Articles | Volume 15, issue 16
https://doi.org/10.5194/amt-15-4709-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-4709-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Balloon-borne aerosol–cloud interaction studies (BACIS): field campaigns to understand and quantify aerosol effects on clouds
Department of Space, National Atmospheric Research Laboratory (NARL), Gadanki, 517 112, India
Madineni Venkat Ratnam
Department of Space, National Atmospheric Research Laboratory (NARL), Gadanki, 517 112, India
Masatomo Fujiwara
Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
Herman Russchenberg
Department of Geoscience and Remote Sensing, Delft University of
Technology, Delft, 2628CD, the Netherlands
Frank G. Wienhold
Institute of Atmospheric and Climate Science (IAC), Universitaetstrasse 16, 8092 Zurich, Switzerland
Bomidi Lakshmi Madhavan
Department of Space, National Atmospheric Research Laboratory (NARL), Gadanki, 517 112, India
Mekalathur Roja Raman
Department of Physics, Sri Venkateswara University, Tirupati, 517 502, India
now at: Center for Remote sensing and Geo Informatics, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
Renju Nandan
Department of Space, National Atmospheric Research Laboratory (NARL), Gadanki, 517 112, India
Sivan Thankamani Akhil Raj
Department of Space, National Atmospheric Research Laboratory (NARL), Gadanki, 517 112, India
Alladi Hemanth Kumar
Department of Space, National Atmospheric Research Laboratory (NARL), Gadanki, 517 112, India
Saginela Ravindra Babu
Department of Space, National Atmospheric Research Laboratory (NARL), Gadanki, 517 112, India
now at: Department of Atmospheric Sciences, National Central University, Jhongli City, Taoyuan 320, Taiwan
Related authors
Nelli Narendra Reddy, Madineni Venkat Ratnam, Ghouse Basha, and Varaha Ravikiran
Atmos. Chem. Phys., 18, 11709–11727, https://doi.org/10.5194/acp-18-11709-2018, https://doi.org/10.5194/acp-18-11709-2018, 2018
Short summary
Short summary
Cloud vertical structure affects large-scale atmosphere circulation by altering gradients in total diabatic heating and cooling and latent heat release. Detailed cloud vertical structure in all seasons, including diurnal variation over the Indian region, is made for the first time. The detected cloud layers are verified with independent observations using cloud particle sensor sonde. Heating and cooling in the troposphere and lower stratosphere due to these cloud layers are also investigated.
H. S. Gadhavi, K. Renuka, V. Ravi Kiran, A. Jayaraman, A. Stohl, Z. Klimont, and G. Beig
Atmos. Chem. Phys., 15, 1447–1461, https://doi.org/10.5194/acp-15-1447-2015, https://doi.org/10.5194/acp-15-1447-2015, 2015
Short summary
Short summary
Emission inventories are a key component of simulating past, present and future climate. In this article we have evaluated three black carbon emission inventories for emissions of India using observations made from a strategic location. Annual average simulated black carbon concentration is found to be 35% to 60% lower than observed concentration because of underestimation of emissions of southern India in the inventories.
M. N. Sai Suman, H. Gadhavi, V. Ravi Kiran, A. Jayaraman, and S. V. B. Rao
Atmos. Meas. Tech., 7, 907–917, https://doi.org/10.5194/amt-7-907-2014, https://doi.org/10.5194/amt-7-907-2014, 2014
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
Atmos. Chem. Phys., 24, 14209–14238, https://doi.org/10.5194/acp-24-14209-2024, https://doi.org/10.5194/acp-24-14209-2024, 2024
Short summary
Short summary
This study investigates the formation mechanism of a tropopause cirrus cloud layer observed at extremely cold temperatures over Hyderabad in India during the 2017 Asian summer monsoon using balloon-borne sensors. Ice crystals smaller than 50 µm were found in this optically thin cirrus cloud layer. Combined analysis of back trajectories, satellite, and model data revealed that the formation of this layer was influenced by waves and stratospheric hydration induced by typhoon Hato.
