tack, Helene De Longueville, Caroline Fayt, Christian Hermans, Quentin Laffineur, Frans Fierens, and Michel Van Roozendael
Atmos. Meas. Tech., 13, 5165–5191, https://doi.org/10.5194/amt-13-5165-2020, https://doi.org/10.5194/amt-13-5165-2020, 2020
Short summary
Short summary
We present 1 year of dual-scan ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of aerosol and tropospheric NO2 in Uccle (Belgium). Measuring tropospheric NO2 vertical column densities (VCDs) in different azimuthal directions has a positive effect on comparison with measurements from TROPOMI. We prove that the use of inadequate a priori NO2 profile shape data in the TROPOMI retrieval is responsible for the systematic underestimation of S5P NO2 data.
Yang Wang, Arnoud Apituley, Alkiviadis Bais, Steffen Beirle, Nuria Benavent, Alexander Borovski, Ilya Bruchkouski, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Henning Finkenzeller, Martina M. Friedrich, Udo Frieß, David Garcia-Nieto, Laura Gómez-Martín, François Hendrick, Andreas Hilboll, Junli Jin, Paul Johnston, Theodore K. Koenig, Karin Kreher, Vinod Kumar, Aleksandra Kyuberis, Johannes Lampel, Cheng Liu, Haoran Liu, Jianzhong Ma, Oleg L. Polyansky, Oleg Postylyakov, Richard Querel, Alfonso Saiz-Lopez, Stefan Schmitt, Xin Tian, Jan-Lukas Tirpitz, Michel Van Roozendael, Rainer Volkamer, Zhuoru Wang, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Thomas Wagner
Atmos. Meas. Tech., 13, 5087–5116, https://doi.org/10.5194/amt-13-5087-2020, https://doi.org/10.5194/amt-13-5087-2020, 2020
Nina Črnivec and Bernhard Mayer
Atmos. Chem. Phys., 20, 10733–10755, https://doi.org/10.5194/acp-20-10733-2020, https://doi.org/10.5194/acp-20-10733-2020, 2020
Short summary
Short summary
Unresolved interaction between clouds and atmospheric radiation is a source of uncertainty in weather and climate models. The present study highlights the potential of the state-of-the-art Tripleclouds radiative solver for shallow cumulus clouds, exposing the significance of properly representing subgrid cloud horizontal heterogeneity. The Tripleclouds concept was thereby incorporated in the widely employed δ-Eddington two-stream radiation scheme within the comprehensive libRadtran library.
Marc Schwaerzel, Claudia Emde, Dominik Brunner, Randulph Morales, Thomas Wagner, Alexis Berne, Brigitte Buchmann, and Gerrit Kuhlmann
Atmos. Meas. Tech., 13, 4277–4293, https://doi.org/10.5194/amt-13-4277-2020, https://doi.org/10.5194/amt-13-4277-2020, 2020
Short summary
Short summary
Horizontal homogeneity is often assumed for trace gases remote sensing, although it is not valid where trace gas concentrations have high spatial variability, e.g., in cities. We show the importance of 3D effects for MAX-DOAS and airborne imaging spectrometers using 3D-box air mass factors implemented in the MYSTIC radiative transfer solver. In both cases, 3D information is invaluable for interpreting the measurements, as not considering 3D effects can lead to misinterpretation of measurements.
Linda Forster, Meinhard Seefeldner, Andreas Baumgartner, Tobias Kölling, and Bernhard Mayer
Atmos. Meas. Tech., 13, 3977–3991, https://doi.org/10.5194/amt-13-3977-2020, https://doi.org/10.5194/amt-13-3977-2020, 2020
Short summary
Short summary
We present a procedure for both the geometric and absolute radiometric characterization of the weather-proof RGB camera HaloCamRAW, which is part of our automated halo observation system HaloCam, designed for the quantitative analysis of halo displays. By comparing the calibrated HaloCamRAW radiances of a 22° halo scene with radiative transfer simulations, we demonstrate the potential of developing a retrieval method for ice crystal properties, such as size, shape, and surface roughness.
Steven Compernolle, Tijl Verhoelst, Gaia Pinardi, José Granville, Daan Hubert, Arno Keppens, Sander Niemeijer, Bruno Rino, Alkis Bais, Steffen Beirle, Folkert Boersma, John P. Burrows, Isabelle De Smedt, Henk Eskes, Florence Goutail, François Hendrick, Alba Lorente, Andrea Pazmino, Ankie Piters, Enno Peters, Jean-Pierre Pommereau, Julia Remmers, Andreas Richter, Jos van Geffen, Michel Van Roozendael, Thomas Wagner, and Jean-Christopher Lambert
Atmos. Chem. Phys., 20, 8017–8045, https://doi.org/10.5194/acp-20-8017-2020, https://doi.org/10.5194/acp-20-8017-2020, 2020
Short summary
Short summary
Tropospheric and stratospheric NO2 columns from the OMI QA4ECV NO2 satellite product are validated by comparison with ground-based measurements at 11 sites. The OMI stratospheric column has a small negative bias, and the OMI tropospheric column has a stronger negative bias relative to the ground-based data. Discrepancies are attributed to comparison errors (e.g. difference in horizontal smoothing) and measurement errors (e.g. clouds, aerosols, vertical smoothing and a priori profile assumptions).
Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Thomas Blumenstock, Zhibin Cheng, Martine De Mazière, Isabelle De Smedt, Michel Grutter, James W. Hannigan, Nicholas Jones, Rigel Kivi, Diego Loyola, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Gaia Pinardi, Amelie Röhling, Dan Smale, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, Michel van Roozendael, Pucai Wang, and Holger Winkler
Atmos. Meas. Tech., 13, 3751–3767, https://doi.org/10.5194/amt-13-3751-2020, https://doi.org/10.5194/amt-13-3751-2020, 2020
Short summary
Short summary
We validate the TROPOMI HCHO product with ground-based FTIR (Fourier-transform infrared) measurements from 25 stations. We find that TROPOMI overestimates HCHO under clean conditions, while it underestimates it at high HCHO levels. Both TROPOMI precision and accuracy reach the pre-launch requirements, and its precision can even be 2 times better. The observed TROPOMI seasonal variability is in agreement with the FTIR data. The TROPOMI random uncertainty and data filtering should be refined.
Arve Kylling, Hamidreza Ardeshiri, Massimo Cassiani, Anna Solvejg Dinger, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Kerstin Stebel, and Andreas Stohl
Atmos. Meas. Tech., 13, 3303–3318, https://doi.org/10.5194/amt-13-3303-2020, https://doi.org/10.5194/amt-13-3303-2020, 2020
Short summary
Short summary
Atmospheric turbulence and its effect on tracer dispersion in particular may be measured by cameras sensitive to the absorption of ultraviolet (UV) sunlight by sulfur dioxide (SO2). Using large eddy simulation and 3D Monte Carlo radiative transfer modelling of a SO2 plume, we demonstrate that UV camera images of SO2 plumes may be used to derive plume statistics of relevance for the study of atmospheric turbulent dispersion.
Karin Kreher, Michel Van Roozendael, Francois Hendrick, Arnoud Apituley, Ermioni Dimitropoulou, Udo Frieß, Andreas Richter, Thomas Wagner, Johannes Lampel, Nader Abuhassan, Li Ang, Monica Anguas, Alkis Bais, Nuria Benavent, Tim Bösch, Kristof Bognar, Alexander Borovski, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Henning Finkenzeller, David Garcia-Nieto, Clio Gielen, Laura Gómez-Martín, Nan Hao, Bas Henzing, Jay R. Herman, Christian Hermans, Syedul Hoque, Hitoshi Irie, Junli Jin, Paul Johnston, Junaid Khayyam Butt, Fahim Khokhar, Theodore K. Koenig, Jonas Kuhn, Vinod Kumar, Cheng Liu, Jianzhong Ma, Alexis Merlaud, Abhishek K. Mishra, Moritz Müller, Monica Navarro-Comas, Mareike Ostendorf, Andrea Pazmino, Enno Peters, Gaia Pinardi, Manuel Pinharanda, Ankie Piters, Ulrich Platt, Oleg Postylyakov, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Alfonso Saiz-Lopez, Anja Schönhardt, Stefan F. Schreier, André Seyler, Vinayak Sinha, Elena Spinei, Kimberly Strong, Frederik Tack, Xin Tian, Martin Tiefengraber, Jan-Lukas Tirpitz, Jeroen van Gent, Rainer Volkamer, Mihalis Vrekoussis, Shanshan Wang, Zhuoru Wang, Mark Wenig, Folkard Wittrock, Pinhua H. Xie, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 13, 2169–2208, https://doi.org/10.5194/amt-13-2169-2020, https://doi.org/10.5194/amt-13-2169-2020, 2020
Short summary
Short summary
In September 2016, 36 spectrometers from 24 institutes measured a number of key atmospheric pollutants during an instrument intercomparison campaign (CINDI-2) at Cabauw, the Netherlands. Here we report on the outcome of this intercomparison exercise. The three major goals were to characterise the differences between the participating instruments, to define a robust methodology for performance assessment, and to contribute to the harmonisation of the measurement settings and retrieval methods.
Anne-Marlene Blechschmidt, Joaquim Arteta, Adriana Coman, Lyana Curier, Henk Eskes, Gilles Foret, Clio Gielen, Francois Hendrick, Virginie Marécal, Frédérik Meleux, Jonathan Parmentier, Enno Peters, Gaia Pinardi, Ankie J. M. Piters, Matthieu Plu, Andreas Richter, Arjo Segers, Mikhail Sofiev, Álvaro M. Valdebenito, Michel Van Roozendael, Julius Vira, Tim Vlemmix, and John P. Burrows
Atmos. Chem. Phys., 20, 2795–2823, https://doi.org/10.5194/acp-20-2795-2020, https://doi.org/10.5194/acp-20-2795-2020, 2020
Short summary
Short summary
MAX-DOAS tropospheric NO2 vertical column retrievals from a set of European measurement stations are compared to regional air quality models which contribute to the operational Copernicus Atmosphere Monitoring Service (CAMS). Correlations are on the order of 35 %–75 %; large differences occur for individual pollution plumes. The results demonstrate that future model development needs to concentrate on improving representation of diurnal cycles and associated temporal scalings.
Paul Ockenfuß, Claudia Emde, Bernhard Mayer, and Germar Bernhard
Atmos. Chem. Phys., 20, 1961–1976, https://doi.org/10.5194/acp-20-1961-2020, https://doi.org/10.5194/acp-20-1961-2020, 2020
Short summary
Short summary
We model solar radiation as it would be measured on the Earth's surface in the core shadow of a total solar eclipse. Subsequently, we compare our results to observations during the total eclipse 2017 for ultraviolet, visible and near-infrared wavelengths. Moreover, we analyze the effect of the surface reflectance, the ozone profile, aerosol and the topography and give a visualization of the prevailing photons paths in the atmosphere during the eclipse.
Song Liu, Pieter Valks, Gaia Pinardi, Jian Xu, Athina Argyrouli, Ronny Lutz, L. Gijsbert Tilstra, Vincent Huijnen, François Hendrick, and Michel Van Roozendael
Atmos. Meas. Tech., 13, 755–787, https://doi.org/10.5194/amt-13-755-2020, https://doi.org/10.5194/amt-13-755-2020, 2020
Short summary
Short summary
This paper presents an improved tropospheric nitrogen dioxide (NO2) retrieval algorithm from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument based on air mass factor (AMF) calculations that are
performed with a more accurate knowledge of surface albedo, the a priori NO2 profile, and cloud and aerosol corrections.
Sebastian Donner, Jonas Kuhn, Michel Van Roozendael, Alkiviadis Bais, Steffen Beirle, Tim Bösch, Kristof Bognar, Ilya Bruchkouski, Ka Lok Chan, Steffen Dörner, Theano Drosoglou, Caroline Fayt, Udo Frieß, François Hendrick, Christian Hermans, Junli Jin, Ang Li, Jianzhong Ma, Enno Peters, Gaia Pinardi, Andreas Richter, Stefan F. Schreier, André Seyler, Kimberly Strong, Jan-Lukas Tirpitz, Yang Wang, Pinhua Xie, Jin Xu, Xiaoyi Zhao, and Thomas Wagner
Atmos. Meas. Tech., 13, 685–712, https://doi.org/10.5194/amt-13-685-2020, https://doi.org/10.5194/amt-13-685-2020, 2020
Short summary
Short summary
The calibration of the elevation angles of MAX-DOAS instruments is important for the correct interpretation of such MAX-DOAS measurements. We present and evaluate different methods for the elevation calibration of MAX-DOAS instruments which were applied during the CINDI-2 field campaign.
Pascal Polonik, Christoph Knote, Tobias Zinner, Florian Ewald, Tobias Kölling, Bernhard Mayer, Meinrat O. Andreae, Tina Jurkat-Witschas, Thomas Klimach, Christoph Mahnke, Sergej Molleker, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Ralf Weigel, and Manfred Wendisch
Atmos. Chem. Phys., 20, 1591–1605, https://doi.org/10.5194/acp-20-1591-2020, https://doi.org/10.5194/acp-20-1591-2020, 2020
Short summary
Short summary
A realistic representation of cloud–aerosol interactions is central to accurate climate projections. Here we combine observations collected during the ACRIDICON-CHUVA campaign with chemistry-transport simulations to evaluate the model’s ability to represent the indirect effects of biomass burning aerosol on cloud microphysics. We find an upper limit for the model sensitivity on cloud condensation nuclei concentrations well below the levels reached during the burning season in the Amazon Basin.
Andrew M. Sayer, Yves Govaerts, Pekka Kolmonen, Antti Lipponen, Marta Luffarelli, Tero Mielonen, Falguni Patadia, Thomas Popp, Adam C. Povey, Kerstin Stebel, and Marcin L. Witek
Atmos. Meas. Tech., 13, 373–404, https://doi.org/10.5194/amt-13-373-2020, https://doi.org/10.5194/amt-13-373-2020, 2020
Short summary
Short summary
Satellite measurements of the Earth are routinely processed to estimate useful quantities; one example is the amount of atmospheric aerosols (which are particles such as mineral dust, smoke, volcanic ash, or sea spray). As with all measurements and inferred quantities, there is some degree of uncertainty in this process.
There are various methods to estimate these uncertainties. A related question is the following: how reliable are these estimates? This paper presents a method to assess them.
Hans Grob, Claudia Emde, Matthias Wiegner, Meinhard Seefeldner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 13, 239–258, https://doi.org/10.5194/amt-13-239-2020, https://doi.org/10.5194/amt-13-239-2020, 2020
Short summary
Short summary
Polarimetry has been established as an enhancement to classical photometry in aerosol remote sensing over the past years. We propose a fast and exact radiometric and polarimetric calibration method for polarized photometers. Additionally, a technique for correcting an alt-azimuthal mount is introduced.
These methods are applied to measurements obtained with our SSARA instrument during the A-LIFE field campaign. For 2 d, the data are subjected to an inversion of aerosol optical properties.
Edward Malina, Haili Hu, Jochen Landgraf, and Ben Veihelmann
Atmos. Meas. Tech., 12, 6273–6301, https://doi.org/10.5194/amt-12-6273-2019, https://doi.org/10.5194/amt-12-6273-2019, 2019
Short summary
Short summary
We present a feasibility study on retrieving 12CH4 and 13CH4 using the recently launched TROPOMI on the Copernicus Sentinel 5P satellite and the future UVNS instrument on Sentinel 5. The ratio of 12CH4 and 13CH4 can be used to calculate the δ13C value, which has been shown to be able to distinguish between biological and non-biological sources of methane. We show that Sentinel 5/UVNS may be used to distinguish between methane source types, while Sentinel 5P/TROPOMI is subject to large biases.
Katerina Garane, Maria-Elissavet Koukouli, Tijl Verhoelst, Christophe Lerot, Klaus-Peter Heue, Vitali Fioletov, Dimitrios Balis, Alkiviadis Bais, Ariane Bazureau, Angelika Dehn, Florence Goutail, Jose Granville, Debora Griffin, Daan Hubert, Arno Keppens, Jean-Christopher Lambert, Diego Loyola, Chris McLinden, Andrea Pazmino, Jean-Pierre Pommereau, Alberto Redondas, Fabian Romahn, Pieter Valks, Michel Van Roozendael, Jian Xu, Claus Zehner, Christos Zerefos, and Walter Zimmer
Atmos. Meas. Tech., 12, 5263–5287, https://doi.org/10.5194/amt-12-5263-2019, https://doi.org/10.5194/amt-12-5263-2019, 2019
Short summary
Short summary
The Sentinel-5 Precursor TROPOMI near real time (NRTI) and offline (OFFL) total ozone column (TOC) products are validated against direct-sun and twilight zenith-sky ground-based TOC measurements and other already known spaceborne sensors. The results show that the TROPOMI TOC measurements are in very good agreement with the ground-based measurements and satellite sensor measurements and that they are well within the product requirements.
