Articles | Volume 15, issue 8
https://doi.org/10.5194/amt-15-2623-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-2623-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development, characterization, and application of an improved online reactive oxygen species analyzer based on the Monitor for AeRosols and Gases in ambient Air (MARGA)
Jiyan Wu
Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Chi Yang
Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Chunyan Zhang
Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Fang Cao
Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Aiping Wu
Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China
School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Related authors
No articles found.
Xueqin Zheng, Junwen Liu, Nima Chuduo, Bian Ba, Pengfei Yu, Phu Drolgar, Fang Cao, and Yanlin Zhang
Atmos. Chem. Phys., 25, 12451–12465, https://doi.org/10.5194/acp-25-12451-2025, https://doi.org/10.5194/acp-25-12451-2025, 2025
Short summary
Short summary
In this study, we present the first report on the annual variation of stable oxygen isotope anomalies in nitrate (NO3−) collected from the urban area of Lhasa, on the Tibetan Plateau, China. Using a Bayesian isotope mixture model, we found that the relative contribution of the NO3 + volatile organic compound (VOC) pathway to NO3− formation in spring in Lhasa was several times higher than that in urban cities, highlighting the significant influence of VOCs transported from outside the Tibetan Plateau.
Abudurexiati Abulimiti, Yanlin Zhang, Mingyuan Yu, Yihang Hong, Yu-Chi Lin, Chaman Gul, and Fang Cao
Atmos. Chem. Phys., 25, 6161–6178, https://doi.org/10.5194/acp-25-6161-2025, https://doi.org/10.5194/acp-25-6161-2025, 2025
Short summary
Short summary
To improve air quality, the Chinese government has implemented strict clean-air measures. We explored how black carbon (BC) responded to these measures and found that a reduction in liquid fuel use was the main factor driving a decrease in BC levels. Additionally, meteorological factors also played a significant role in the long-term trends of BC. These factors should be considered in future emission reduction policies to further enhance air quality improvements.
Rongshuang Xu, Yu-Chi Lin, Siyu Bian, Feng Xie, and Yan-Lin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-683, https://doi.org/10.5194/egusphere-2025-683, 2025
Short summary
Short summary
This work reported the hydroxymethanesulfonate (HMS) level in a continental city and, for the first time, in marine atmosphere. The enhancement by aerosol ionic strength (IS) on HMS formation was quantified which first rise with increasing IS, peaking at 4 mol kg–1 before declining. Given the IS range of marine (2–6) and urban aerosol (6–20 mol kg–1) and the clearly negative correlation between humidity and IS, the moderate IS level under humid condition may notably boost ambient HMS formation.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yihang Hong, Yu-Chi Lin, Mingyuan Yu, Hongxing Jiang, Zhineng Cheng, Rongshuang Xu, and Xiaoying Yang
Atmos. Chem. Phys., 23, 8305–8324, https://doi.org/10.5194/acp-23-8305-2023, https://doi.org/10.5194/acp-23-8305-2023, 2023
Short summary
Short summary
The interaction between the sources and molecular compositions of humic-like substances (HULIS) at Nanjing, China, was explored. Significant fossil fuel source contributions to HULIS were found in the 14C results from biomass burnng and traffic emissions. Increasing biogenic secondary organic aerosol (SOA) products and anthropogenic aromatic compounds were detected in summer and winter, respectively.
Hao-Ran Yu, Yan-Lin Zhang, Fang Cao, Xiao-Ying Yang, Tian Xie, Yu-Xian Zhang, and Yongwen Xue
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-239, https://doi.org/10.5194/amt-2022-239, 2022
Preprint withdrawn
Short summary
Short summary
We developed a high time resolution method for determining the δ13C values of WSOCp and WSOCg by combination of wet oxidation pretreatment and IRMS. With improvement of oxidation method and determination method, δ13C value of liquid sample with a carbon content between 0.5 to 5 μg can be determined with an accuracy of 0.6 ‰. Using this method, the δ13C value of WSOCp and WSOCg in winter of 2021 at an urban site of Nanjing were determined, which were -25.9 ± 0.7 ‰ and -29.9 ± 0.9 ‰ respectively.