Vadassery Neelamana Santhosh, Bomidi Lakshmi Madhavan, Sivan Thankamani Akhil Raj, Madineni Venkat Ratnam, Jean-Paul Vernier, and Frank Gunther Wienhold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2861, https://doi.org/10.5194/egusphere-2024-2861, 2024
Short summary
Short summary
Our study examines a lesser-known atmospheric feature, the Asian Tropopause Aerosol Layer, located high above Earth. We investigated how different aerosols, such as sulfates, nitrates, and pollutants, influence heat entering and leaving the atmosphere. The results show that these particles can alter temperature patterns, especially during the Asian summer monsoon. This research improves our understanding of how human activities may affect regional climate.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Hengheng Zhang, Christian Rolf, Ralf Tillmann, Christian Wesolek, Frank Gunther Wienhold, Thomas Leisner, and Harald Saathoff
Aerosol Research, 2, 135–151, https://doi.org/10.5194/ar-2-135-2024, https://doi.org/10.5194/ar-2-135-2024, 2024
Short summary
Short summary
Our study employs advanced tools, including scanning lidar, balloons, and UAVs, to explore aerosol particles in the atmosphere. The scanning lidar offers distinctive near-ground-level insights, enriching our comprehension of aerosol distribution from ground level to the free troposphere. This research provides valuable data for comparing remote sensing and in situ aerosol measurements, advancing our understanding of aerosol impacts on radiative transfer, clouds, and air quality.
Takuji Sugidachi, Masatomo Fujiwara, Kensaku Shimizu, Shin-Ya Ogino, Junko Suzuki, and Ruud J. Dirksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-635, https://doi.org/10.5194/egusphere-2024-635, 2024
Short summary
Short summary
A Peltier-based chilled-mirror hygrometer, SKYDEW, has been developed to measure tropospheric and stratospheric water vapor. Continuous accurate measurements of water vapor are essential for climate monitoring. More than 40 soundings with SKYDEW have been conducted since 2011 to evaluate the performance. The result of soundings at tropical and mid-latitudes demonstrated that SKYDEW is able to measure up to an altitude of 20–25 km for daytime soundings and above 25 km for nighttime soundings.
Steven Soon-Kai Kong, Saginela Ravindra Babu, Sheng-Hsiang Wang, Stephen M. Griffith, Jackson Hian-Wui Chang, Ming-Tung Chuang, Guey-Rong Sheu, and Neng-Huei Lin
Atmos. Chem. Phys., 24, 1041–1058, https://doi.org/10.5194/acp-24-1041-2024, https://doi.org/10.5194/acp-24-1041-2024, 2024
Short summary
Short summary
In this study, we combined ground observations from 7-SEAS Dongsha Experiment, MERRA-2 reanalysis, and MODIS satellite images for evaluation and improvement of the CMAQ dust model for cases of East Asian Dust reaching the Taiwan region, including Dongsha in the western Pacific. We proposed a better CMAQ dust treatment over East Asia and for the first time revealed the impact of typhoons on dust transport.
Saginela Ravindra Babu, Chang-Feng Ou-Yang, Stephen M. Griffith, Shantanu Kumar Pani, Steven Soon-Kai Kong, and Neng-Huei Lin
Atmos. Chem. Phys., 23, 4727–4740, https://doi.org/10.5194/acp-23-4727-2023, https://doi.org/10.5194/acp-23-4727-2023, 2023
Short summary
Short summary
In October 2006 and 2015, extensive fire episodes occurred in Indonesia, releasing an enormous amount of CO emissions. By combining in situ and satellite CO measurements and reanalysis products, we reported plausible transport pathways of CO from Indonesia to the Lulin Atmospheric Background Station (LABS; 23.47° N, 120.87° E; 2862 m a.s.l.) in Taiwan. We identified (i) horizontal transport in the free troposphere and (ii) vertical transport through the Hadley circulation.