Sieglinde Callewaert, Sophie Vandenbussche, Nicolas Kumps, Arve Kylling, Xiaoxia Shang, Mika Komppula, Philippe Goloub, and Martine De Mazière
Atmos. Meas. Tech., 12, 3673–3698, https://doi.org/10.5194/amt-12-3673-2019, https://doi.org/10.5194/amt-12-3673-2019, 2019
Short summary
Short summary
This article presents the updated MAPIR algorithm, which uses infrared satellite data to obtain the global 3-D distribution of mineral aerosols. A description of the method together with its technical improvements is given. Additionally, a 10-year data set was generated and used to evaluate this new algorithm against AERONET, CALIOP, CATS and two ground-based lidar stations. We have shown that the new MAPIR algorithm provides reliable aerosol optical depth and dust layer mean altitude profiles.
Hyeong-Ahn Kwon, Rokjin J. Park, Gonzalo González Abad, Kelly Chance, Thomas P. Kurosu, Jhoon Kim, Isabelle De Smedt, Michel Van Roozendael, Enno Peters, and John Burrows
Atmos. Meas. Tech., 12, 3551–3571, https://doi.org/10.5194/amt-12-3551-2019, https://doi.org/10.5194/amt-12-3551-2019, 2019
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) will be launched by South Korea in 2019, and it will measure radiances ranging from 300 to 500 nm every hour with a fine spatial resolution of 7 km x 8 km over Seoul in South Korea to monitor column concentrations of air pollutants including O3, NO2, SO2, and HCHO, as well as aerosol optical properties. This paper describes a GEMS formaldehyde retrieval algorithm including a number of sensitivity tests for algorithm evaluation.
Nina Črnivec and Bernhard Mayer
Atmos. Chem. Phys., 19, 8083–8100, https://doi.org/10.5194/acp-19-8083-2019, https://doi.org/10.5194/acp-19-8083-2019, 2019
Short summary
Short summary
The interaction between radiation and clouds represents a source of uncertainty in numerical weather prediction (NWP), due to both intrinsic problems of one-dimensional radiation schemes and poor representation of clouds. The underlying question addressed in this study is how large the bias is of radiative heating rates in NWP models for shallow cumulus clouds and how it scales with various parameters, such as solar zenith angle, surface albedo, cloud cover and liquid water path.
Thomas Wagner, Steffen Beirle, Nuria Benavent, Tim Bösch, Ka Lok Chan, Sebastian Donner, Steffen Dörner, Caroline Fayt, Udo Frieß, David García-Nieto, Clio Gielen, David González-Bartolome, Laura Gomez, François Hendrick, Bas Henzing, Jun Li Jin, Johannes Lampel, Jianzhong Ma, Kornelia Mies, Mónica Navarro, Enno Peters, Gaia Pinardi, Olga Puentedura, Janis Puķīte, Julia Remmers, Andreas Richter, Alfonso Saiz-Lopez, Reza Shaiganfar, Holger Sihler, Michel Van Roozendael, Yang Wang, and Margarita Yela
Atmos. Meas. Tech., 12, 2745–2817, https://doi.org/10.5194/amt-12-2745-2019, https://doi.org/10.5194/amt-12-2745-2019, 2019
Short summary
Short summary
In this study the consistency between MAX-DOAS measurements and radiative transfer simulations of the atmospheric O4 absorption is investigated. The study is based on measurements (2 selected days during the MADCAT campaign) as well as synthetic spectra. The uncertainties of all relevant aspects (spectral retrieval and radiative transfer simulations) are quantified. For one of the selected days, measurements and simulations do not agree within their uncertainties.
Udo Frieß, Steffen Beirle, Leonardo Alvarado Bonilla, Tim Bösch, Martina M. Friedrich, François Hendrick, Ankie Piters, Andreas Richter, Michel van Roozendael, Vladimir V. Rozanov, Elena Spinei, Jan-Lukas Tirpitz, Tim Vlemmix, Thomas Wagner, and Yang Wang
Atmos. Meas. Tech., 12, 2155–2181, https://doi.org/10.5194/amt-12-2155-2019, https://doi.org/10.5194/amt-12-2155-2019, 2019
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a widely used measurement technique for the detection of a variety of atmospheric trace gases. It enables the retrieval of aerosol and trace gas vertical profiles in the atmospheric boundary layer using appropriate retrieval algorithms. In this study, the ability of eight profile retrieval algorithms to reconstruct vertical profiles is assessed on the basis of synthetic measurements.
Antje Inness, Johannes Flemming, Klaus-Peter Heue, Christophe Lerot, Diego Loyola, Roberto Ribas, Pieter Valks, Michel van Roozendael, Jian Xu, and Walter Zimmer
Atmos. Chem. Phys., 19, 3939–3962, https://doi.org/10.5194/acp-19-3939-2019, https://doi.org/10.5194/acp-19-3939-2019, 2019
Short summary
Short summary
This paper documents the use of total column ozone data from the TROPOMI satellite in the global forecasting system of the Copernicus Atmosphere Monitoring Service (CAMS). The data are of good quality over large parts of the globe but have some issues at high latitudes, at low solar elevations and over snow/ice. Assimilating the data in the CAMS system has a small positive impact, especially in the tropical troposphere.
Florian Ewald, Tobias Zinner, Tobias Kölling, and Bernhard Mayer
Atmos. Meas. Tech., 12, 1183–1206, https://doi.org/10.5194/amt-12-1183-2019, https://doi.org/10.5194/amt-12-1183-2019, 2019
Short summary
Short summary
This paper presents a new method for gaining insights into the vertical evolution of cloud droplet effective radii by using reflected solar radiation from cloud sides. The paper investigates how bi-spectral effective radius retrievals are affected by unknown cloud surface orientations and presents a method to mitigate this effect. Based on these findings, this study develops a statistical effective radius retrieval for airborne, side-looking imaging sensors.
Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 12, 1155–1166, https://doi.org/10.5194/amt-12-1155-2019, https://doi.org/10.5194/amt-12-1155-2019, 2019
Short summary
Short summary
Imaging technology allows us to quickly gather information on larger cloud fields. Unlike using lidar or radar, it is difficult to obtain accurate position information about the observed clouds. This work presents a method to retrieve the missing position information using RGB images from an airborne video camera. Using field campaign data, we observe and explain a median offset of 126 m compared to lidar data and show that systematic errors across the measurement swath are well below 50 m.
Song Liu, Pieter Valks, Gaia Pinardi, Isabelle De Smedt, Huan Yu, Steffen Beirle, and Andreas Richter
Atmos. Meas. Tech., 12, 1029–1057, https://doi.org/10.5194/amt-12-1029-2019, https://doi.org/10.5194/amt-12-1029-2019, 2019
Short summary
Short summary
Nitrogen dioxide (NO2) plays significant roles in both stratospheric and tropospheric chemistry, and the observations from satellites enable reliable monitoring of NO2 columns on a global scale and on long time scales. This work presents a refined algorithm for the retrieval of NO2 columns from the satellite instrument Global Ozone Monitoring Experiment-2 (GOME-2), which shows a clear improvement comparing to the previous algorithm.
Nikolaos Evangeliou, Arve Kylling, Sabine Eckhardt, Viktor Myroniuk, Kerstin Stebel, Ronan Paugam, Sergiy Zibtsev, and Andreas Stohl
Atmos. Chem. Phys., 19, 1393–1411, https://doi.org/10.5194/acp-19-1393-2019, https://doi.org/10.5194/acp-19-1393-2019, 2019
Short summary
Short summary
We simulated the peatland fires that burned in Greenland in summer 2017. Using satellite data, we estimated that the total burned area was 2345 ha, the fuel amount consumed 117 kt C and the emissions of BC, OC and BrC 23.5, 731 and 141 t, respectively. About 30 % of the emissions were deposited on snow or ice surfaces. This caused a maximum albedo change of 0.007 and a surface radiative forcing of 0.03–0.04 W m−2, with local maxima of up to 0.63–0.77 W m−2. Overall, the fires had a small impact.
Frederik Tack, Alexis Merlaud, Andreas C. Meier, Tim Vlemmix, Thomas Ruhtz, Marian-Daniel Iordache, Xinrui Ge, Len van der Wal, Dirk Schuettemeyer, Magdalena Ardelean, Andreea Calcan, Daniel Constantin, Anja Schönhardt, Koen Meuleman, Andreas Richter, and Michel Van Roozendael
Atmos. Meas. Tech., 12, 211–236, https://doi.org/10.5194/amt-12-211-2019, https://doi.org/10.5194/amt-12-211-2019, 2019
Short summary
Short summary
We present an intercomparison study of four airborne imaging DOAS instruments, dedicated to the retrieval and high-resolution mapping of tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs). The AROMAPEX campaign took place in Berlin, Germany, in April 2016 with the primary objectives (1) to test and intercompare the performance of experimental airborne imagers and (2) to prepare the validation and calibration campaigns for the Sentinel-5 Precursor/TROPOMI mission.
Mengyao Liu, Jintai Lin, K. Folkert Boersma, Gaia Pinardi, Yang Wang, Julien Chimot, Thomas Wagner, Pinhua Xie, Henk Eskes, Michel Van Roozendael, François Hendrick, Pucai Wang, Ting Wang, Yingying Yan, Lulu Chen, and Ruijing Ni
Atmos. Meas. Tech., 12, 1–21, https://doi.org/10.5194/amt-12-1-2019, https://doi.org/10.5194/amt-12-1-2019, 2019
Short summary
Short summary
China has become the world’s largest emitter of NOx, which mainly comes from vehicle exhaust, power plants, etc. However, there are no official ground-based measurements before 2013, so satellites have been widely used to monitor and analyze NOx pollution here. Aerosol is the key factor influencing the accuracy of the satellite NOx product. Our study provides a more accurate way to account for aerosol's influence compared to current widely used products.
Ting Wang, Pucai Wang, Nicolas Theys, Dan Tong, François Hendrick, Qiang Zhang, and Michel Van Roozendael
Atmos. Chem. Phys., 18, 18063–18078, https://doi.org/10.5194/acp-18-18063-2018, https://doi.org/10.5194/acp-18-18063-2018, 2018
Short summary
Short summary
In the last decade, four temporal regimes of SO2 in China have been identified. After an initial rise, SO2 undergoes two sharp drops in 2007–2008 and 2014–2016, during which 5-year rebounding is sustained. Different mechanisms are tied to North and South China. The industrial emission is responsible for SO2 variation in North China, while in South China the meteorological conditions make a large contribution. The result is crucial to the understanding of SO2 changes and future polices.
K. Folkert Boersma, Henk J. Eskes, Andreas Richter, Isabelle De Smedt, Alba Lorente, Steffen Beirle, Jos H. G. M. van Geffen, Marina Zara, Enno Peters, Michel Van Roozendael, Thomas Wagner, Joannes D. Maasakkers, Ronald J. van der A, Joanne Nightingale, Anne De Rudder, Hitoshi Irie, Gaia Pinardi, Jean-Christopher Lambert, and Steven C. Compernolle
Atmos. Meas. Tech., 11, 6651–6678, https://doi.org/10.5194/amt-11-6651-2018, https://doi.org/10.5194/amt-11-6651-2018, 2018
Short summary
Short summary
This paper describes a new, improved data record of 22+ years of coherent nitrogen dioxide (NO2) pollution measurements from different satellite instruments. Our work helps to ensure that climate data are of sufficient quality to draw reliable conclusions and shape decisions. It shows how dedicated intercomparisons of retrieval sub-steps have led to improved NO2 measurements from the GOME, SCIAMACHY, GOME-2(A), and OMI sensors, and how quality assurance of the new data product is achieved.
Anna Solvejg Dinger, Kerstin Stebel, Massimo Cassiani, Hamidreza Ardeshiri, Cirilo Bernardo, Arve Kylling, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Jan Wasseng, and Andreas Stohl
Atmos. Meas. Tech., 11, 6169–6188, https://doi.org/10.5194/amt-11-6169-2018, https://doi.org/10.5194/amt-11-6169-2018, 2018
Short summary
Short summary
This study presents an artificial release experiment aimed to improve the understanding of turbulence in the atmospheric boundary layer. A new set of image processing methods was developed to analyse the turbulent dispersion of sulfur dioxide (SO2) puffs. For this a tomographic setup of six SO2 cameras was used to image artificially released SO2 gas.
Hansen Cao, Tzung-May Fu, Lin Zhang, Daven K. Henze, Christopher Chan Miller, Christophe Lerot, Gonzalo González Abad, Isabelle De Smedt, Qiang Zhang, Michel van Roozendael, François Hendrick, Kelly Chance, Jie Li, Junyu Zheng, and Yuanhong Zhao
Atmos. Chem. Phys., 18, 15017–15046, https://doi.org/10.5194/acp-18-15017-2018, https://doi.org/10.5194/acp-18-15017-2018, 2018
Short summary
Short summary
Our top-down estimates for annual total Chinese NMVOC emissions was 30.7 to 49.5 Tg y−1, including 16.4 to 23.6 Tg y−1 from anthropogenic sources, 12.2 to 22.8 Tg y−1 from biogenic sources, and 2.08 to 3.13 Tg y−1 from biomass burning. Our four inversions consistently showed that the emissions of Chinese anthropogenic NMVOC precursors of glyoxal were larger than the a priori estimates. The glyoxal and formaldehyde constraints helped distinguish the NMVOC species from different sources.
Alba Lorente, K. Folkert Boersma, Piet Stammes, L. Gijsbert Tilstra, Andreas Richter, Huan Yu, Said Kharbouche, and Jan-Peter Muller
Atmos. Meas. Tech., 11, 4509–4529, https://doi.org/10.5194/amt-11-4509-2018, https://doi.org/10.5194/amt-11-4509-2018, 2018
Short summary
Short summary
Light reflected by Earth’s surface is different in each direction: it appears brighter or darker in certain viewing directions. Currently this effect is not accounted for in satellite retrievals; thus surface reflectance climatologies and cloud fractions show an east-west bias across orbits (GOME2,OMI). The effect for NO2 measurements in partly cloudy scenes is substantial. We recommend that this effect in UV/Vis sensors coherently accounted for, and will be especially beneficial for TROPOMI.
Marina Zara, K. Folkert Boersma, Isabelle De Smedt, Andreas Richter, Enno Peters, Jos H. G. M. van Geffen, Steffen Beirle, Thomas Wagner, Michel Van Roozendael, Sergey Marchenko, Lok N. Lamsal, and Henk J. Eskes
Atmos. Meas. Tech., 11, 4033–4058, https://doi.org/10.5194/amt-11-4033-2018, https://doi.org/10.5194/amt-11-4033-2018, 2018
Short summary
Short summary
Nitrogen dioxide and formaldehyde satellite data are used for air quality and climate studies. We quantify and characterise slant column uncertainties from different research groups. Our evaluation is motivated by recently improved techniques and by a desire to provide fully traceable uncertainty budget for climate records generated within the QA4ECV project. The improved slant columns are in agreement but with substantial differences in the reported uncertainties between groups and instruments.
Arno Keppens, Jean-Christopher Lambert, José Granville, Daan Hubert, Tijl Verhoelst, Steven Compernolle, Barry Latter, Brian Kerridge, Richard Siddans, Anne Boynard, Juliette Hadji-Lazaro, Cathy Clerbaux, Catherine Wespes, Daniel R. Hurtmans, Pierre-François Coheur, Jacob C. A. van Peet, Ronald J van der A, Katerina Garane, Maria Elissavet Koukouli, Dimitris S. Balis, Andy Delcloo, Rigel Kivi, Réné Stübi, Sophie Godin-Beekmann, Michel Van Roozendael, and Claus Zehner
Atmos. Meas. Tech., 11, 3769–3800, https://doi.org/10.5194/amt-11-3769-2018, https://doi.org/10.5194/amt-11-3769-2018, 2018
Short summary
Short summary
This work, performed at the Royal Belgian Institute for Space Aeronomy and the second in a series of four Ozone_cci papers, reports for the first time on data content studies, information content studies, and comparisons with co-located ground-based reference observations for all 13 nadir ozone profile data products that are part of the Climate Research Data Package (CRDP) on atmospheric ozone of the European Space Agency's Climate Change Initiative.