Md. Mozammel Haque, Yanlin Zhang, Srinivas Bikkina, Meehye Lee, and Kimitaka Kawamura
Atmos. Chem. Phys., 22, 1373–1393, https://doi.org/10.5194/acp-22-1373-2022, https://doi.org/10.5194/acp-22-1373-2022, 2022
Short summary
Short summary
We attempt to understand the current state of East Asian organic aerosols with both the molecular marker approach and 14° C data of carbonaceous components. A significant positive correlation of nonfossil- and fossil-derived organic carbon with levoglucosan suggests the importance of biomass burning (BB) and coal combustion sources in the East Asian outflow. Thus, attribution of ambient levoglucosan levels over the western North Pacific to the impact of BB emission may cause large uncertainty.
Ahsan Mozaffar, Yan-Lin Zhang, Yu-Chi Lin, Feng Xie, Mei-Yi Fan, and Fang Cao
Atmos. Chem. Phys., 21, 18087–18099, https://doi.org/10.5194/acp-21-18087-2021, https://doi.org/10.5194/acp-21-18087-2021, 2021
Short summary
Short summary
We performed a long-term investigation of ambient volatile organic compounds (VOCs) in an industrial area in Nanjing, China. Followed by alkanes, halocarbons and aromatics were the most abundant VOC groups. Vehicle-related emissions were the major VOC sources in the study area. Aromatic and alkene VOCs were responsible for most of the atmospheric reactions.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yu-Chi Lin, Yuhang Wang, Xiaoyan Liu, Wenqi Zhang, Meiyi Fan, Feng Xie, Robert Cary, Joshua Dixon, and Lihua Zhou
Atmos. Meas. Tech., 14, 4053–4068, https://doi.org/10.5194/amt-14-4053-2021, https://doi.org/10.5194/amt-14-4053-2021, 2021
Short summary
Short summary
We introduce a two-wavelength method for brown C measurements with a modified Sunset carbon analyzer. We defined the enhanced concentrations and gave the possibility of providing an indicator of brown C. Compared with the strong local sources of organic and elemental C, we found that differences in EC mainly originated from regional transport. Biomass burning emissions significantly contributed to high differences in EC concentrations during the heavy biomass burning periods.
Yunhua Chang, Yan-Lin Zhang, Sawaeng Kawichai, Qian Wang, Martin Van Damme, Lieven Clarisse, Tippawan Prapamontol, and Moritz F. Lehmann
Atmos. Chem. Phys., 21, 7187–7198, https://doi.org/10.5194/acp-21-7187-2021, https://doi.org/10.5194/acp-21-7187-2021, 2021
Short summary
Short summary
In this study, we integrated satellite constraints on atmospheric NH3 levels and fire intensity, discrete NH3 concentration measurement, and N isotopic analysis of NH3 in order to assess the regional-scale contribution of biomass burning to ambient atmospheric NH3 in the heartland of Southeast Asia. The combined approach provides a valuable cross-validation framework for source apportioning of NH3 in the lower atmosphere and will thus help to ameliorate predictions of biomass burning emissions.
Qingcai Chen, Haoyao Sun, Wenhuai Song, Fang Cao, Chongguo Tian, and Yan-Lin Zhang
Atmos. Chem. Phys., 20, 14407–14417, https://doi.org/10.5194/acp-20-14407-2020, https://doi.org/10.5194/acp-20-14407-2020, 2020
Short summary
Short summary
This study found environmentally persistent free radicals (EPFRs) are widely present in atmospheric particles of different particle sizes and exhibit significant particle size distribution characteristics. EPFR concentrations are higher in coarse particles than in fine particles in summer and vice versa in winter. The potential toxicity caused by EPFRs may also vary with particle size and season. Combustion is the most important source of EPFRs (>70 %).
Cited articles
Ahmad, M., Yu, Q., Chen, J., Cheng, S., Qin, W., and Zhang, Y.: Chemical
characteristics, oxidative potential, and sources of PM (2.5) in wintertime
in Lahore and Peshawar, Pakistan, J. Environ. Sci. (China), 102, 148–158,
https://doi.org/10.1016/j.jes.2020.09.014, 2021.
Akhtar, U. S., McWhinney, R. D., Rastogi, N., Abbatt, J. P., Evans, G. J.,
and Scott, J. A.: Cytotoxic and proinflammatory effects of ambient and
source-related particulate matter (PM) in relation to the production of
reactive oxygen species (ROS) and cytokine adsorption by particles, Inhal.
Toxicol., 22 Suppl 2, 37–47, https://doi.org/10.3109/08958378.2010.518377,
2010.