Shunsuke Hoshino, Takuji Sugidachi, Kensaku Shimizu, Eriko Kobayashi, Masatomo Fujiwara, and Masami Iwabuchi
Atmos. Meas. Tech., 15, 5917–5948, https://doi.org/10.5194/amt-15-5917-2022, https://doi.org/10.5194/amt-15-5917-2022, 2022
Short summary
Short summary
GRUAN data products (GDPs) from Meisei iMS-100 and Vaisala RS92 were compared with 59 dual sounding data. For daytime observations, the iMS-100 temperature is around 0.5 K lower than RS92-GDP in the stratosphere, but for nighttime observations, the difference is around −0.1 K, and data are mostly in agreement. For relative humidity (RH), iMS-100 is around 1–2 % RH higher in the troposphere and 1 % RH smaller in the stratosphere than RS92, but both GDPs are in agreement for most of the profile.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
Luca Palchetti, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Bertrand Cluzet, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Dina Khordakova, Alessio Montori, Hilke Oetjen, Markus Rettinger, Christian Rolf, Dirk Schuettemeyer, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Frank Gunther Wienhold
Earth Syst. Sci. Data, 13, 4303–4312, https://doi.org/10.5194/essd-13-4303-2021, https://doi.org/10.5194/essd-13-4303-2021, 2021
Short summary
Short summary
The FIRMOS far-infrared (IR) prototype, developed for the preparation of the ESA FORUM mission, was deployed for the first time at Mt. Zugspitze at 3000 m altitude to measure the far-IR spectrum of atmospheric emissions. The measurements, including co-located radiometers, lidars, radio soundings, weather, and surface properties, provide a unique dataset to study radiative properties of water vapour, cirrus clouds, and snow emissivity over the IR emissions, including the under-explored far-IR.
Rohit Chakraborty, Arindam Chakraborty, Ghouse Basha, and Madineni Venkat Ratnam
Atmos. Chem. Phys., 21, 11161–11177, https://doi.org/10.5194/acp-21-11161-2021, https://doi.org/10.5194/acp-21-11161-2021, 2021
Short summary
Short summary
In this study, urbanization-induced surface warming has been found to trigger prominent changes in upper-troposphere–lower-stratosphere regions leading to stronger and more frequent lightning extremes over India. Consequently, the implementation of this hypothesis in global climate models reveals that lightning frequency and intensity values across India will rise by ~10–25 % and 15–50 %, respectively, by 2100 at the current urbanization rate, which should be alarming for present policymakers.
Karolina Sarna, David P. Donovan, and Herman W. J. Russchenberg
Atmos. Meas. Tech., 14, 4959–4970, https://doi.org/10.5194/amt-14-4959-2021, https://doi.org/10.5194/amt-14-4959-2021, 2021
Short summary
Short summary
We show a method for obtaining cloud optical extinction with a lidar system. We use a scheme in which a lidar signal is inverted based on the estimated value of cloud extinction at the far end of the cloud and apply a correction for multiple scattering within the cloud and a range resolution correction. By applying our technique, we show that it is possible to obtain the cloud optical extinction with an error better than 5 % up to 90 m within the cloud.
Saginela Ravindra Babu, Madineni Venkat Ratnam, Ghouse Basha, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 5533–5547, https://doi.org/10.5194/acp-21-5533-2021, https://doi.org/10.5194/acp-21-5533-2021, 2021
Short summary
Short summary
The present study explores the detailed structure, dynamics, and trace gas variability in the Asian summer monsoon anticyclone (ASMA) in the extreme El Niño of 2015/16. The results find the structure of the ASMA shows strong spatial variability between July and August. A West Pacific mode of the anticyclone is noticed in August. A significant lowering of tropospheric tracers and strong increase in stratospheric tracers are found. The tropopause temperatures also exhibit a warming in the ASMA.