Arve Kylling, Sophie Vandenbussche, Virginie Capelle, Juan Cuesta, Lars Klüser, Luca Lelli, Thomas Popp, Kerstin Stebel, and Pepijn Veefkind
Atmos. Meas. Tech., 11, 2911–2936, https://doi.org/10.5194/amt-11-2911-2018, https://doi.org/10.5194/amt-11-2911-2018, 2018
Short summary
Short summary
The aerosol layer height is one of four aerosol parameters which is needed to enhance our understanding of aerosols' role in the climate system. Both active and passive measurement methods may be used to estimate the aerosol layer height. Aerosol height estimates made from passive infrared and solar satellite sensors measurements are compared with satellite-borne lidar estimates. There is considerable variation between the retrieved dust heights and how they compare with the lidar.
Isabelle De Smedt, Nicolas Theys, Huan Yu, Thomas Danckaert, Christophe Lerot, Steven Compernolle, Michel Van Roozendael, Andreas Richter, Andreas Hilboll, Enno Peters, Mattia Pedergnana, Diego Loyola, Steffen Beirle, Thomas Wagner, Henk Eskes, Jos van Geffen, Klaas Folkert Boersma, and Pepijn Veefkind
Atmos. Meas. Tech., 11, 2395–2426, https://doi.org/10.5194/amt-11-2395-2018, https://doi.org/10.5194/amt-11-2395-2018, 2018
Short summary
Short summary
This paper introduces the formaldehyde (HCHO) tropospheric vertical column retrieval algorithm implemented in the TROPOMI/Sentinel-5 Precursor operational processor, and comprehensively describes its various retrieval steps. Furthermore, algorithmic improvements developed in the framework of the EU FP7-project QA4ECV are described for future updates of the processor. Detailed error estimates are discussed in the light of Copernicus user requirements and needs for validation are highlighted.
Katerina Garane, Christophe Lerot, Melanie Coldewey-Egbers, Tijl Verhoelst, Maria Elissavet Koukouli, Irene Zyrichidou, Dimitris S. Balis, Thomas Danckaert, Florence Goutail, Jose Granville, Daan Hubert, Arno Keppens, Jean-Christopher Lambert, Diego Loyola, Jean-Pierre Pommereau, Michel Van Roozendael, and Claus Zehner
Atmos. Meas. Tech., 11, 1385–1402, https://doi.org/10.5194/amt-11-1385-2018, https://doi.org/10.5194/amt-11-1385-2018, 2018
Short summary
Short summary
The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2017, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. The exceptional quality of the level-3 GTO-ECV v3 TOC record temporal stability satisfies well the requirements for the total ozone measurement decadal stability of between 1 and 3 %.
Jonas Gliß, Kerstin Stebel, Arve Kylling, and Aasmund Sudbø
Atmos. Meas. Tech., 11, 781–801, https://doi.org/10.5194/amt-11-781-2018, https://doi.org/10.5194/amt-11-781-2018, 2018
Short summary
Short summary
The paper focusses on gas-velocity retrievals in emission plumes using optical flow (OF) algorithms applied to remote sensing imagery. OF algorithms can measure the velocities on a pixel level between consecutive images. An issue of OF algorithms is that they often fail to detect motion in contrast-poor image areas. A correction based on histograms of an OF vector field is proposed. The new method is applied to two example volcanic data sets from Mt Etna, Italy and Guallatiri, Chile.
Alexis Merlaud, Frederik Tack, Daniel Constantin, Lucian Georgescu, Jeroen Maes, Caroline Fayt, Florin Mingireanu, Dirk Schuettemeyer, Andreas Carlos Meier, Anja Schönardt, Thomas Ruhtz, Livio Bellegante, Doina Nicolae, Mirjam Den Hoed, Marc Allaart, and Michel Van Roozendael
Atmos. Meas. Tech., 11, 551–567, https://doi.org/10.5194/amt-11-551-2018, https://doi.org/10.5194/amt-11-551-2018, 2018
Short summary
Short summary
We present SWING-UAV, an atmospheric observation system based on a compact scanning spectrometer (SWING) mounted on an unmanned aerial vehicle (UAV). SWING-UAV was operated in the exhaust plume of a power plant in Romania in September 2014, during the AROMAT campaign. SWING quantified the NO2 emitted by the plant and the water vapour content in the boundary layer, in agreement with ancillary data. The system appears in particular promising to study emissions in rural areas.
Viktoria F. Sofieva, Erkki Kyrölä, Marko Laine, Johanna Tamminen, Doug Degenstein, Adam Bourassa, Chris Roth, Daniel Zawada, Mark Weber, Alexei Rozanov, Nabiz Rahpoe, Gabriele Stiller, Alexandra Laeng, Thomas von Clarmann, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Claus Zehner, Robert Damadeo, Joseph Zawodny, Natalya Kramarova, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 12533–12552, https://doi.org/10.5194/acp-17-12533-2017, https://doi.org/10.5194/acp-17-12533-2017, 2017
Short summary
Short summary
We present a merged dataset of ozone profiles from several satellite instruments: SAGE II, GOMOS, SCIAMACHY, MIPAS, OSIRIS, ACE-FTS and OMPS. For merging, we used the latest versions of the original ozone datasets.
The merged SAGE–CCI–OMPS dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997.
Yang Wang, Steffen Beirle, Francois Hendrick, Andreas Hilboll, Junli Jin, Aleksandra A. Kyuberis, Johannes Lampel, Ang Li, Yuhan Luo, Lorenzo Lodi, Jianzhong Ma, Monica Navarro, Ivan Ortega, Enno Peters, Oleg L. Polyansky, Julia Remmers, Andreas Richter, Olga Puentedura, Michel Van Roozendael, André Seyler, Jonathan Tennyson, Rainer Volkamer, Pinhua Xie, Nikolai F. Zobov, and Thomas Wagner
Atmos. Meas. Tech., 10, 3719–3742, https://doi.org/10.5194/amt-10-3719-2017, https://doi.org/10.5194/amt-10-3719-2017, 2017
Short summary
Short summary
Slant column densities of nitrous acid (HONO) derived from different MAX-DOAS instruments and retrieval software are systematically compared for the first time during the Multi Axis DOAS – Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign held at MPIC in Mainz, Germany, from June to October 2013. Through the inter-comparisons and sensitivity studies we quantified the uncertainties in the DOAS fits of HONO from different sources and concluded a recommended setting.
Birthe Marie Steensen, Arve Kylling, Nina Iren Kristiansen, and Michael Schulz
Atmos. Chem. Phys., 17, 9205–9222, https://doi.org/10.5194/acp-17-9205-2017, https://doi.org/10.5194/acp-17-9205-2017, 2017
Short summary
Short summary
An inversion method is tested in a forecasting setting for constraining ash dispersion by satellite observations. The sensitivity of a priori and
satellite uncertainties is tested for the a posteriori term. The a posteriori is also tested with four different assumptions affecting the retrieved
ash satellite data. In forecasting mode, the a posteriori changes after only 12 h of satellite observations and produces better forecasts than a priori.
John Faulkner Burkhart, Arve Kylling, Crystal B. Schaaf, Zhuosen Wang, Wiley Bogren, Rune Storvold, Stian Solbø, Christina A. Pedersen, and Sebastian Gerland
The Cryosphere, 11, 1575–1589, https://doi.org/10.5194/tc-11-1575-2017, https://doi.org/10.5194/tc-11-1575-2017, 2017
Short summary
Short summary
We present the first use of spectrometer measurements from a drone to assess reflectance and albedo over the Greenland Ice Sheet. In order to measure albedo – a critical parameter in the earth's energy balance – a drone was flown along 200 km transects coincident with Terra and Aqua satellites flying MODIS. We present a direct comparison of UAV-measured reflectance with satellite data over Greenland and provide a new method to study cryospheric surfaces using UAV with spectral instruments.
Andreas Carlos Meier, Anja Schönhardt, Tim Bösch, Andreas Richter, André Seyler, Thomas Ruhtz, Daniel-Eduard Constantin, Reza Shaiganfar, Thomas Wagner, Alexis Merlaud, Michel Van Roozendael, Livio Belegante, Doina Nicolae, Lucian Georgescu, and John Philip Burrows
Atmos. Meas. Tech., 10, 1831–1857, https://doi.org/10.5194/amt-10-1831-2017, https://doi.org/10.5194/amt-10-1831-2017, 2017
Short summary
Short summary
We present airborne remote sensing measurements of NO2 in the urban area of Bucharest. NO2 is a harmful pollutant, which is emitted in combustion processes. The measurements presented here enable the creation of maps, showing the horizontal NO2 distribution across the whole city within a relatively short time window of 1.5 h. These data provide new insight into urban pollution levels and their spatial distribution.
Frederik Tack, Alexis Merlaud, Marian-Daniel Iordache, Thomas Danckaert, Huan Yu, Caroline Fayt, Koen Meuleman, Felix Deutsch, Frans Fierens, and Michel Van Roozendael
Atmos. Meas. Tech., 10, 1665–1688, https://doi.org/10.5194/amt-10-1665-2017, https://doi.org/10.5194/amt-10-1665-2017, 2017
Short summary
Short summary
This paper presents retrieval results of NO2 vertical column densities mapped at high spatial resolution over three Belgian cities, based on the DOAS analysis of Airborne APEX observations. A major objective of the study is to assess the technical and operational capabilities of the APEX hyperspectral pushbroom imager to map the NO2 horizontal distribution field over urbanised areas.
Yang Wang, Steffen Beirle, Johannes Lampel, Mariliza Koukouli, Isabelle De Smedt, Nicolas Theys, Ang Li, Dexia Wu, Pinhua Xie, Cheng Liu, Michel Van Roozendael, Trissevgeni Stavrakou, Jean-François Müller, and Thomas Wagner
Atmos. Chem. Phys., 17, 5007–5033, https://doi.org/10.5194/acp-17-5007-2017, https://doi.org/10.5194/acp-17-5007-2017, 2017
Short summary
Short summary
A long-term MAX-DOAS measurement from 2011 to 2014 was operated in Wuxi, part of the most industrialized area of the Yangtze River delta region of China. The tropospheric VCDs and vertical profiles of NO2, SO2 and HCHO derived from the MAX-DOAS are used to validate the products derived from OMI and GOME-2A/B by different scientific teams (daily- and bimonthly-averaged data). We investigate the effects of clouds, aerosols and a priori profile shapes on satellite retrievals of tropospheric VCDs.
Frances Beckett, Arve Kylling, Guðmunda Sigurðardóttir, Sibylle von Löwis, and Claire Witham
Atmos. Chem. Phys., 17, 4401–4418, https://doi.org/10.5194/acp-17-4401-2017, https://doi.org/10.5194/acp-17-4401-2017, 2017
Short summary
Short summary
Ash deposits can be remobilized for years following a volcanic eruption, and the resulting resuspended ash clouds can pose a significant hazard to local populations and airports. The aim of this work is to improve our ability to forecast resuspended ash storms. We use satellite imagery to constrain the emission rate of resuspended particles in an atmospheric dispersion model used to forecast resuspension events in Iceland.
Enno Peters, Gaia Pinardi, André Seyler, Andreas Richter, Folkard Wittrock, Tim Bösch, Michel Van Roozendael, François Hendrick, Theano Drosoglou, Alkiviadis F. Bais, Yugo Kanaya, Xiaoyi Zhao, Kimberly Strong, Johannes Lampel, Rainer Volkamer, Theodore Koenig, Ivan Ortega, Olga Puentedura, Mónica Navarro-Comas, Laura Gómez, Margarita Yela González, Ankie Piters, Julia Remmers, Yang Wang, Thomas Wagner, Shanshan Wang, Alfonso Saiz-Lopez, David García-Nieto, Carlos A. Cuevas, Nuria Benavent, Richard Querel, Paul Johnston, Oleg Postylyakov, Alexander Borovski, Alexander Elokhov, Ilya Bruchkouski, Haoran Liu, Cheng Liu, Qianqian Hong, Claudia Rivera, Michel Grutter, Wolfgang Stremme, M. Fahim Khokhar, Junaid Khayyam, and John P. Burrows
Atmos. Meas. Tech., 10, 955–978, https://doi.org/10.5194/amt-10-955-2017, https://doi.org/10.5194/amt-10-955-2017, 2017
Short summary
Short summary
This work is about harmonization of differential optical absorption spectroscopy retrieval codes, which is a remote sensing technique widely used to derive atmospheric trace gas amounts. The study is based on ground-based measurements performed during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany, in summer 2013. In total, 17 international groups working in the field of the DOAS technique participated in this study.
Alba Lorente, K. Folkert Boersma, Huan Yu, Steffen Dörner, Andreas Hilboll, Andreas Richter, Mengyao Liu, Lok N. Lamsal, Michael Barkley, Isabelle De Smedt, Michel Van Roozendael, Yang Wang, Thomas Wagner, Steffen Beirle, Jin-Tai Lin, Nickolay Krotkov, Piet Stammes, Ping Wang, Henk J. Eskes, and Maarten Krol
Atmos. Meas. Tech., 10, 759–782, https://doi.org/10.5194/amt-10-759-2017, https://doi.org/10.5194/amt-10-759-2017, 2017
Short summary
Short summary
Choices and assumptions made to represent the state of the atmosphere introduce an uncertainty of 42 % in the air mass factor calculation in trace gas satellite retrievals in polluted regions. The AMF strongly depends on the choice of a priori trace gas profile, surface albedo data set and the correction method to account for clouds and aerosols. We call for well-designed validation exercises focusing on situations when AMF structural uncertainty has the highest impact on satellite retrievals.
Rachid Abida, Jean-Luc Attié, Laaziz El Amraoui, Philippe Ricaud, William Lahoz, Henk Eskes, Arjo Segers, Lyana Curier, Johan de Haan, Jukka Kujanpää, Albert Oude Nijhuis, Johanna Tamminen, Renske Timmermans, and Pepijn Veefkind
Atmos. Chem. Phys., 17, 1081–1103, https://doi.org/10.5194/acp-17-1081-2017, https://doi.org/10.5194/acp-17-1081-2017, 2017
Short summary
Short summary
A detailed Observing System Simulation Experiment is performed to quantify the impact of future satellite instrument S-5P carbon monoxide (CO) on tropospheric analyses and forecasts. We focus on Europe for the period of northern summer 2003, when there was a severe heat wave episode. S-5P is able to capture the CO from forest fires that occurred in Portugal. Furthermore, our results provide evidence of S-5P CO benefits for monitoring processes contributing to atmospheric pollution.
Clio Gielen, François Hendrick, Gaia Pinardi, Isabelle De Smedt, Caroline Fayt, Christian Hermans, Trissevgeni Stavrakou, Maite Bauwens, Jean-Francois Müller, Eugène Ndenzako, Pierre Nzohabonayo, Rachel Akimana, Sebastien Niyonzima, Michel Van Roozendael, and Martine De Mazière
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1104, https://doi.org/10.5194/acp-2016-1104, 2017
Revised manuscript has not been submitted
Short summary
Short summary
In this paper we study the composition of the lower atmosphere above the Central-African capital city of Burundi (Bujumbura) by measuring the amount of aerosol dust particles and trace gases in the air.
We find that the aerosol and trace gas seasonal and daily variation is driven by the alternation of rain periods and dry periods associated with intense biomass burning in the vicinity of Bujumbura, and the influence of human activities in the city center.
Nicolas Theys, Isabelle De Smedt, Huan Yu, Thomas Danckaert, Jeroen van Gent, Christoph Hörmann, Thomas Wagner, Pascal Hedelt, Heiko Bauer, Fabian Romahn, Mattia Pedergnana, Diego Loyola, and Michel Van Roozendael
Atmos. Meas. Tech., 10, 119–153, https://doi.org/10.5194/amt-10-119-2017, https://doi.org/10.5194/amt-10-119-2017, 2017
Short summary
Short summary
This paper provides a thorough description of the algorithm to retrieve SO2 columns from TROPOMI/Sentinel-5 Precursor measurements. The different algorithmic steps including error analysis are detailed. Scientific verification of the algorithm and validation needs are also discussed.