Ayres, J. G., Borm, P., Cassee, F. R., Castranova, V., Donaldson, K., Ghio,
A., Harrison, R. M., Hider, R., Kelly, F., Kooter, I. M., Marano, F.,
Maynard, R. L., Mudway, I., Nel, A., Sioutas, C., Smith, S., Baeza-Squiban,
A., Cho, A., Duggan, S., and Froines, J.: Evaluating the toxicity of
airborne particulate matter and nanoparticles by measuring oxidative stress
potential – a workshop report and consensus statement, Inhal. Toxicol., 20,
75–99, https://doi.org/10.1080/08958370701665517, 2008.
Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E.,
Abrams, J. Y., Sarnat, S. E., Klein, M., Mulholland, J. A., and Russell, A.
G.: Review of Acellular Assays of Ambient Particulate Matter Oxidative
Potential: Methods and Relationships with Composition, Sources, and Health
Effects, Environ. Sci. Technol., 53, 4003–4019,
https://doi.org/10.1021/acs.est.8b03430, 2019.
Borm, P. J. A., Kelly, F., Künzli, N., Schins, R. P. F., and Donaldson,
K.: Oxidant generation by particulate matter: from biologically effective
dose to a promising, novel metric, Occup. Environ. Med., 64, 73–74,
https://doi.org/10.1136/oem.2006.029090, 2007.
Calas, A., Uzu, G., Kelly, F. J., Houdier, S., Martins, J. M. F., Thomas, F., Molton, F., Charron, A., Dunster, C., Oliete, A., Jacob, V., Besombes, J.-L., Chevrier, F., and Jaffrezo, J.-L.: Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM10 samples from the city of Chamonix (France), Atmos. Chem. Phys., 18, 7863–7875, https://doi.org/10.5194/acp-18-7863-2018, 2018.
Charrier, J. G. and Anastasio, C.: Impacts of Antioxidants on Hydroxyl
Radical Production from Individual and Mixed Transition Metals in a
Surrogate Lung Fluid, Atmos. Environ. (Oxford, England: 1994), 45,
7555–7562, https://doi.org/10.1016/j.atmosenv.2010.12.021, 2011.
Charrier, J. G. and Anastasio, C.: Rates of Hydroxyl Radical Production from
Transition Metals and Quinones in a Surrogate Lung Fluid, Environ. Sci.
Technol., 49, 9317–9325, https://doi.org/10.1021/acs.est.5b01606, 2015.
Charrier, J. G., McFall, A. S., Vu, K. K. T., Baroi, J., Olea, C., Hasson,
A., and Anastasio, C.: A bias in the “mass-normalized” DTT response – An
effect of non-linear concentration-response curves for copper and manganese,
Atmos. Environ., 144, 325–334, https://doi.org/10.1016/j.atmosenv.2016.08.071, 2016.
Chen, X., Zhong, Z., Xu, Z., Chen, L., and Wang, Y.:
2',7'-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen
species measurement: Forty years of application and controversy, Free Radic
Res., 44, 587–604, https://doi.org/10.3109/10715761003709802, 2010.
Chen, X., Walker, J. T., and Geron, C.: Chromatography related performance of the Monitor for AeRosols and GAses in ambient air (MARGA): laboratory and field-based evaluation, Atmos. Meas. Tech., 10, 3893–3908, https://doi.org/10.5194/amt-10-3893-2017, 2017.
Cho, A. K., Sioutas, C., Miguel, A. H., Kumagai, Y., Schmitz, D. A., Singh,
M., Eiguren-Fernandez, A., and Froines, J. R.: Redox activity of airborne
particulate matter at different sites in the Los Angeles Basin, Environ.
Res., 99, 40–47, https://doi.org/10.1016/j.envres.2005.01.003, 2005.
Delfino, R. J., Sioutas, C., and Malik, S.: Potential role of ultrafine
particles in associations between airborne particle mass and cardiovascular
health, Environ. Health Perspect., 113, 934–946,
https://doi.org/10.1289/ehp.7938, 2005.
Delfino, R. J., Staimer, N., Tjoa, T., Gillen, D. L., Schauer, J. J., and
Shafer, M. M.: Airway inflammation and oxidative potential of air pollutant
particles in a pediatric asthma panel, J. Expo Sci. Environ. Epidemiol., 23,
466–473, https://doi.org/10.1038/jes.2013.25, 2013.