Anton Lopatin, Oleg Dubovik, David Fuertes, Georgiy Stenchikov, Tatyana Lapyonok, Igor Veselovskii, Frank G. Wienhold, Illia Shevchenko, Qiaoyun Hu, and Sagar Parajuli
Atmos. Meas. Tech., 14, 2575–2614, https://doi.org/10.5194/amt-14-2575-2021, https://doi.org/10.5194/amt-14-2575-2021, 2021
Short summary
Short summary
The article presents novelties in characterizing fine particles suspended in the air by means of combining various measurements that observe light propagation in atmosphere. Several non-coincident observations (some of which require sunlight, while others work only at night) could be united under the assumption that aerosol properties do not change drastically at nighttime. It also proposes how to describe particles' composition in a simplified manner that uses new types of observations.
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021, https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Short summary
Lidar aerosol particle measurements in Japan during the summer of 2018 were found to detect the eastward extension of the Asian tropopause aerosol layer from the Asian summer monsoon anticyclone in the lower stratosphere. Analysis of various other data indicates that the observed enhanced particle levels are due to eastward-shedding vortices from the anticyclone, originating from pollutants emitted in Asian countries and transported vertically by convection in the Asian summer monsoon region.
Simone Brunamonti, Giovanni Martucci, Gonzague Romanens, Yann Poltera, Frank G. Wienhold, Maxime Hervo, Alexander Haefele, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 21, 2267–2285, https://doi.org/10.5194/acp-21-2267-2021, https://doi.org/10.5194/acp-21-2267-2021, 2021
Short summary
Short summary
Lidar (light detection and ranging) is a class of remote-sensing instruments that are widely used for the monitoring of aerosol properties in the lower levels of the atmosphere, yet their measurements are affected by several sources of uncertainty. Here we present the first comparison of two lidar systems against a fully independent instrument carried by meteorological balloons. We show that both lidars achieve a good agreement with the high-precision balloon measurements up to 6 km altitude.
Kizhathur Narasimhan Uma, Siddarth Shankar Das, Madineni Venkat Ratnam, and Kuniyil Viswanathan Suneeth
Atmos. Chem. Phys., 21, 2083–2103, https://doi.org/10.5194/acp-21-2083-2021, https://doi.org/10.5194/acp-21-2083-2021, 2021
Short summary
Short summary
Reanalysis data of vertical wind (w) are widely used by the atmospheric community to determine various calculations of atmospheric circulations, diabatic heating, convection, etc. There are no studies that assess the available reanalysis data with respect to observations. The present study assesses for the first time all the reanalysis w by comparing it with 20 years of radar data from Gadanki and Kototabang and shows that downdrafts and peaks in the updrafts are not produced in the reanalyses.
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech., 14, 239–268, https://doi.org/10.5194/amt-14-239-2021, https://doi.org/10.5194/amt-14-239-2021, 2021
Short summary
Short summary
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon is also a source of contamination, but only at higher levels during the ascent.
Sreeharsha Hanumanthu, Bärbel Vogel, Rolf Müller, Simone Brunamonti, Suvarna Fadnavis, Dan Li, Peter Ölsner, Manish Naja, Bhupendra Bahadur Singh, Kunchala Ravi Kumar, Sunil Sonbawne, Hannu Jauhiainen, Holger Vömel, Beiping Luo, Teresa Jorge, Frank G. Wienhold, Ruud Dirkson, and Thomas Peter
Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, https://doi.org/10.5194/acp-20-14273-2020, 2020
Short summary
Short summary
During boreal summer, anthropogenic sources yield the Asian Tropopause Aerosol Layer (ATAL), found in Asia between about 13 and 18 km altitude. Balloon-borne measurements of the ATAL conducted in northern India in 2016 show the strong variability of the ATAL. To explain its observed variability, model simulations are performed to deduce the origin of air masses on the Earth's surface, which is important to develop recommendations for regulations of anthropogenic surface emissions of the ATAL.