Klaus-Peter Heue, Melanie Coldewey-Egbers, Andy Delcloo, Christophe Lerot, Diego Loyola, Pieter Valks, and Michel van Roozendael
Atmos. Meas. Tech., 9, 5037–5051, https://doi.org/10.5194/amt-9-5037-2016, https://doi.org/10.5194/amt-9-5037-2016, 2016
Short summary
Short summary
The tropical tropospheric column ozone (TCO) from 5 GOME-type satellite instruments were harmonised to get a consistent time series of tropospheric ozone for 20 years. The time series showed a global ozone trend below 10 km of 0.7 DU per decade. Also the regional trends were analysed and trends up to 1.8 DU per decade or decreases as low as 0.8 DU per decade were observed. The TCO will be part of the operation product for Tropomi/S5P and thereby extended for at least 7 years.
Tobias Zinner, Petra Hausmann, Florian Ewald, Luca Bugliaro, Claudia Emde, and Bernhard Mayer
Atmos. Meas. Tech., 9, 4615–4632, https://doi.org/10.5194/amt-9-4615-2016, https://doi.org/10.5194/amt-9-4615-2016, 2016
Short summary
Short summary
A new retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from transmittance measurements is presented. A visible range spectral slope is used to resolve the transmittance optical thickness ambiguity. Retrieval sensitivity to ice crystal habit, aerosol, albedo, sensor accuracy and lookup table interpolation is presented as well as an application of the method and comparison to satellite products for 2 days.
Anne Boynard, Daniel Hurtmans, Mariliza E. Koukouli, Florence Goutail, Jérôme Bureau, Sarah Safieddine, Christophe Lerot, Juliette Hadji-Lazaro, Catherine Wespes, Jean-Pierre Pommereau, Andrea Pazmino, Irene Zyrichidou, Dimitris Balis, Alain Barbe, Semen N. Mikhailenko, Diego Loyola, Pieter Valks, Michel Van Roozendael, Pierre-François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 9, 4327–4353, https://doi.org/10.5194/amt-9-4327-2016, https://doi.org/10.5194/amt-9-4327-2016, 2016
Short summary
Short summary
Seven years of O3 observations retrieved from IASI/MetOp satellite instruments are validated with independent data (UV satellite and ground-based data along with ozonesonde profiles). Overall IASI overestimates the total ozone columns (TOC) by 2–7 % depending on the latitude. The assessment of an updated version of the IASI O3 retrieval sofware shows a correction of ~ 4 % in the IASI TOC product, bringing the overall global bias with UV ground-based and satellite data to ~ 1–2 % on average.
Marie Boichu, Isabelle Chiapello, Colette Brogniez, Jean-Christophe Péré, Francois Thieuleux, Benjamin Torres, Luc Blarel, Augustin Mortier, Thierry Podvin, Philippe Goloub, Nathalie Söhne, Lieven Clarisse, Sophie Bauduin, François Hendrick, Nicolas Theys, Michel Van Roozendael, and Didier Tanré
Atmos. Chem. Phys., 16, 10831–10845, https://doi.org/10.5194/acp-16-10831-2016, https://doi.org/10.5194/acp-16-10831-2016, 2016
Short summary
Short summary
Bárðarbunga eruption emitted huge amounts of sulfur into the lower troposphere causing an unprecedented air pollution in the modern era. A wealth of remote sensing and in situ data allows us to jointly analyse the dynamics of volcanic SO2 and sulfate aerosols. Based on this panel of observations, success and challenges in simulating such volcanogenic long-range pollution events are exposed, focusing on the boundary layer dynamics.
Maite Bauwens, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Michel Van Roozendael, Guido R. van der Werf, Christine Wiedinmyer, Johannes W. Kaiser, Katerina Sindelarova, and Alex Guenther
Atmos. Chem. Phys., 16, 10133–10158, https://doi.org/10.5194/acp-16-10133-2016, https://doi.org/10.5194/acp-16-10133-2016, 2016
Short summary
Short summary
Relying on a 9-year record of satellite observations of formaldehyde, we use inverse techniques to derive global top–down hydrocarbon fluxes over 2005–2013, infer seasonal and interannual variability, and detect emission trends. Our results suggest changes in fire seasonal patterns, a stronger contribution of agricultural burning, overestimated isoprene flux rates in the tropics, overly decreased isoprene emissions due to soil moisture stress in arid areas, and enhanced isoprene trends.
U. Frieß, H. Klein Baltink, S. Beirle, K. Clémer, F. Hendrick, B. Henzing, H. Irie, G. de Leeuw, A. Li, M. M. Moerman, M. van Roozendael, R. Shaiganfar, T. Wagner, Y. Wang, P. Xie, S. Yilmaz, and P. Zieger
Atmos. Meas. Tech., 9, 3205–3222, https://doi.org/10.5194/amt-9-3205-2016, https://doi.org/10.5194/amt-9-3205-2016, 2016
Short summary
Short summary
This article describes the first direct comparison of aerosol extinction profiles from Multi-Axis DOAS measurements of the oxygen collision complex using five different retrieval algorithms. A comparison of the retrieved profiles with co-located aerosol measurements shows good agreement with respect to profile shape and aerosol optical thickness. This study shows that MAX-DOAS is a simple, versatile and cost-effective method for the measurement of aerosol properties in the lower troposphere.
Daan Hubert, Jean-Christopher Lambert, Tijl Verhoelst, José Granville, Arno Keppens, Jean-Luc Baray, Adam E. Bourassa, Ugo Cortesi, Doug A. Degenstein, Lucien Froidevaux, Sophie Godin-Beekmann, Karl W. Hoppel, Bryan J. Johnson, Erkki Kyrölä, Thierry Leblanc, Günter Lichtenberg, Marion Marchand, C. Thomas McElroy, Donal Murtagh, Hideaki Nakane, Thierry Portafaix, Richard Querel, James M. Russell III, Jacobo Salvador, Herman G. J. Smit, Kerstin Stebel, Wolfgang Steinbrecht, Kevin B. Strawbridge, René Stübi, Daan P. J. Swart, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Joachim Urban, Joanna A. E. van Gijsel, Roeland Van Malderen, Peter von der Gathen, Kaley A. Walker, Elian Wolfram, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 2497–2534, https://doi.org/10.5194/amt-9-2497-2016, https://doi.org/10.5194/amt-9-2497-2016, 2016
Short summary
Short summary
A more detailed understanding of satellite O3 profile data records is vital for further progress in O3 research. To this end, we made a comprehensive assessment of 14 limb/occultation profilers using ground-based reference data. The mutual consistency of satellite O3 in terms of bias, short-term variability and decadal stability is generally good over most of the stratosphere. However, we identified some exceptions that impact the quality of recently merged data sets and ozone trend assessments.
Arve Kylling
Atmos. Meas. Tech., 9, 2103–2117, https://doi.org/10.5194/amt-9-2103-2016, https://doi.org/10.5194/amt-9-2103-2016, 2016
Short summary
Short summary
During volcanic eruptions the presence of ice clouds may affect the volcanic ash signal in infrared satellite measurements. By comparison of measured infrared spectra with spectra from a radiative transfer model including both ash and ice clouds, it is shown that during the Mt Kelud February 2014 eruption, both ash and ice clouds were present simultaneously. The presence of ice clouds lowers the estimated amount of volcanic ash in the atmosphere.
Maria Elissavet Koukouli, Marina Zara, Christophe Lerot, Konstantinos Fragkos, Dimitris Balis, Michel van Roozendael, Marcus Antonius Franciscus Allart, and Ronald Johannes van der A
Atmos. Meas. Tech., 9, 2055–2065, https://doi.org/10.5194/amt-9-2055-2016, https://doi.org/10.5194/amt-9-2055-2016, 2016
Short summary
Short summary
The main aim of the paper is to demonstrate an approach for the post-processing of the Dobson spectrophotometers' total ozone columns (TOCs) in order to compensate for their known stratospheric effective temperature dependency
and its resulting effect on the usage of the Dobson TOCs for satellite TOCs' validation.
Claudia Emde, Robert Buras-Schnell, Arve Kylling, Bernhard Mayer, Josef Gasteiger, Ulrich Hamann, Jonas Kylling, Bettina Richter, Christian Pause, Timothy Dowling, and Luca Bugliaro
Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, https://doi.org/10.5194/gmd-9-1647-2016, 2016
Short summary
Short summary
libradtran is a widely used software package for radiative transfer calculations. It allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions. This paper gives an overview of libradtran version 2.0 with focus on new features (e.g. polarization, Raman scattering, absorption parameterization, cloud and aerosol optical properties). libRadtran is freely available at http://www.libradtran.org.
Fabian Jakub and Bernhard Mayer
Geosci. Model Dev., 9, 1413–1422, https://doi.org/10.5194/gmd-9-1413-2016, https://doi.org/10.5194/gmd-9-1413-2016, 2016
Short summary
Short summary
Radiative heating or cooling plays a vital role in the evolution and lifecycle of clouds. Due to the immense computational cost of 3-D radiative transfer, today's atmospheric models usually employ crude 1-D approximations which neglect any horizontal energy transport whatsoever and may introduce non-negligible errors. This paper documents the implementation and runtime characteristics of the new TenStream solver that enables us to study 3-D effects on large domains and extended periods of time.
Wiley Steven Bogren, John Faulkner Burkhart, and Arve Kylling
The Cryosphere, 10, 613–622, https://doi.org/10.5194/tc-10-613-2016, https://doi.org/10.5194/tc-10-613-2016, 2016
Short summary
Short summary
The magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance is evaluated. It is shown that relatively minor sensor misalignments give significant errors in irradiance and hence albedo measurements. The total measurement error introduced by sensor tilt is dominated by the direct component. Significant measurement error can also persist in integrated daily irradiance and albedo.
S. Hassinen, D. Balis, H. Bauer, M. Begoin, A. Delcloo, K. Eleftheratos, S. Gimeno Garcia, J. Granville, M. Grossi, N. Hao, P. Hedelt, F. Hendrick, M. Hess, K.-P. Heue, J. Hovila, H. Jønch-Sørensen, N. Kalakoski, A. Kauppi, S. Kiemle, L. Kins, M. E. Koukouli, J. Kujanpää, J.-C. Lambert, R. Lang, C. Lerot, D. Loyola, M. Pedergnana, G. Pinardi, F. Romahn, M. van Roozendael, R. Lutz, I. De Smedt, P. Stammes, W. Steinbrecht, J. Tamminen, N. Theys, L. G. Tilstra, O. N. E. Tuinder, P. Valks, C. Zerefos, W. Zimmer, and I. Zyrichidou
Atmos. Meas. Tech., 9, 383–407, https://doi.org/10.5194/amt-9-383-2016, https://doi.org/10.5194/amt-9-383-2016, 2016
Short summary
Short summary
The three GOME-2 instruments will provide unique and long data sets for atmospheric research and applications. The complete time period will be 2007–2022, including the period of ozone depletion as well as the beginning of ozone layer recovery. The GOME-2 products (ozone, trace gases, aerosols and UV radiation) are important for ozone chemistry, air quality studies, climate modeling, policy monitoring and hazard warnings. The processing and dissemination is done by EUMETSAT O3M SAF project.
T. Verhoelst, J. Granville, F. Hendrick, U. Köhler, C. Lerot, J.-P. Pommereau, A. Redondas, M. Van Roozendael, and J.-C. Lambert
Atmos. Meas. Tech., 8, 5039–5062, https://doi.org/10.5194/amt-8-5039-2015, https://doi.org/10.5194/amt-8-5039-2015, 2015
Short summary
Short summary
Comparisons between satellite and ground-based measurements of the
atmosphere are inevitably affected by natural variability due to
mismatches in spatial and temporal co-location. These
additional terms in the comparison error budget are quantified here
for total ozone column comparisons using an Observing System Simulation
Experiment. Even when using tight co-location criteria, atmospheric
variability is found to impact the comparisons significantly.
I. De Smedt, T. Stavrakou, F. Hendrick, T. Danckaert, T. Vlemmix, G. Pinardi, N. Theys, C. Lerot, C. Gielen, C. Vigouroux, C. Hermans, C. Fayt, P. Veefkind, J.-F. Müller, and M. Van Roozendael
Atmos. Chem. Phys., 15, 12519–12545, https://doi.org/10.5194/acp-15-12519-2015, https://doi.org/10.5194/acp-15-12519-2015, 2015
Short summary
Short summary
We present the new version of the BIRA-IASB algorithm for the retrieval of H2CO columns from OMI and GOME-2A and B measurements. Validation results at seven stations in Europe, China and Africa confirm the capacity of the satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in Beijing and in Bujumbura are used for a more detailed validation exercise. Finally trends are estimated using 10 years of OMI observations.
T. Stavrakou, J.-F. Müller, M. Bauwens, I. De Smedt, M. Van Roozendael, M. De Mazière, C. Vigouroux, F. Hendrick, M. George, C. Clerbaux, P.-F. Coheur, and A. Guenther
Atmos. Chem. Phys., 15, 11861–11884, https://doi.org/10.5194/acp-15-11861-2015, https://doi.org/10.5194/acp-15-11861-2015, 2015
Short summary
Short summary
Formaldehyde columns from two space sensors, GOME-2 and OMI, constrain by inverse modeling the global emissions of HCHO precursors in 2010. The resulting biogenic and pyrogenic fluxes from both optimizations show a very good degree of consistency. The isoprene fluxes are reduced globally by ca. 10%, and emissions from fires decrease by ca. 35%, compared to the prior. Anthropogenic emissions are weakly constrained except over China. Sensitivity inversions show robustness of the inferred fluxes.
M. Coldewey-Egbers, D. G. Loyola, M. Koukouli, D. Balis, J.-C. Lambert, T. Verhoelst, J. Granville, M. van Roozendael, C. Lerot, R. Spurr, S. M. Frith, and C. Zehner
Atmos. Meas. Tech., 8, 3923–3940, https://doi.org/10.5194/amt-8-3923-2015, https://doi.org/10.5194/amt-8-3923-2015, 2015
N. Hanrieder, S. Wilbert, R. Pitz-Paal, C. Emde, J. Gasteiger, B. Mayer, and J. Polo
Atmos. Meas. Tech., 8, 3467–3480, https://doi.org/10.5194/amt-8-3467-2015, https://doi.org/10.5194/amt-8-3467-2015, 2015
F. Tack, F. Hendrick, F. Goutail, C. Fayt, A. Merlaud, G. Pinardi, C. Hermans, J.-P. Pommereau, and M. Van Roozendael
Atmos. Meas. Tech., 8, 2417–2435, https://doi.org/10.5194/amt-8-2417-2015, https://doi.org/10.5194/amt-8-2417-2015, 2015
Short summary
Short summary
An algorithm is presented for retrieving tropospheric NO2 vertical column densities from ground-based zenith-sky (ZS) measurements of scattered sunlight. The different steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a 2-month ZS data set acquired during the CINDI campaign and on a 2-year data set acquired at the OHP NDACC station. The error budget assessment indicates that the overall error on the column values is less than 28%.
J. A. E. van Gijsel, R. Zurita-Milla, P. Stammes, S. Godin-Beekmann, T. Leblanc, M. Marchand, I. S. McDermid, K. Stebel, W. Steinbrecht, and D. P. J. Swart
Atmos. Meas. Tech., 8, 1951–1963, https://doi.org/10.5194/amt-8-1951-2015, https://doi.org/10.5194/amt-8-1951-2015, 2015
A. Kylling, N. Kristiansen, A. Stohl, R. Buras-Schnell, C. Emde, and J. Gasteiger
Atmos. Meas. Tech., 8, 1935–1949, https://doi.org/10.5194/amt-8-1935-2015, https://doi.org/10.5194/amt-8-1935-2015, 2015
Short summary
Short summary
Water and ice clouds affect detection and retrieval of volcanic ash clouds by satellite instruments. Synthetic infrared satellite images were generated for the Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions by combining weather forecast, ash transport and radiative transfer modelling. Clouds decreased the number of pixels identified as ash and generally increased the retrieved ash-mass loading compared to the cloudless case; however, large differences were seen between scenes.