Dou, J., Lin, P., Kuang, B.-Y., and Yu, J.: Reactive Oxygen Species
Production Mediated by Humic-like Substances in Atmospheric Aerosols:
Enhancement Effects by Pyridine, Imidazole, and Their Derivatives, Environ.
Sci. Technol., 49, 6457–6465, https://doi.org/10.1021/es5059378, 2015.
Ehhalt, D. H. and Rohrer, F.: Dependence of the OH concentration on solar
UV, J. Geophys. Res.-Atmos., 105, 3565–3571,
https://doi.org/10.1029/1999jd901070, 2000.
Eiguren-Fernandez, A., Kreisberg, N., and Hering, S.: An online monitor of the oxidative capacity of aerosols (o-MOCA), Atmos. Meas. Tech., 10, 633–644, https://doi.org/10.5194/amt-10-633-2017, 2017.
Fang, T., Verma, V., Guo, H., King, L. E., Edgerton, E. S., and Weber, R. J.: A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE), Atmos. Meas. Tech., 8, 471–482, https://doi.org/10.5194/amt-8-471-2015, 2015.
Fang, T., Verma, V., Bates, J. T., Abrams, J., Klein, M., Strickland, M. J., Sarnat, S. E., Chang, H. H., Mulholland, J. A., Tolbert, P. E., Russell, A. G., and Weber, R. J.: Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays, Atmos. Chem. Phys., 16, 3865–3879, https://doi.org/10.5194/acp-16-3865-2016, 2016.
Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R. J.: Highly
Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link
between Sulfate and Aerosol Toxicity, Environ. Sci. Technol., 51, 2611–2620,
https://doi.org/10.1021/acs.est.6b06151, 2017.
Ghio, A. J., Carraway, M. S., and Madden, M. C.: Composition of air
pollution particles and oxidative stress in cells, tissues, and living
systems, J. Toxicol. Environ. Health. Part B, Critical Reviews, 15, 1–21,
https://doi.org/10.1080/10937404.2012.632359, 2012.
Guo, Z., Guo, Q., Chen, S., Zhu, B., Zhang, Y., Yu, J., and Guo, Z.: Study
on pollution behavior and sulfate formation during the typical haze event in
Nanjing with water soluble inorganic ions and sulfur isotopes, Atmos. Res.,
217, 198–207, https://doi.org/10.1016/j.atmosres.2018.11.009,
2019.
Hedayat, F., Stevanovic, S., Miljevic, B., Bottle, S., and Ristovski, Z.:
Review – Evaluating the molecular assays for measuring the oxidative
potential of particulate matter, Chem. Ind. Chem. Eengq., 21, 31–31,
https://doi.org/10.2298/CICEQ140228031H, 2014.
Hellack, B., Quass, U., Nickel, C., Wick, G., Schins, R. P. F., and
Kuhlbusch, T. A. J.: Oxidative potential of particulate matter at a German
motorway, Environ. Sci. Process. Impacts, 17, 868–876,
https://doi.org/10.1039/c4em00605d, 2015.
Hemmilä, M., Hellén, H., Virkkula, A., Makkonen, U., Praplan, A. P., Kontkanen, J., Ahonen, L., Kulmala, M., and Hakola, H.: Amines in boreal forest air at SMEAR II station in Finland, Atmos. Chem. Phys., 18, 6367–6380, https://doi.org/10.5194/acp-18-6367-2018, 2018.
Huang, W., Zhang, Y., Zhang, Y., Zeng, L., Dong, H., Huo, P., Fang, D., and
Schauer, J. J.: Development of an automated sampling-analysis system for
simultaneous measurement of reactive oxygen species (ROS) in gas and
particle phases: GAC-ROS, Atmos. Environ., 134, 18–26, https://doi.org/10.1016/j.atmosenv.2016.03.038, 2016.
Janssen, N. A., Strak, M., Yang, A., Hellack, B., Kelly, F. J., Kuhlbusch,
T. A., Harrison, R. M., Brunekreef, B., Cassee, F. R., Steenhof, M., and
Hoek, G.: Associations between three specific a-cellular measures of the
oxidative potential of particulate matter and markers of acute airway and
nasal inflammation in healthy volunteers, Occup. Environ. Med., 72, 49–56,
https://doi.org/10.1136/oemed-2014-102303, 2015.
Li, Q., Wyatt, A., and Kamens, R. M.: Oxidant generation and toxicity
enhancement of aged-diesel exhaust, Atmos. Environ., 43, 1037–1042,
10.1016/j.atmosenv.2008.11.018, 2009.