B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu
Atmos. Meas. Tech., 8, 1733–1756, https://doi.org/10.5194/amt-8-1733-2015, https://doi.org/10.5194/amt-8-1733-2015, 2015
Short summary
Short summary
Formaldehyde (HCHO) amounts are obtained from ground-based Fourier transform infrared solar spectra and UV-visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded at the Jungfraujoch station (46.5°N, 8.0°E, 3580m a.s.l.). Using HCHO amounts simulated by the chemical transport models GEOS-Chem and IMAGES as intermediates, comparisons reveal that FTIR and MAX-DOAS provide complementary products for the HCHO retrieval.
J. H. G. M. van Geffen, K. F. Boersma, M. Van Roozendael, F. Hendrick, E. Mahieu, I. De Smedt, M. Sneep, and J. P. Veefkind
Atmos. Meas. Tech., 8, 1685–1699, https://doi.org/10.5194/amt-8-1685-2015, https://doi.org/10.5194/amt-8-1685-2015, 2015
Short summary
Short summary
The paper describes improvements to the algorithm for the retrieval of nitrogen dioxide (NO2) concentration from measurements of the Ozone Monitoring Instrument (OMI), launched on board NASA's EOS-Aura satellite in 2004. With these improvements - updates of the wavelength calibration and the reference spectra - the OMI results are consistent with independent NO2 measurements and the overall quality of the spectral fit is improved considerably.
T. Vlemmix, F. Hendrick, G. Pinardi, I. De Smedt, C. Fayt, C. Hermans, A. Piters, P. Wang, P. Levelt, and M. Van Roozendael
Atmos. Meas. Tech., 8, 941–963, https://doi.org/10.5194/amt-8-941-2015, https://doi.org/10.5194/amt-8-941-2015, 2015
Short summary
Short summary
Two methods are compared to retrieve aerosols, formaldehyde and nitrogen dioxide in the lower troposphere from ground-based remote sensing observations of scattered sunlight in multiple viewing directions. Observations were done in the Beijing area (2008–2011). The two methods show good agreement with respect to the total amount (vertical column) and reasonable agreement with respect to concentrations near the surface and first-order estimates of the vertical profile shape.
T. Wang, F. Hendrick, P. Wang, G. Tang, K. Clémer, H. Yu, C. Fayt, C. Hermans, C. Gielen, J.-F. Müller, G. Pinardi, N. Theys, H. Brenot, and M. Van Roozendael
Atmos. Chem. Phys., 14, 11149–11164, https://doi.org/10.5194/acp-14-11149-2014, https://doi.org/10.5194/acp-14-11149-2014, 2014
C. Gielen, M. Van Roozendael, F. Hendrick, G. Pinardi, T. Vlemmix, V. De Bock, H. De Backer, C. Fayt, C. Hermans, D. Gillotay, and P. Wang
Atmos. Meas. Tech., 7, 3509–3527, https://doi.org/10.5194/amt-7-3509-2014, https://doi.org/10.5194/amt-7-3509-2014, 2014
N. Hao, M. E. Koukouli, A. Inness, P. Valks, D. G. Loyola, W. Zimmer, D. S. Balis, I. Zyrichidou, M. Van Roozendael, C. Lerot, and R. J. D. Spurr
Atmos. Meas. Tech., 7, 2937–2951, https://doi.org/10.5194/amt-7-2937-2014, https://doi.org/10.5194/amt-7-2937-2014, 2014
E. W. Chiou, P. K. Bhartia, R. D. McPeters, D. G. Loyola, M. Coldewey-Egbers, V. E. Fioletov, M. Van Roozendael, R. Spurr, C. Lerot, and S. M. Frith
Atmos. Meas. Tech., 7, 1681–1692, https://doi.org/10.5194/amt-7-1681-2014, https://doi.org/10.5194/amt-7-1681-2014, 2014
H. Brenot, N. Theys, L. Clarisse, J. van Geffen, J. van Gent, M. Van Roozendael, R. van der A, D. Hurtmans, P.-F. Coheur, C. Clerbaux, P. Valks, P. Hedelt, F. Prata, O. Rasson, K. Sievers, and C. Zehner
Nat. Hazards Earth Syst. Sci., 14, 1099–1123, https://doi.org/10.5194/nhess-14-1099-2014, https://doi.org/10.5194/nhess-14-1099-2014, 2014
T. Stavrakou, J.-F. Müller, M. Bauwens, I. De Smedt, M. Van Roozendael, A. Guenther, M. Wild, and X. Xia
Atmos. Chem. Phys., 14, 4587–4605, https://doi.org/10.5194/acp-14-4587-2014, https://doi.org/10.5194/acp-14-4587-2014, 2014
A. Kylling, M. Kahnert, H. Lindqvist, and T. Nousiainen
Atmos. Meas. Tech., 7, 919–929, https://doi.org/10.5194/amt-7-919-2014, https://doi.org/10.5194/amt-7-919-2014, 2014
F. Hendrick, J.-F. Müller, K. Clémer, P. Wang, M. De Mazière, C. Fayt, C. Gielen, C. Hermans, J. Z. Ma, G. Pinardi, T. Stavrakou, T. Vlemmix, and M. Van Roozendael
Atmos. Chem. Phys., 14, 765–781, https://doi.org/10.5194/acp-14-765-2014, https://doi.org/10.5194/acp-14-765-2014, 2014
Y.-C. Chen, B. Hamre, Ø. Frette, S. Blindheim, K. Stebel, P. Sobolewski, C. Toledano, and J. J. Stamnes
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-10761-2013, https://doi.org/10.5194/amtd-6-10761-2013, 2013
Preprint withdrawn
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
S. Eckhardt, O. Hermansen, H. Grythe, M. Fiebig, K. Stebel, M. Cassiani, A. Baecklund, and A. Stohl
Atmos. Chem. Phys., 13, 8401–8409, https://doi.org/10.5194/acp-13-8401-2013, https://doi.org/10.5194/acp-13-8401-2013, 2013
J.-P. Pommereau, F. Goutail, F. Lefèvre, A. Pazmino, C. Adams, V. Dorokhov, P. Eriksen, R. Kivi, K. Stebel, X. Zhao, and M. van Roozendael
Atmos. Chem. Phys., 13, 5299–5308, https://doi.org/10.5194/acp-13-5299-2013, https://doi.org/10.5194/acp-13-5299-2013, 2013
G. Pappalardo, L. Mona, G. D'Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson
Atmos. Chem. Phys., 13, 4429–4450, https://doi.org/10.5194/acp-13-4429-2013, https://doi.org/10.5194/acp-13-4429-2013, 2013
A. Kylling, R. Buras, S. Eckhardt, C. Emde, B. Mayer, and A. Stohl
Atmos. Meas. Tech., 6, 649–660, https://doi.org/10.5194/amt-6-649-2013, https://doi.org/10.5194/amt-6-649-2013, 2013
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Solar occultation measurement of mesospheric ozone by SAGE III/ISS: impact of variations along the line of sight caused by photochemistry
Understanding the potential of Sentinel-2 for monitoring methane point emissions
TROPOMI/S5P Total Column Water Vapor validation against AERONET ground-based measurements
Assessing the consistency of satellite-derived upper tropospheric humidity measurements
A comparison of carbon monoxide retrievals between the MOPITT satellite and Canadian high-Arctic ground-based NDACC and TCCON FTIR measurements
Long-term validation of MIPAS ESA operational products using MIPAS-B measurements
Comparison of OCO-2 target observations to MUCCnet – is it possible to capture urban XCO2 gradients from space?
SAGE III/ISS ozone and NO2 validation using diurnal scaling factors
An improved OSIRIS NO2 profile retrieval in the upper troposphere–lower stratosphere and intercomparison with ACE-FTS and SAGE III/ISS
Validation of Sentinel-5P TROPOMI tropospheric NO2 products by comparison with NO2 measurements from airborne imaging, ground-based stationary, and mobile car DOAS measurements during the S5P-VAL-DE-Ruhr campaign
TROPESS/CrIS carbon monoxide profile validation with NOAA GML and ATom in situ aircraft observations
Validation of Copernicus Sentinel-3/OLCI Level 2 Land Integrated Water Vapour product
Evaluation of MOPITT and TROPOMI carbon monoxide retrievals using AirCore in situ vertical profiles
Horizontal distribution of tropospheric NO2 and aerosols derived by dual-scan multi-wavelength multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Belgium
On the influence of underlying elevation data on Sentinel-5 Precursor TROPOMI satellite methane retrievals over Greenland
Satellite measurements of peroxyacetyl nitrate from the Cross-Track Infrared Sounder: comparison with ATom aircraft measurements
The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity
Ground-based validation of the MetOp-A and MetOp-B GOME-2 OClO measurements
Satellite data validation: a parametrization of the natural variability of atmospheric mixing ratios
Investigation of spaceborne trace gas products over St Petersburg and Yekaterinburg, Russia, by using COllaborative Column Carbon Observing Network (COCCON) observations
A comparison of the impact of TROPOMI and OMI tropospheric NO2 on global chemical data assimilation
Variations of Arctic winter ozone from the LIMS Level 3 dataset
Retrieval of tropospheric aerosol, NO2, and HCHO vertical profiles from MAX-DOAS observations over Thessaloniki, Greece: intercomparison and validation of two inversion algorithms
Assessment of the quality of ACE-FTS stratospheric ozone data
Validation and error estimation of AIRS MUSES CO profiles with HIPPO, ATom, and NOAA GML aircraft observations
Dealing with spatial heterogeneity in pointwise-to-gridded- data comparisons
Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: methodology and validation
Intercomparison of CO measurements from TROPOMI, ACE-FTS, and a high-Arctic ground-based Fourier transform spectrometer
Assessing the feasibility of using a neural network to filter Orbiting Carbon Observatory 2 (OCO-2) retrievals at northern high latitudes
TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI
Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations
Evaluation of the coupled high-resolution atmospheric chemistry model system MECO(n) using in situ and MAX-DOAS NO2 measurements
Total ozone column intercomparison of Brewers, Dobsons, and BTS-Solar at Hohenpeißenberg and Davos in 2019/2020
A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means
Quality assessment of Dobson spectrophotometers for ozone column measurements before and after automation at Arosa and Davos
Systematic comparison of vectorial spherical radiative transfer models in limb scattering geometry
Evaluation of the new DWD ozone and temperature lidar during the Hohenpeißenberg Ozone Profiling Study (HOPS) and comparison of results with previous NDACC campaigns
A method for random uncertainties validation and probing the natural variability with application to TROPOMI on board Sentinel-5P total ozone measurements
The world Brewer reference triad – updated performance assessment and new double triad
Intercomparison of arctic XH2O observations from three ground-based Fourier transform infrared networks and application for satellite validation
Verification of the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS) ozone algorithms based on retrieved daytime and night-time ozone
Intercomparison of Total Carbon Column Observing Network (TCCON) data from two Fourier transform spectrometers at Lauder, New Zealand
Model estimations of geophysical variability between satellite measurements of ozone profiles
Multiscale observations of NH3 around Toronto, Canada
Assessment of the TROPOMI tropospheric NO2 product based on airborne APEX observations
Formaldehyde total column densities over Mexico City: comparison between multi-axis differential optical absorption spectroscopy and solar-absorption Fourier transform infrared measurements
Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks
Evaluation of single-footprint AIRS CH4 profile retrieval uncertainties using aircraft profile measurements
Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign
Validation of SMILES HCl profiles over a wide range from the stratosphere to the lower thermosphere
Murali Natarajan, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 16, 75–87, https://doi.org/10.5194/amt-16-75-2023, https://doi.org/10.5194/amt-16-75-2023, 2023
Short summary
Short summary
Photochemically induced changes in mesospheric O3 concentration at twilight can cause asymmetry in the distribution along the line of sight of solar occultation observations that must be considered in the retrieval algorithm. Correction factors developed from diurnal photochemical model simulations were used to modify the archived SAGE III/ISS mesospheric O3 concentrations. For June 2021 the bias caused by the neglect of diurnal variations is over 30% at 64 km altitude and low latitudes.
Javier Gorroño, Daniel J. Varon, Itziar Irakulis-Loitxate, and Luis Guanter
Atmos. Meas. Tech., 16, 89–107, https://doi.org/10.5194/amt-16-89-2023, https://doi.org/10.5194/amt-16-89-2023, 2023
Short summary
Short summary
We present a methane flux rate retrieval methodology using the Sentinel-2 mission, validating the algorithm for different scenes and plumes. The detection limit is 1000–2000 kg h−1 for homogeneous scenes and temporally invariant surfaces and above 5000 kg h−1 for heterogeneous ones. Dominant quantification errors are wind-related or plume mask-related. For heterogeneous scenes, the surface structure underlying the methane plume can become a dominant source of uncertainty.
Katerina Garane, Ka Lok Chan, Maria-Elissavet Koukouli, Diego Loyola, and Dimitris Balis
Atmos. Meas. Tech., 16, 57–74, https://doi.org/10.5194/amt-16-57-2023, https://doi.org/10.5194/amt-16-57-2023, 2023
Short summary
Short summary
In this work, 2.5 years of TROPOMI/S5P Total Column Water Vapor (TCWV) observations retrieved from the blue wavelength band are validated against co-located precipitable water measurements from NASA AERONET, which uses Cimel Sun photometers globally. Overall, the TCWV product agrees well on a global scale with the ground-based dataset (Pearson correl. coefficient 0.909) and has a mean relative bias of −2.7 ± 4.9 % with respect to the AERONET observations for moderate albedo and cloudiness.
Lei Shi, Carl J. Schreck III, Viju O. John, Eui-Seok Chung, Theresa Lang, Stefan A. Buehler, and Brian J. Soden
Atmos. Meas. Tech., 15, 6949–6963, https://doi.org/10.5194/amt-15-6949-2022, https://doi.org/10.5194/amt-15-6949-2022, 2022
Short summary
Short summary
Four upper tropospheric humidity (UTH) datasets derived from satellite microwave and infrared sounders are evaluated to assess their consistency as part of the activities for the Global Energy and Water Exchanges (GEWEX) water vapor assessment project. The study shows that the four datasets are consistent in the interannual temporal and spatial variability of the tropics. However, differences are found in the magnitudes of the anomalies and in the changing rates during the common period.
Ali Jalali, Kaley A. Walker, Kimberly Strong, Rebecca R. Buchholz, Merritt N. Deeter, Debra Wunch, Sébastien Roche, Tyler Wizenberg, Erik Lutsch, Erin McGee, Helen M. Worden, Pierre Fogal, and James R. Drummond
Atmos. Meas. Tech., 15, 6837–6863, https://doi.org/10.5194/amt-15-6837-2022, https://doi.org/10.5194/amt-15-6837-2022, 2022
Short summary
Short summary
This study validates MOPITT version 8 carbon monoxide measurements over the Canadian high Arctic for the period 2006 to 2019. The MOPITT products from different detector pixels and channels are compared with ground-based measurements from the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada. These results show good consistency between the satellite and ground-based measurements and provide guidance on the usage of these MOPITT data at high latitudes.
Gerald Wetzel, Michael Höpfner, Hermann Oelhaf, Felix Friedl-Vallon, Anne Kleinert, Guido Maucher, Miriam Sinnhuber, Janna Abalichin, Angelika Dehn, and Piera Raspollini
Atmos. Meas. Tech., 15, 6669–6704, https://doi.org/10.5194/amt-15-6669-2022, https://doi.org/10.5194/amt-15-6669-2022, 2022
Short summary
Short summary
Satellite measurements of stratospheric trace gases are essential for monitoring distributions and trends of these species on a global scale. Here, we compare the final MIPAS ESA Level 2 version 8 data (temperature and trace gases) with measurements obtained with the balloon version of MIPAS in terms of data agreement of both sensors, including combined errors. For most gases, we find a 5 % to 20 % agreement of the retrieved vertical profiles of both MIPAS instruments in the lower stratosphere.
Maximilian Rißmann, Jia Chen, Gregory Osterman, Xinxu Zhao, Florian Dietrich, Moritz Makowski, Frank Hase, and Matthäus Kiel
Atmos. Meas. Tech., 15, 6605–6623, https://doi.org/10.5194/amt-15-6605-2022, https://doi.org/10.5194/amt-15-6605-2022, 2022
Short summary
Short summary
The Orbiting Carbon Observatory 2 (OCO-2) measures atmospheric concentrations of the most potent greenhouse gas, CO2, globally. By comparing its measurements to a ground-based monitoring network in Munich (MUCCnet), we find that the satellite is able to reliably detect urban CO2 concentrations. Furthermore, spatial CO2 differences captured by OCO-2 and MUCCnet are strongly correlated, which indicates that OCO-2 could be helpful in determining urban CO2 emissions from space.
Sarah A. Strode, Ghassan Taha, Luke D. Oman, Robert Damadeo, David Flittner, Mark Schoeberl, Christopher E. Sioris, and Ryan Stauffer
Atmos. Meas. Tech., 15, 6145–6161, https://doi.org/10.5194/amt-15-6145-2022, https://doi.org/10.5194/amt-15-6145-2022, 2022
Short summary
Short summary
We use a global atmospheric chemistry model simulation to generate scaling factors that account for the daily cycle of NO2 and ozone. These factors facilitate comparisons between sunrise and sunset observations from SAGE III/ISS and observations from other instruments. We provide the scaling factors as monthly zonal means for different latitudes and altitudes. We find that applying these factors yields more consistent comparisons between observations from SAGE III/ISS and other instruments.
Kimberlee Dubé, Daniel Zawada, Adam Bourassa, Doug Degenstein, William Randel, David Flittner, Patrick Sheese, and Kaley Walker
Atmos. Meas. Tech., 15, 6163–6180, https://doi.org/10.5194/amt-15-6163-2022, https://doi.org/10.5194/amt-15-6163-2022, 2022
Short summary
Short summary
Satellite observations are important for monitoring changes in atmospheric composition. Here we describe an improved version of the NO2 retrieval for the Optical Spectrograph and InfraRed Imager System. The resulting NO2 profiles are compared to those from the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer and the Stratospheric Aerosol and Gas Experiment III on the International Space Station. All datasets agree within 20 % throughout the stratosphere.
Kezia Lange, Andreas Richter, Anja Schönhardt, Andreas C. Meier, Tim Bösch, André Seyler, Kai Krause, Lisa K. Behrens, Folkard Wittrock, Alexis Merlaud, Frederik Tack, Caroline Fayt, Martina M. Friedrich, Ermioni Dimitropoulou, Michel Van Roozendael, Vinod Kumar, Sebastian Donner, Steffen Dörner, Bianca Lauster, Maria Razi, Christian Borger, Katharina Uhlmannsiek, Thomas Wagner, Thomas Ruhtz, Henk Eskes, Birger Bohn, Daniel Santana Diaz, Nader Abuhassan, Dirk Schüttemeyer, and John P. Burrows
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-264, https://doi.org/10.5194/amt-2022-264, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
We present airborne imaging DOAS, ground-based stationary and car DOAS measurements conducted during the S5P-VAL-DE-Ruhr campaign in the Rhine-Ruhr region. The measurements are used to validate space-borne NO2 data products from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI). Auxiliary data of the TROPOMI NO2 retrieval, such as spatially higher resolved a priori NO2 vertical profiles, surface reflectivity and the cloud treatment are investigated to evaluate their impact.
Helen M. Worden, Gene L. Francis, Susan S. Kulawik, Kevin W. Bowman, Karen Cady-Pereira, Dejian Fu, Jennifer D. Hegarty, Valentin Kantchev, Ming Luo, Vivienne H. Payne, John R. Worden, Róisín Commane, and Kathryn McKain
Atmos. Meas. Tech., 15, 5383–5398, https://doi.org/10.5194/amt-15-5383-2022, https://doi.org/10.5194/amt-15-5383-2022, 2022
Short summary
Short summary
Satellite observations of global carbon monoxide (CO) are essential for understanding atmospheric chemistry and pollution sources. This paper describes a new data product using radiance measurements from the Cross-track Infrared Sounder (CrIS) instrument on the Suomi National Polar-orbiting Partnership (SNPP) satellite that provides vertical profiles of CO from single-field-of-view observations. We show how these satellite CO profiles compare to aircraft observations and evaluate their biases.
Niilo Kalakoski, Viktoria F. Sofieva, René Preusker, Claire Henocq, Matthieu Denisselle, Steffen Dransfeld, and Silvia Scifoni
Atmos. Meas. Tech., 15, 5129–5140, https://doi.org/10.5194/amt-15-5129-2022, https://doi.org/10.5194/amt-15-5129-2022, 2022
Short summary
Short summary
Geophysical validation of the Integrated Water Vapour (IWV) product from the Sentinel-3 Ocean and Land Colour Instrument (OLCI) was performed against reference observations from SUOMINET and IGRA databases. Results for cloud-free matchups over land show a wet bias of 7 %–10 % for OLCI, with a high correlation against the reference observations (0.98 against SUOMINET and 0.90 against IGRA). Special attention is given to validation of uncertainty estimates and cloud flagging.
Sara Martínez-Alonso, Merritt N. Deeter, Bianca C. Baier, Kathryn McKain, Helen Worden, Tobias Borsdorff, Colm Sweeney, and Ilse Aben
Atmos. Meas. Tech., 15, 4751–4765, https://doi.org/10.5194/amt-15-4751-2022, https://doi.org/10.5194/amt-15-4751-2022, 2022
Short summary
Short summary
AirCore is a novel balloon sampling system that can measure, among others, vertical profiles of carbon monoxide (CO) from 25–30 km of altitude to near the surface. Our analyses of AirCore and satellite CO data show that AirCore profiles are suited for satellite data validation, the use of shorter aircraft vertical profiles in satellite validation results in small errors (1–3 percent points) mostly at 300 hPa and above, and the error introduced by clouds in TROPOMI land data is small (1–2 %).
Ermioni Dimitropoulou, François Hendrick, Martina Michaela Friedrich, Frederik Tack, Gaia Pinardi, Alexis Merlaud, Caroline Fayt, Christian Hermans, Frans Fierens, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 4503–4529, https://doi.org/10.5194/amt-15-4503-2022, https://doi.org/10.5194/amt-15-4503-2022, 2022
Short summary
Short summary
A total of 2 years of dual-scan ground-based MAX-DOAS measurements of tropospheric NO2 and aerosols in Uccle (Belgium) have been used to develop a new optimal-estimation-based inversion approach to retrieve horizontal profiles of surface NO2 concentration and aerosol extinction profiles. We show that the combination of an appropriate sampling of TROPOMI pixels by ground-based measurements and an adequate a priori NO2 profile shape in TROPOMI retrievals improves the agreement between datasets.
Jonas Hachmeister, Oliver Schneising, Michael Buchwitz, Alba Lorente, Tobias Borsdorff, John P. Burrows, Justus Notholt, and Matthias Buschmann
Atmos. Meas. Tech., 15, 4063–4074, https://doi.org/10.5194/amt-15-4063-2022, https://doi.org/10.5194/amt-15-4063-2022, 2022
Short summary
Short summary
Sentinel-5P trace gas retrievals rely on elevation data in their calculations. Outdated or inaccurate data can lead to significant errors in e.g. dry-air mole fractions of methane (XCH4). We show that the use of inadequate elevation data leads to strong XCH4 anomalies in Greenland. Similar problems can be expected for other regions with inaccurate elevation data. However, we expect these to be more localized. We show that updating elevation data used in the retrieval solves this issue.
Vivienne H. Payne, Susan S. Kulawik, Emily V. Fischer, Jared F. Brewer, L. Gregory Huey, Kazuyuki Miyazaki, John R. Worden, Kevin W. Bowman, Eric J. Hintsa, Fred Moore, James W. Elkins, and Julieta Juncosa Calahorrano
Atmos. Meas. Tech., 15, 3497–3511, https://doi.org/10.5194/amt-15-3497-2022, https://doi.org/10.5194/amt-15-3497-2022, 2022
Short summary
Short summary
We compare new satellite measurements of peroxyacetyl nitrate (PAN) with reference aircraft measurements from two different instruments flown on the same platform. While there is a systematic difference between the two aircraft datasets, both show the same large-scale distribution of PAN and the discrepancy between aircraft datasets is small compared to the satellite uncertainties. The satellite measurements show skill in capturing large-scale variations in PAN.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Andreas Richter, Pieter Valks, Ramina Alwarda, Kristof Bognar, Udo Frieß, José Granville, Myojeong Gu, Paul Johnston, Cristina Prados-Roman, Richard Querel, Kimberly Strong, Thomas Wagner, Folkard Wittrock, and Margarita Yela Gonzalez
Atmos. Meas. Tech., 15, 3439–3463, https://doi.org/10.5194/amt-15-3439-2022, https://doi.org/10.5194/amt-15-3439-2022, 2022
Short summary
Short summary
We report on the GOME-2A and GOME-2B OClO dataset (2007 to 2016, from the EUMETSAT's AC SAF) validation using data from nine NDACC zenith-scattered-light DOAS (ZSL-DOAS) instruments distributed in both the Arctic and Antarctic. Specific sensitivity tests are performed on the ground-based data to estimate the impact of the different OClO DOAS analysis settings and their typical errors. Good agreement is found for both the inter-annual variability and the overall OClO seasonal behavior.
Alexandra Laeng, Thomas von Clarmann, Quentin Errera, Udo Grabowski, and Shawn Honomichl
Atmos. Meas. Tech., 15, 2407–2416, https://doi.org/10.5194/amt-15-2407-2022, https://doi.org/10.5194/amt-15-2407-2022, 2022
Short summary
Short summary
In validation exercises, a universal excuse used to explain the residual discrepancy between the data is the natural atmospheric variability due to imperfect co-locations. This work is the first attempt to quantify this atmospheric variability for a large sample of atmospheric constituents and to provide the user with a tool to substract the natural atmospheric variability portion from the residual variability.
Carlos Alberti, Qiansi Tu, Frank Hase, Maria V. Makarova, Konstantin Gribanov, Stefani C. Foka, Vyacheslav Zakharov, Thomas Blumenstock, Michael Buchwitz, Christopher Diekmann, Benjamin Ertl, Matthias M. Frey, Hamud Kh. Imhasin, Dmitry V. Ionov, Farahnaz Khosrawi, Sergey I. Osipov, Maximilian Reuter, Matthias Schneider, and Thorsten Warneke
Atmos. Meas. Tech., 15, 2199–2229, https://doi.org/10.5194/amt-15-2199-2022, https://doi.org/10.5194/amt-15-2199-2022, 2022
Short summary
Short summary
Satellite and ground-based observations at high latitudes are much sparser than at low or mid latitudes, which makes direct coincident comparisons between remote-sensing observations more difficult. Therefore, a method of scaling continuous CAMS model data to the ground-based observations is developed and used for creating virtual COCCON observations. These adjusted CAMS data are then used for satellite inter-comparison, showing good agreement in both Peterhof and Yekaterinburg cities.
Takashi Sekiya, Kazuyuki Miyazaki, Henk Eskes, Kengo Sudo, Masayuki Takigawa, and Yugo Kanaya
Atmos. Meas. Tech., 15, 1703–1728, https://doi.org/10.5194/amt-15-1703-2022, https://doi.org/10.5194/amt-15-1703-2022, 2022
Short summary
Short summary
This study gives a systematic comparison of TROPOMI version 1.2 and OMI QA4ECV tropospheric NO2 column through global chemical data assimilation (DA) integration for April–May 2018. DA performance is controlled by measurement sensitivities, retrieval errors, and coverage. Due to reduced errors in TROPOMI, agreements against assimilated and independent observations were improved by TROPOMI DA compared to OMI DA. These results demonstrate that TROPOMI DA improves global analyses of NO2 and ozone.
Ellis Remsberg, Murali Natarajan, and Ernest Hilsenrath
Atmos. Meas. Tech., 15, 1521–1535, https://doi.org/10.5194/amt-15-1521-2022, https://doi.org/10.5194/amt-15-1521-2022, 2022
Short summary
Short summary
Ozone (O3) is an excellent tracer of atmospheric transport processes in the middle atmosphere during Arctic winter. The Nimbus 7 LIMS O3 profiles of late October 1978 through May 1979 now extend to the upper mesosphere via its Version 6 (V6) algorithm. We describe the generation of zonal Fourier coefficients from the profiles, followed by their gridding to daily synoptic maps of O3. We then present several examples of how V6 O3 varies in the upper stratosphere and mesosphere during winter.
Dimitris Karagkiozidis, Martina Michaela Friedrich, Steffen Beirle, Alkiviadis Bais, François Hendrick, Kalliopi Artemis Voudouri, Ilias Fountoulakis, Angelos Karanikolas, Paraskevi Tzoumaka, Michel Van Roozendael, Dimitris Balis, and Thomas Wagner
Atmos. Meas. Tech., 15, 1269–1301, https://doi.org/10.5194/amt-15-1269-2022, https://doi.org/10.5194/amt-15-1269-2022, 2022
Short summary
Short summary
In this study we focus on the retrieval of aerosol, NO2, and HCHO vertical profiles from multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations for the first time over Thessaloniki, Greece. We use two independent inversion algorithms for the profile retrievals. We evaluate their performance, we intercompare their results, and we validate their products with ancillary data, measured by other co-located reference instruments.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Adam E. Bourassa, Doug A. Degenstein, Lucien Froidevaux, C. Thomas McElroy, Donal Murtagh, James M. Russell III, and Jiansheng Zou
Atmos. Meas. Tech., 15, 1233–1249, https://doi.org/10.5194/amt-15-1233-2022, https://doi.org/10.5194/amt-15-1233-2022, 2022
Short summary
Short summary
This study analyzes the quality of two versions (v3.6 and v4.1) of ozone concentration measurements from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), by comparing with data from five satellite instruments between 2004 and 2020. It was found that although the v3.6 data exhibit a better agreement than v4.1 with respect to the other instruments, v4.1 exhibits much better stability over time than v3.6. The stability of v4.1 makes it suitable for ozone trend studies.
Jennifer D. Hegarty, Karen E. Cady-Pereira, Vivienne H. Payne, Susan S. Kulawik, John R. Worden, Valentin Kantchev, Helen M. Worden, Kathryn McKain, Jasna V. Pittman, Róisín Commane, Bruce C. Daube Jr., and Eric A. Kort
Atmos. Meas. Tech., 15, 205–223, https://doi.org/10.5194/amt-15-205-2022, https://doi.org/10.5194/amt-15-205-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is produced by combustion of substances such as fossil fuels and plays an important role in atmospheric pollution and climate. We evaluated estimates of atmospheric CO derived from outgoing radiation measurements of the Atmospheric Infrared Sounder (AIRS) on a satellite orbiting the Earth against CO measurements from aircraft to show that these satellite measurements are reliable for continuous global monitoring of atmospheric CO concentrations.
Amir H. Souri, Kelly Chance, Kang Sun, Xiong Liu, and Matthew S. Johnson
Atmos. Meas. Tech., 15, 41–59, https://doi.org/10.5194/amt-15-41-2022, https://doi.org/10.5194/amt-15-41-2022, 2022
Short summary
Short summary
The central component of satellite and model validation is pointwise measurements. A point is an element of space, whereas satellite (model) pixels represent an averaged area. These two datasets are inherently different. We leveraged some geostatistical tools to transform discrete points to gridded data with quantified uncertainty, comparable to satellite footprint (and response functions). This in part alleviated some complications concerning point–pixel comparisons.
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary
Short summary
Satellite-derived NOx emissions from biomass burning are estimated with TROPOMI observations. Two common emission estimation methods are applied, and sensitivity tests with model output were performed to determine the accuracy of these methods. The effect of smoke aerosols on TROPOMI NO2 columns is estimated and compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America.
Tyler Wizenberg, Kimberly Strong, Kaley Walker, Erik Lutsch, Tobias Borsdorff, and Jochen Landgraf
Atmos. Meas. Tech., 14, 7707–7728, https://doi.org/10.5194/amt-14-7707-2021, https://doi.org/10.5194/amt-14-7707-2021, 2021
Short summary
Short summary
CO is an important atmospheric gas that influences both air quality and the climate. Here, we compare CO measurements from TROPOMI with those from ACE-FTS and an Arctic ground-based FTS at Eureka, Nunavut, to further characterize the accuracy of TROPOMI measurements. CO columns from the instruments agree well but show larger differences at high latitudes. Despite this, the results fall within the TROPOMI accuracy target, indicating good data quality at high latitudes.