Li, Y., Zhu, T., Zhao, J., and Xu, B.: Interactive enhancements of ascorbic
acid and iron in hydroxyl radical generation in quinone redox cycling,
Environ. Sci. Technol., 46, 10302–10309, https://doi.org/10.1021/es301834r,
2012.
Lin, M. and Yu, J. Z.: Dithiothreitol (DTT) concentration effect and its
implications on the applicability of DTT assay to evaluate the oxidative
potential of atmospheric aerosol samples, Environ. Pollut., 251, 938–944,
https://doi.org/10.1016/j.envpol.2019.05.074, 2019.
Liu, Q., Baumgartner, J., Zhang, Y., Liu, Y., Sun, Y., and Zhang, M.:
Oxidative potential and inflammatory impacts of source apportioned ambient
air pollution in Beijing, Environ. Sci. Technol., 48, 12920–12929,
https://doi.org/10.1021/es5029876, 2014.
Liu, X., Zhang, Y.-L., Peng, Y., Xu, L., Zhu, C., Cao, F., Zhai, X., Haque, M. M., Yang, C., Chang, Y., Huang, T., Xu, Z., Bao, M., Zhang, W., Fan, M., and Lee, X.: Chemical and optical properties of carbonaceous aerosols in Nanjing, eastern China: regionally transported biomass burning contribution, Atmos. Chem. Phys., 19, 11213–11233, https://doi.org/10.5194/acp-19-11213-2019, 2019.
Lodovici, M. and Bigagli, E.: Oxidative stress and air pollution exposure,
J. Toxicol., 2011, 487074–487083, https://doi.org/10.1155/2011/487074, 2011.
Pal, A. K., Bello, D., Budhlall, B., Rogers, E., and Milton, D. K.:
Screening for Oxidative Stress Elicited by Engineered Nanomaterials:
Evaluation of Acellular DCFH Assay, Dose Response, 10, 308–330,
https://doi.org/10.2203/dose-response.10-036.Pal, 2012.
Perrone, M. G., Zhou, J., Malandrino, M., Sangiorgi, G., Rizzi, C., Ferrero,
L., Dommen, J., and Bolzacchini, E.: PM chemical composition and oxidative
potential of the soluble fraction of particles at two sites in the urban
area of Milan, Northern Italy, Atmos. Environ., 128, 104–113,
https://doi.org/10.1016/j.atmosenv.2015.12.040, 2016.
Pöschl, U. and Shiraiwa, M.: Multiphase chemistry at the
atmosphere-biosphere interface influencing climate and public health in the
anthropocene, Chem. Rev., 115, 4440–4475,
https://doi.org/10.1021/cr500487s, 2015.
Puthussery, J. V., Zhang, C., and Verma, V.: Development and field testing of an online instrument for measuring the real-time oxidative potential of ambient particulate matter based on dithiothreitol assay, Atmos. Meas. Tech., 11, 5767–5780, https://doi.org/10.5194/amt-11-5767-2018, 2018.
Rohrer, F. and Berresheim, H.: Strong correlation between levels of
tropospheric hydroxyl radicals and solar ultraviolet radiation, Nature, 442,
184–187, https://doi.org/10.1038/nature04924, 2006.
Rumsey, I. C., Cowen, K. A., Walker, J. T., Kelly, T. J., Hanft, E. A., Mishoe, K., Rogers, C., Proost, R., Beachley, G. M., Lear, G., Frelink, T., and Otjes, R. P.: An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for https://doi.org/10.5194/acp-14-5639-2014, 2014.
Sameenoi, Y., Koehler, K., Shapiro, J., Boonsong, K., Sun, Y., Collett, J.,
Jr., Volckens, J., and Henry, C. S.: Microfluidic electrochemical sensor for
on-line monitoring of aerosol oxidative activity, J. Am. Chem. Soc., 134,
10562–10568, https://doi.org/10.1021/ja3031104, 2012.
Stevanovic, S., Vaughan, A., Hedayat, F., Salimi, F., Rahman, M. M., Zare,
A., Brown, R. A., Brown, R. J., Wang, H., Zhang, Z., Wang, X., Bottle, S.
E., Yang, I. A., and Ristovski, Z. D.: Oxidative potential of gas phase
combustion emissions – An underestimated and potentially harmful component
of air pollution from combustion processes, Atmos. Environ., 158,
227–235, https://doi.org/10.1016/j.atmosenv.2017.03.041, 2017.