Joseph Mendonca, Ray Nassar, Christopher W. O'Dell, Rigel Kivi, Isamu Morino, Justus Notholt, Christof Petri, Kimberly Strong, and Debra Wunch
Atmos. Meas. Tech., 14, 7511–7524, https://doi.org/10.5194/amt-14-7511-2021, https://doi.org/10.5194/amt-14-7511-2021, 2021
Short summary
Short summary
Machine learning has become an important tool for pattern recognition in many applications. In this study, we used a neural network to improve the data quality of OCO-2 measurements made at northern high latitudes. The neural network was trained and used as a binary classifier to filter out bad OCO-2 measurements in order to increase the accuracy and precision of OCO-2 XCO2 measurements in the Boreal and Arctic regions.
Daan Hubert, Klaus-Peter Heue, Jean-Christopher Lambert, Tijl Verhoelst, Marc Allaart, Steven Compernolle, Patrick D. Cullis, Angelika Dehn, Christian Félix, Bryan J. Johnson, Arno Keppens, Debra E. Kollonige, Christophe Lerot, Diego Loyola, Matakite Maata, Sukarni Mitro, Maznorizan Mohamad, Ankie Piters, Fabian Romahn, Henry B. Selkirk, Francisco R. da Silva, Ryan M. Stauffer, Anne M. Thompson, J. Pepijn Veefkind, Holger Vömel, Jacquelyn C. Witte, and Claus Zehner
Atmos. Meas. Tech., 14, 7405–7433, https://doi.org/10.5194/amt-14-7405-2021, https://doi.org/10.5194/amt-14-7405-2021, 2021
Short summary
Short summary
We assess the first 2 years of TROPOMI tropical tropospheric ozone column data. Comparisons to reference measurements by ozonesonde and satellite sensors show that TROPOMI bias (−0.1 to +2.3 DU) and precision (1.5 to 2.5 DU) meet mission requirements. Potential causes of bias and its spatio-temporal structure are discussed, as well as ways to identify sampling errors. Our analysis of known geophysical patterns demonstrates the improved performance of TROPOMI with respect to its predecessors.
Mahesh Kumar Sha, Bavo Langerock, Jean-François L. Blavier, Thomas Blumenstock, Tobias Borsdorff, Matthias Buschmann, Angelika Dehn, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Michel Grutter, James W. Hannigan, Frank Hase, Pauli Heikkinen, Christian Hermans, Laura T. Iraci, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Nicolas Kumps, Jochen Landgraf, Alba Lorente, Emmanuel Mahieu, Maria V. Makarova, Johan Mellqvist, Jean-Marc Metzger, Isamu Morino, Tomoo Nagahama, Justus Notholt, Hirofumi Ohyama, Ivan Ortega, Mathias Palm, Christof Petri, David F. Pollard, Markus Rettinger, John Robinson, Sébastien Roche, Coleen M. Roehl, Amelie N. Röhling, Constantina Rousogenous, Matthias Schneider, Kei Shiomi, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, Osamu Uchino, Voltaire A. Velazco, Corinne Vigouroux, Mihalis Vrekoussis, Pucai Wang, Thorsten Warneke, Tyler Wizenberg, Debra Wunch, Shoma Yamanouchi, Yang Yang, and Minqiang Zhou
Atmos. Meas. Tech., 14, 6249–6304, https://doi.org/10.5194/amt-14-6249-2021, https://doi.org/10.5194/amt-14-6249-2021, 2021
Short summary
Short summary
This paper presents, for the first time, Sentinel-5 Precursor methane and carbon monoxide validation results covering a period from November 2017 to September 2020. For this study, we used global TCCON and NDACC-IRWG network data covering a wide range of atmospheric and surface conditions across different terrains. We also show the influence of a priori alignment, smoothing uncertainties and the sensitivity of the validation results towards the application of advanced co-location criteria.
Vinod Kumar, Julia Remmers, Steffen Beirle, Joachim Fallmann, Astrid Kerkweg, Jos Lelieveld, Mariano Mertens, Andrea Pozzer, Benedikt Steil, Marc Barra, Holger Tost, and Thomas Wagner
Atmos. Meas. Tech., 14, 5241–5269, https://doi.org/10.5194/amt-14-5241-2021, https://doi.org/10.5194/amt-14-5241-2021, 2021
Short summary
Short summary
We present high-resolution regional atmospheric chemistry model simulations focused around Germany. We highlight the importance of spatial resolution of the model itself as well as the input emissions inventory and short-scale temporal variability of emissions for simulations. We propose a consistent approach for evaluating the simulated vertical distribution of NO2 using MAX-DOAS measurements while also considering its spatial sensitivity volume and change in sensitivity within this volume.
Ralf Zuber, Ulf Köhler, Luca Egli, Mario Ribnitzky, Wolfgang Steinbrecht, and Julian Gröbner
Atmos. Meas. Tech., 14, 4915–4928, https://doi.org/10.5194/amt-14-4915-2021, https://doi.org/10.5194/amt-14-4915-2021, 2021
Short summary
Short summary
We validated two BTS-based systems in a longer-term TOC analysis in the 2019/2020 campaign at Hohenpeißenberg and Davos. The results showed a deviation of the BTS-Solar to Brewers of < 0.1 % with a k = 2 of < 1.5 %. Koherent showed a deviation of 1.7 % with a k = 2 of 2.7 %. Resultingly, the BTS-Solar performance is comparable to Brewers in Hohenpeißenberg. Koherent shows a seasonal variation in Davos due to the sensitivity of its TOC retrieval algorithm to stratospheric temperature.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
René Stübi, Herbert Schill, Eliane Maillard Barras, Jörg Klausen, and Alexander Haefele
Atmos. Meas. Tech., 14, 4203–4217, https://doi.org/10.5194/amt-14-4203-2021, https://doi.org/10.5194/amt-14-4203-2021, 2021
Short summary
Short summary
Total ozone column has been measured since 1926 in the Swiss Alps station Arosa. These worldwide series are based on Dobson sun spectrophotometers. To assure the continuity of these series, a two-stage project was realized at MeteoSwiss: first, Dobson instruments were automated, and then parallel measurements between Arosa and a nearby site in Davos were carried out. The analysis of the data of the manual-to-automated transition and coincident data between the two sites are presented here.
Daniel Zawada, Ghislain Franssens, Robert Loughman, Antti Mikkonen, Alexei Rozanov, Claudia Emde, Adam Bourassa, Seth Dueck, Hannakaisa Lindqvist, Didier Ramon, Vladimir Rozanov, Emmanuel Dekemper, Erkki Kyrölä, John P. Burrows, Didier Fussen, and Doug Degenstein
Atmos. Meas. Tech., 14, 3953–3972, https://doi.org/10.5194/amt-14-3953-2021, https://doi.org/10.5194/amt-14-3953-2021, 2021
Short summary
Short summary
Satellite measurements of atmospheric composition often rely on computer tools known as radiative transfer models to model the propagation of sunlight within the atmosphere. Here we have performed a detailed inter-comparison of seven different radiative transfer models in a variety of conditions. We have found that the models agree remarkably well, at a level better than previously reported. This result provides confidence in our understanding of atmospheric radiative transfer.
Robin Wing, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Thomas J. McGee, John T. Sullivan, Sergey Khaykin, Grant Sumnicht, and Laurence Twigg
Atmos. Meas. Tech., 14, 3773–3794, https://doi.org/10.5194/amt-14-3773-2021, https://doi.org/10.5194/amt-14-3773-2021, 2021
Short summary
Short summary
This paper is a validation study of the newly installed ozone and temperature lidar at Hohenpeißenberg, Germany. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), lidar stations are routinely compared against a travelling reference lidar operated by NASA. We have also attempted to assess potential biases in the reference lidar by comparing the results of this validation campaign with a previous campaign at the Observatoire de Haute-Provence, France.
Viktoria F. Sofieva, Hei Shing Lee, Johanna Tamminen, Christophe Lerot, Fabian Romahn, and Diego G. Loyola
Atmos. Meas. Tech., 14, 2993–3002, https://doi.org/10.5194/amt-14-2993-2021, https://doi.org/10.5194/amt-14-2993-2021, 2021
Short summary
Short summary
Our paper discusses the structure function method, which allows validation of random uncertainties in the data and, at the same time, probing of the small-scale natural variability. We applied this method to the clear-sky total ozone measurements by TROPOMI Sentinel-5P satellite instrument and found that the TROPOMI random error estimation is adequate. The discussed method is a powerful tool, which can be used in various applications.
Xiaoyi Zhao, Vitali Fioletov, Michael Brohart, Volodya Savastiouk, Ihab Abboud, Akira Ogyu, Jonathan Davies, Reno Sit, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, Moritz Müller, Debora Griffin, and Chris McLinden
Atmos. Meas. Tech., 14, 2261–2283, https://doi.org/10.5194/amt-14-2261-2021, https://doi.org/10.5194/amt-14-2261-2021, 2021
Short summary
Short summary
The Brewer spectrophotometer is one of the main instruments for measurements of atmospheric total column ozone. The global Brewer network largely relies on the world reference instruments (the Brewer triad) operated by Environment and Climate Change Canada since the early 1980s. This study provides an updated assessment (1999–2019) of the reference instrument performance, in terms of random uncertainties and long-term stability.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Matthias Schneider, Andreas Schneider, Rigel Kivi, Pauli Heikkinen, Benjamin Ertl, Christopher Diekmann, Farahnaz Khosrawi, Michael Sommer, Tobias Borsdorff, and Uwe Raffalski
Atmos. Meas. Tech., 14, 1993–2011, https://doi.org/10.5194/amt-14-1993-2021, https://doi.org/10.5194/amt-14-1993-2021, 2021
Short summary
Short summary
We compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COCCON) with two co-located ground-based spectrometers as references at two boreal sites. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This is the first published study applying COCCON for MUSICA IASI and TROPOMI validation.
Wannan Wang, Tianhai Cheng, Ronald J. van der A, Jos de Laat, and Jason E. Williams
Atmos. Meas. Tech., 14, 1673–1687, https://doi.org/10.5194/amt-14-1673-2021, https://doi.org/10.5194/amt-14-1673-2021, 2021
Short summary
Short summary
This paper is an evaluation of the AIRS and MLS ozone (O3) algorithms via comparison with daytime and night-time O3 datasets. Results show that further refinements of the AIRS O3 algorithm are required for better surface emissivity retrievals and that cloud cover is another problem that needs to be solved. An inconsistency is found in the
AscDescModeflag of the MLS v4.20 standard O3 product for 90–60° S and 60–90° N, resulting in inconsistent O3 profiles in these regions before May 2015.
David F. Pollard, John Robinson, Hisako Shiona, and Dan Smale
Atmos. Meas. Tech., 14, 1501–1510, https://doi.org/10.5194/amt-14-1501-2021, https://doi.org/10.5194/amt-14-1501-2021, 2021
Short summary
Short summary
This work describes the steps taken to ensure a continuous, high-quality dataset of column-averaged greenhouse gas retrievals from the Total Carbon Column Observing Network (TCCON) site at Lauder, New Zealand, following a change in the Fourier transform spectrometer used to make the measurements from which the retrievals are made.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Doug A. Degenstein, Felicia Kolonjari, David Plummer, Douglas E. Kinnison, Patrick Jöckel, and Thomas von Clarmann
Atmos. Meas. Tech., 14, 1425–1438, https://doi.org/10.5194/amt-14-1425-2021, https://doi.org/10.5194/amt-14-1425-2021, 2021
Short summary
Short summary
Output from climate chemistry models (CMAM, EMAC, and WACCM) is used to estimate the expected geophysical variability of ozone concentrations between coincident satellite instrument measurement times and geolocations. We use the Canadian ACE-FTS and OSIRIS instruments as a case study. Ensemble mean estimates are used to optimize coincidence criteria between the two instruments, allowing for the use of more coincident profiles while providing an estimate of the geophysical variation.
Shoma Yamanouchi, Camille Viatte, Kimberly Strong, Erik Lutsch, Dylan B. A. Jones, Cathy Clerbaux, Martin Van Damme, Lieven Clarisse, and Pierre-Francois Coheur
Atmos. Meas. Tech., 14, 905–921, https://doi.org/10.5194/amt-14-905-2021, https://doi.org/10.5194/amt-14-905-2021, 2021
Short summary
Short summary
Ammonia (NH3) is a major source of pollution in the air. As such, there have been increasing efforts to measure the atmospheric abundance of NH3 and its spatial and temporal variability. In this study, long-term measurements of NH3 over Toronto, Canada, derived from multiscale datasets are examined. These NH3 datasets were compared to each other and to a model to better understand NH3 variability and to assess model performance.
Frederik Tack, Alexis Merlaud, Marian-Daniel Iordache, Gaia Pinardi, Ermioni Dimitropoulou, Henk Eskes, Bart Bomans, Pepijn Veefkind, and Michel Van Roozendael
Atmos. Meas. Tech., 14, 615–646, https://doi.org/10.5194/amt-14-615-2021, https://doi.org/10.5194/amt-14-615-2021, 2021
Short summary
Short summary
We assess the TROPOMI tropospheric NO2 product (OFFL v1.03.01; 3.5 km × 7 km at nadir observations) based on coinciding airborne APEX reference observations (~75 m × 120 m), acquired over polluted regions in Belgium. The TROPOMI NO2 product meets the mission requirements in terms of precision and accuracy. However, we show that TROPOMI is biased low over polluted areas, mainly due to the limited spatial resolution of a priori input for the AMF computation.
Claudia Rivera Cárdenas, Cesar Guarín, Wolfgang Stremme, Martina M. Friedrich, Alejandro Bezanilla, Diana Rivera Ramos, Cristina A. Mendoza-Rodríguez, Michel Grutter, Thomas Blumenstock, and Frank Hase
Atmos. Meas. Tech., 14, 595–613, https://doi.org/10.5194/amt-14-595-2021, https://doi.org/10.5194/amt-14-595-2021, 2021
Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Wolfgang Stremme, Kimberly Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, and Claus Zehner
Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, https://doi.org/10.5194/amt-14-481-2021, 2021
Short summary
Short summary
This paper reports on the ground-based validation of the NO2 data produced operationally by the TROPOMI instrument on board the Sentinel-5 Precursor satellite. Tropospheric, stratospheric, and total NO2 columns are compared to measurements collected from MAX-DOAS, ZSL-DOAS, and PGN/Pandora instruments respectively. The products are found to satisfy mission requirements in general, though negative mean differences are found at sites with high pollution levels. Potential causes are discussed.
Susan S. Kulawik, John R. Worden, Vivienne H. Payne, Dejian Fu, Steven C. Wofsy, Kathryn McKain, Colm Sweeney, Bruce C. Daube Jr., Alan Lipton, Igor Polonsky, Yuguang He, Karen E. Cady-Pereira, Edward J. Dlugokencky, Daniel J. Jacob, and Yi Yin
Atmos. Meas. Tech., 14, 335–354, https://doi.org/10.5194/amt-14-335-2021, https://doi.org/10.5194/amt-14-335-2021, 2021
Short summary
Short summary
This paper shows comparisons of a new single-footprint methane product from the AIRS satellite to aircraft-based observations. We show that this AIRS methane product provides useful information to study seasonal and global methane trends of this important greenhouse gas.
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
Seidai Nara, Tomohiro O. Sato, Takayoshi Yamada, Tamaki Fujinawa, Kota Kuribayashi, Takeshi Manabe, Lucien Froidevaux, Nathaniel J. Livesey, Kaley A. Walker, Jian Xu, Franz Schreier, Yvan J. Orsolini, Varavut Limpasuvan, Nario Kuno, and Yasuko Kasai
Atmos. Meas. Tech., 13, 6837–6852, https://doi.org/10.5194/amt-13-6837-2020, https://doi.org/10.5194/amt-13-6837-2020, 2020
Short summary
Short summary
In the atmosphere, more than 80 % of chlorine compounds are anthropogenic. Hydrogen chloride (HCl), the main stratospheric chlorine reservoir, is useful to estimate the total budget of the atmospheric chlorine compounds. We report, for the first time, the HCl vertical distribution from the middle troposphere to the lower thermosphere using a high-sensitivity SMILES measurement; the data quality is quantified by comparisons with other measurements and via theoretical error analysis.