Stieger, B., Spindler, G., van Pinxteren, D., Grúner, A., Wallasch, M., and Herrmann, H.: Development of an online-coupled MARGA upgrade for the 2 h interval quantification of low-molecular-weight organic acids in the gas and particle phases, Atmos. Meas. Tech., 12, 281–298, https://doi.org/10.5194/amt-12-281-2019, 2019.
Velali, E., Papachristou, E., Pantazaki, A., Choli-Papadopoulou, T., Planou,
S., Kouras, A., Manoli, E., Besis, A., Voutsa, D., and Samara, C.: Redox
activity and in vitro bioactivity of the water-soluble fraction of urban
particulate matter in relation to particle size and chemical composition,
Environ. Pollut., 208, 774–786, https://doi.org/10.1016/j.envpol.2015.10.058, 2016.
Visentin, M., Pagnoni, A., Sarti, E., and Pietrogrande, M. C.: Urban
PM2.5 oxidative potential: Importance of chemical species and
comparison of two spectrophotometric cell-free assays, Environ. Pollut.,
219, 72–79, https://doi.org/10.1016/j.envpol.2016.09.047, 2016.
Vreeland, H., Weber, R., Bergin, M., Greenwald, R., Golan, R., Russell, A.
G., Verma, V., and Sarnat, J. A.: Oxidative potential of PM2.5 during
Atlanta rush hour: Measurements of in-vehicle dithiothreitol (DTT) activity,
Atmos. Environ., 165, 169–178, https://doi.org/10.1016/j.atmosenv.2017.06.044, 2017.
Wang, J., Lin, X., Lu, L., Wu, Y., Zhang, H., Lv, Q., Liu, W., Zhang, Y.,
and Zhuang, S.: Temporal variation of oxidative potential of water soluble
components of ambient PM2.5 measured by dithiothreitol (DTT) assay,
Sci. Total Environ., 649, 969–978, https://doi.org/10.1016/j.scitotenv.2018.08.375, 2019.
Wragg, F. P. H., Fuller, S. J., Freshwater, R., Green, D. C., Kelly, F. J., and Kalberer, M.: An automated online instrument to quantify aerosol-bound reactive oxygen species (ROS) for ambient measurement and health-relevant aerosol studies, Atmos. Meas. Tech., 9, 4891–4900, https://doi.org/10.5194/amt-9-4891-2016, 2016.
Xiong, Q., Yu, H., Wang, R., Wei, J., and Verma, V.: Rethinking
Dithiothreitol-Based Particulate Matter Oxidative Potential: Measuring
Dithiothreitol Consumption versus Reactive Oxygen Species Generation,
Environ. Sci. Technol., 51, 6507–6514,
https://doi.org/10.1021/acs.est.7b01272, 2017.
Yang, A., Jedynska, A., Hellack, B., Kooter, I., Hoek, G., Brunekreef, B.,
Kuhlbusch, T. A. J., Cassee, F. R., and Janssen, N. A. H.: Measurement of
the oxidative potential of PM2.5 and its constituents: The effect of
extraction solvent and filter type, Atmos. Environ., 83, 35–42,
https://doi.org/10.1016/j.atmosenv.2013.10.049, 2014.
Yu, S., Liu, W., Xu, Y., Yi, K., Zhou, M., Tao, S., and Liu, W.:
Characteristics and oxidative potential of atmospheric PM2.5 in
Beijing: Source apportionment and seasonal variation, Sci. Total Environ.,
650, 277–287, https://doi.org/10.1016/j.scitotenv.2018.09.021,
2019.
Zhang, C., Yang, C., Liu, X., Cao, F., and Zhang, Y.-l.: Insight into the
photochemistry of atmospheric oxalate through hourly measurements in the
northern suburbs of Nanjing, China, Sci. Total Environ., 719, 137416,
https://doi.org/10.1016/j.scitotenv.2020.137416, 2020.
Short summary
We introduced an online method to simultaneously determine the content of inorganic salt ions and reactive oxygen species (ROS) in PM2.5 hour by hour. We verified the accuracy and precision of the instrument. And we got the daily changes in ROS and the main sources that affect ROS. This breakthrough enables the quantitative assessment of atmospheric particulate matter ROS at the diurnal scale, providing an effective tool to study sources and environmental impacts of ROS.
We introduced an online method to simultaneously determine the content of inorganic salt ions...