Cited articles
Blond, N., Boersma, K. F., Eskes, H. J., van der A, R. J., Van Roozendael, M., De Smedt, I., Bergametti, G., and Vautard, R.: Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe, J. Geophys. Res., 112, D10311, https://doi.org/10.1029/2006JD007277, 2007. a
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh optical depth calculations, J. Atmos. Ocean. Tech., 16, 1854–1861, 1999. a
Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311, https://doi.org/10.1029/2003JD003962, 2004. a
Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H. G. M., Zara, M., Peters, E., Van Roozendael, M., Wagner, T., Maasakkers, J. D., van der A, R. J., Nightingale, J., De Rudder, A., Irie, H., Pinardi, G., Lambert, J.-C., and Compernolle, S. C.: Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651–6678, https://doi.org/10.5194/amt-11-6651-2018, 2018. a
Bugliaro, L., Zinner, T., Keil, C., Mayer, B., Hollmann, R., Reuter, M., and Thomas, W.: Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRI, Atmos. Chem. Phys., 11, 5603–5624, https://doi.org/10.5194/acp-11-5603-2011, 2011. a, b
Cahalan, R. F., Oreopoulos, L., Marshak, A., Evans, K. F., Davis, A. B., Pincus, R., Yetzer, K. H., Mayer, B., Davies, R., Ackerman, T. P., Barker, H. W., Clothiaux, E. E., Ellingson, R. G., Garay, M. J., Kassianov, E., Kinne, S., Macke, A., O'hirok, W., Partain, P. T., Prigarin, S. M., Rublev, A. N., Stephens, G. L., Szczap, F., Takara, E. E., Várnai, T., Wen, G., and Zhuraleva, T.: The International Intercomparison of 3D Radiation Codes (I3RC): Bringing together the most advanced radiative transfer tools for cloudy atmospheres, B. Am. Meteorol. Soc., 86, 1275–1293, 2005. a
Davis, A. B., Garay, M. J., Xu, F., Qu, Z., and Emde, C.: 3D radiative
transfer effects in multi-angle/multispectral radio-polarimetric
signals from a mixture of clouds and aerosols viewed by a non-imaging
sensor, Proc. SPIE, 8873, https://doi.org/10.1117/12.2023733, 2013. a
De Smedt, I., Müller, J.-F., Stavrakou, T., van der A, R., Eskes, H., and Van Roozendael, M.: Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors, Atmos. Chem. Phys., 8, 4947–4963, https://doi.org/10.5194/acp-8-4947-2008, 2008. a
Deutschmann, T., Beirle, S., Frieß, U., Grzegorski, M., Kern, C., Kritten, L., Platt, U., Prados-Roman, C., Pukite, J., Wagner, T., Werner, B., and Pfeilsticker, K.: The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features, J. Quant. Spectrosc. Ra., 112, 1119–1137, https://doi.org/10.1016/j.jqsrt.2010.12.009, 2011. a, b
Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G., Giorgetta, M., and Brdar, S.: Large eddy simulation using the general circulation model ICON, J. Adv. Model. Earth Sy., 7, 963–986, https://doi.org/10.1002/2015MS000431, 2015. a
Emde, C.: Impact of 3D Cloud Structures on the Atmospheric Trace Gas Products from UV-VIS Sounders: Synthetic dataset for validation of trace gas retrieval algorithms, Zenodo [data set], https://doi.org/10.5281/zenodo.5567616, 2021. a
Emde, C. and Mayer, B.: Simulation of solar radiation during a total eclipse: a challenge for radiative transfer, Atmos. Chem. Phys., 7, 2259–2270, https://doi.org/10.5194/acp-7-2259-2007, 2007. a
Emde, C., Buras, R., Mayer, B., and Blumthaler, M.: The impact of aerosols on polarized sky radiance: model development, validation, and applications, Atmos. Chem. Phys., 10, 383–396, https://doi.org/10.5194/acp-10-383-2010, 2010. a
Emde, C., Barlakas, V., Cornet, C., Evans, F., Korkin, S., Ota, Y., Labonnote, L. C., Lyapustin, A., Macke, A., Mayer, B., and Wendisch, M.: IPRT polarized radiative transfer model intercomparison project – Phase A, J. Quant. Spectrosc. Ra., 164, 8–36, https://doi.org/10.1016/j.jqsrt.2015.05.007, 2015. a
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016. a
Emde, C., Buras, R., Sterzik, M., and Bagnulo, S.: Influence of aerosols, clouds, and sunglint on polarization spectra of Earthshine, Astron. Astrophys., 605, A2, https://doi.org/10.1051/0004-6361/201629948, 2017. a
Emde, C., Barlakas, V., Cornet, C., Evans, F., Wang, Z., Labonotte, L. C., Macke, A., Mayer, B., and Wendisch, M.: IPRT polarized radiative transfer model intercomparison project – Three-dimensional test cases (phase B), J. Quant. Spectrosc. Ra., 209, 19–44, https://doi.org/10.1016/j.jqsrt.2018.01.024, 2018. a
Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke, O.: ARTS, the atmospheric radiative transfer simulator, Version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558, 2011. a
Gasteiger, J., Emde, C., Mayer, B., Buras, R., Buehler, S., and Lemke, O.: Representative wavelengths absorption parameterization applied to satellite channels and spectral bands, J. Quant. Spectrosc. Ra., 148, 99–115, 2014. a
Gonzalez Abad, G., Souri, A. H., Bak, J., Chance, K., Flynn, L. E., Krotkov, N. A., Lamsal, L., Li, C., Liu, X., Miller, C. C., Nowlan, C. R., Suleiman, R., and Wang, H.: Five decades observing Earth's atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space, J. Quant. Spectrosc. Ra., 238, 106478, https://doi.org/10.1016/j.jqsrt.2019.04.030, 2019. a
Grob, H., Emde, C., and Mayer, B.: Retrieval of aerosol properties from ground-based polarimetric sky-radiance measurements under cloudy conditions, J. Quant. Spectrosc. Ra., 228, 57–72, https://doi.org/10.1016/j.jqsrt.2019.02.025, 2019. a
Heinze, R., Dipankar, A., Henken, C. C., Moseley, C., Sourdeval, O., Trömel, S., Xie, X., Adamidis, P., Ament, F., Baars, H., Barthlott, C., Behrendt, A., Blahak, U., Bley, S., Brdar, S., Brueck, M., Crewell, S., Deneke, H., Di Girolamo, P., Evaristo, R., Fischer, J., Frank, C., Friederichs, P., Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen, A., Hege, H.-C., Hoose, C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel, S., Knippertz, P., Kuhn, A., van Laar, T., Macke, A., Maurer, V., Mayer, B., Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi, E., Pantillon, F., Pospichal, B., Röber, N., Scheck, L., Seifert, A., Seifert, P., Senf, F., Siligam, P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger, M., Wulfmeyer, V., Zängl, G., Zhang, D., and Quaas, J.: Large-eddy simulations over Germany using ICON: a comprehensive evaluation, Q. J. Roy. Meteor. Soc., 143, 69–100, https://doi.org/10.1002/qj.2947, 2017. a, b, c, d
Kokhanovsky, A. A., Budak, V. P., Cornet, C., Duan, M., Emde, C., Katsev, I. L., Klyukov, D. A., Korkin, S. V., C-Labonnote, L., Mayer, B., Min, Q., Nakajima, T., Ota, Y., Prikhach, A. S., Rozanov, V. V., Yokota, T., and Zege, E. P.: Benchmark results in vector atmospheric radiative transfer, J. Quant. Spectrosc. Ra., 111, 1931–1946, 2010a. a
Kokhanovsky, A. A., Deuzé, J. L., Diner, D. J., Dubovik, O., Ducos, F., Emde, C., Garay, M. J., Grainger, R. G., Heckel, A., Herman, M., Katsev, I. L., Keller, J., Levy, R., North, P. R. J., Prikhach, A. S., Rozanov, V. V., Sayer, A. M., Ota, Y., Tanré, D., Thomas, G. E., and Zege, E. P.: The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light, Atmos. Meas. Tech., 3, 909–932, https://doi.org/10.5194/amt-3-909-2010, 2010b. a
Korkin, S., Yang, E.-S., Spurr, R., Emde, C., Krotkov, N., Vasilkov, A., Haffner, D., Mok, J., and Lyapustin, A.: Revised and extended benchmark results for Rayleigh scattering of sunlight in spherical atmospheres, J. Quant. Spectrosc. Ra., 254, 107181, https://doi.org/10.1016/j.jqsrt.2020.107181, 2020. a
Kylling, A., Emde, C., Yu, H., van Roozendael, M., Stebel, K., Veihelmann, B., and Mayer, B.: Impact of 3D Cloud Structures on the Atmospheric Trace Gas Products from UV-VIS Sounders – Part III: bias estimate using synthetic and observational data, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-331, in review, 2021. a, b, c, d, e, f
Levelt, P., Veefkind, J., Kerridge, B., Siddans, R., de Leeuw, G., Remedios, J., and Coheur, P.: Observation Techniques and Mission Concepts20 for Atmospheric Chemistry (CAMELOT), Tech. Rep. Report RP-CAM-KNMI-050, KNMI, European Space Agency, 2009. a
Liu, S., Valks, P., Pinardi, G., Xu, J., Chan, K. L., Argyrouli, A., Lutz, R., Beirle, S., Khorsandi, E., Baier, F., Huijnen, V., Bais, A., Donner, S., Dörner, S., Gratsea, M., Hendrick, F., Karagkiozidis, D., Lange, K., Piters, A. J. M., Remmers, J., Richter, A., Van Roozendael, M., Wagner, T., Wenig, M., and Loyola, D. G.: An improved TROPOMI tropospheric NO2 research product over Europe, Atmos. Meas. Tech., 14, 7297–7327, https://doi.org/10.5194/amt-14-7297-2021, 2021. a
Loyola, D. G., Gimeno García, S., Lutz, R., Argyrouli, A., Romahn, F., Spurr, R. J. D., Pedergnana, M., Doicu, A., Molina García, V., and Schüssler, O.: The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor, Atmos. Meas. Tech., 11, 409–427, https://doi.org/10.5194/amt-11-409-2018, 2018. a, b, c
Marshak, A. and Davis, A.: 3D Radiative Transfer in Cloudy Atmospheres, Springer, ISBN 13 978-3-540-23958-1, 2005. a
Massie, S. T., Cronk, H., Merrelli, A., O'Dell, C., Schmidt, K. S., Chen, H., and Baker, D.: Analysis of 3D cloud effects in OCO-2 XCO2 retrievals, Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021, 2021. a
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005. a
Mayer, B., Emde, C., Gasteiger, J., and Kylling, A.: libRadtran, http://www.libradtran.org, last access: 7 March 2022. a
Merrelli, A., Bennartz, R., O'Dell, C. W., and Taylor, T. E.: Estimating bias in the OCO-2 retrieval algorithm caused by 3-D radiation scattering from unresolved boundary layer clouds, Atmos. Meas. Tech., 8, 1641–1656, https://doi.org/10.5194/amt-8-1641-2015, 2015. a
Platt, U.: Air Monitoring by Differential Optical Absorption Spectroscopy, American Cancer Society, 1–28, https://doi.org/10.1002/9780470027318.a0706.pub2, 2017. a, b
Rodgers, C.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, ISBN 981022740X, 2000. a
Rothman, L., Gordon, I., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P., Birk, M., Bizzocchi, L., Boudon, V., Brown, L., Campargue, A., Chance, K., Cohen, E., Coudert, L., Devi, V., Drouin, B., Fayt, A., Flaud, J.-M., Gamache, R., Harrison, J., Hartmann, J.-M., Hill, C., Hodges, J., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R., Li, G., Long, D., Lyulin, O., Mackie, C., Massie, S., Mikhailenko, S., Müller, H., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E., Richard, C., Smith, M., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G., Tyuterev, V., and Wagner, G.: The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 130, 4–50, https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013. a
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., d'Entremont, R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D.: First operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135–148, https://doi.org/10.1016/S0034-4257(02)00091-3, 2002. a
Schwaerzel, M., Emde, C., Brunner, D., Morales, R., Wagner, T., Berne, A., Buchmann, B., and Kuhlmann, G.: Three-dimensional radiative transfer effects on airborne and ground-based trace gas remote sensing, Atmos. Meas. Tech., 13, 4277–4293, https://doi.org/10.5194/amt-13-4277-2020, 2020. a, b, c
Schwaerzel, M., Brunner, D., Jakub, F., Emde, C., Buchmann, B., Berne, A., and Kuhlmann, G.: Impact of 3D radiative transfer on airborne NO2 imaging remote sensing over cities with buildings, Atmos. Meas. Tech., 14, 6469–6482, https://doi.org/10.5194/amt-14-6469-2021, 2021. a
Serdyuchenko, A., Gorshelev, V., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence, Atmos. Meas. Tech., 7, 625–636, https://doi.org/10.5194/amt-7-625-2014, 2014. a
Stammes, P., Sneep, M., de Haan, J. F., Veefkind, J. P., Wang, P., and Levelt, P. F.: Effective cloud fractions from the Ozone Monitoring Instrument: Theoretical framework and validation, J. Geophys. Res., 113, D16S38, https://doi.org/10.1029/2007JD008820, 2008. a, b
Stap, F., Hasekamp, O., Emde, C., and Röckmann, T.: Influence of 3D effects on 1D aerosol retrievals in synthetic, partially clouded scenes, J. Quant. Spectrosc. Ra., 170, 54–68, https://doi.org/10.1016/j.jqsrt.2015.10.008, 2016a. a
Stap, F. A., Hasekamp, O. P., Emde, C., and Rockmann, T.: Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: Synthetic study based on a large eddy simulation, J. Geophys. Res., 121, 12914–12935, https://doi.org/10.1002/2016JD024787, 2016b. a
Sumińska-Ebersoldt, O., Lehmann, R., Wegner, T., Grooß, J.-U., Hösen, E., Weigel, R., Frey, W., Griessbach, S., Mitev, V., Emde, C., Volk, C. M., Borrmann, S., Rex, M., Stroh, F., and von Hobe, M.: ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight, Atmos. Chem. Phys., 12, 1353–1365, https://doi.org/10.5194/acp-12-1353-2012, 2012. a
Thalman, R. and Volkamer, R.: Temperature Dependent Absorption Cross-Sections of O2-O2 collision pairs between 340 and 630 nm at atmospherically relevan pressure, Phys. Chem. Chem. Phys., 15, 15371–15381, https://doi.org/10.1039/C3CP50968K, 2013. a
Vandaele, A., Hermans, C., Simon, P., Carleer, M., Colin, R., Fally, S., Merienne, M., Jenouvrier, A., and Coquart, B.: Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K, J. Quant. Spectrosc. Ra., 59, 171–184, https://doi.org/10.1016/S0022-4073(97)00168-4, 1998. a
Veefkind, J. P., de Haan, J. F., Sneep, M., and Levelt, P. F.: Improvements to the OMI O2-O2 operational cloud algorithm and comparisons with ground-based radar–lidar observations, Atmos. Meas. Tech., 9, 6035–6049, https://doi.org/10.5194/amt-9-6035-2016, 2016. a
Wang, P., Stammes, P., van der A, R., Pinardi, G., and van Roozendael, M.: FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals, Atmos. Chem. Phys., 8, 6565–6576, https://doi.org/10.5194/acp-8-6565-2008, 2008. a
Wiscombe, W.: Improved Mie scattering algorithms, Appl. Optics, 19, 1505–1509, 1980. a
Yu, H., Emde, C., Kylling, A., Veihelmann, B., Mayer, B., Stebel, K., and Van Roozendael, M.: Impact of 3D Cloud Structures on the Atmospheric Trace Gas Products from UV-VIS Sounders – Part II: impact on NO2 retrieval and mitigation strategies, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-338, in review, 2021. a, b, c, d, e, f, g, h
Zängl, G., Reinert, D., Ripodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2015. a
Zawada, D., Franssens, G., Loughman, R., Mikkonen, A., Rozanov, A., Emde, C., Bourassa, A., Dueck, S., Lindqvist, H., Ramon, D., Rozanov, V., Dekemper, E., Kyrölä, E., Burrows, J. P., Fussen, D., and Degenstein, D.: Systematic comparison of vectorial spherical radiative transfer models in limb scattering geometry, Atmos. Meas. Tech., 14, 3953–3972, https://doi.org/10.5194/amt-14-3953-2021, 2021. a
Short summary
Retrievals of trace gas concentrations from satellite observations can be affected by clouds in the vicinity, either by shadowing or by scattering of radiation from clouds in the clear region. We used a Monte Carlo radiative transfer model to generate synthetic satellite observations, which we used to test retrieval algorithms and to quantify the error of retrieved NO2 vertical column density due to cloud scattering.
Retrievals of trace gas concentrations from satellite observations can be affected by clouds in...