Yoshio Kawatani, Toshihiko Hirooka, Kevin Hamilton, Anne K. Smith, and Masatomo Fujiwara
Atmos. Chem. Phys., 20, 9115–9133, https://doi.org/10.5194/acp-20-9115-2020, https://doi.org/10.5194/acp-20-9115-2020, 2020
Short summary
Short summary
This paper reports on a project to compare the representation of the semiannual oscillation (SAO) among six major global atmospheric reanalyses and with recent satellite observations. The differences among the zonal mean zonal wind as represented by the various reanalyses display a prominent equatorial maximum that increases with height. It is shown that assimilation of satellite temperature measurements is crucial for the realistic representation of the tropical upper stratospheric circulation.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
Saginela Ravindra Babu and Yuei-An Liou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-513, https://doi.org/10.5194/acp-2020-513, 2020
Revised manuscript not accepted
Short summary
Short summary
This is the first paper to utilize the high-resolution temperature measurements from the recently launched COSMIC-2 radio occultation data to delineate the detailed vertical structure and day-to-day temperature variability in response to the eruption of the Taal volcano in January 2020.
Ghouse Basha, M. Venkat Ratnam, and Pangaluru Kishore
Atmos. Chem. Phys., 20, 6789–6801, https://doi.org/10.5194/acp-20-6789-2020, https://doi.org/10.5194/acp-20-6789-2020, 2020
Short summary
Short summary
This study explores the variability of the Asian summer monsoon anticyclone (ASMA) spatial variability and trends using long-term observational and reanalysis data sets. The decadal variability of the anticyclone is very large at the edges compared with the core region. We propose that the transport process over the Tibetan Plateau and the Indian region is significant in active monsoon, strong monsoon and strong La Niña years. Thus, different phases of the monsoon are important in UTLS analyses.
Masatomo Fujiwara, Patrick Martineau, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 345–374, https://doi.org/10.5194/acp-20-345-2020, https://doi.org/10.5194/acp-20-345-2020, 2020
Short summary
Short summary
The global response of surface air temperature (SST) to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 is investigated using 11 global atmospheric reanalysis data sets. Multiple linear regression is applied, with a set of climatic indices orthogonalized, and the residuals are investigated. It is found that careful treatment of tropical SST variability is necessary to evaluate the surface response to volcanic eruptions in observations and reanalyses.
Ghouse Basha, M. Venkat Ratnam, Pangaluru Kishore, S. Ravindrababu, and Isabella Velicogna
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-743, https://doi.org/10.5194/acp-2019-743, 2019
Preprint withdrawn
Short summary
Short summary
The Asian Summer Monsoon Anticyclone (ASMA) plays an important role in confining the trace gases and aerosols for a longer period. This study explores the variability of tropopause parameters, trace gases and aerosols and its relation with ENSO and QBO in ASMA. Further, the influence of the Indian summer monsoon activity on the ASMA trace gases and aerosols is studied with respect to active and break spells of monsoon, strong and weak monsoon years and strong La Niña, El Niño years.
Rohit Chakraborty, Bijay Kumar Guha, Shamitaksha Talukdar, Madineni Venkat Ratnam, and Animesh Maitra
Atmos. Chem. Phys., 19, 12325–12341, https://doi.org/10.5194/acp-19-12325-2019, https://doi.org/10.5194/acp-19-12325-2019, 2019
Short summary
Short summary
The present study investigates the plausible aspects which influence the probability of drought occurrences over three Indian regions during the southwest Asian mid-monsoon period. The investigation reveals that an increasing tendency of dry day frequency (DDF) over urbanized regions in the last few decades has significant association with the abundance of anthropogenic aerosols. Additionally, future projections of DDF indicate a five-fold rise which can be a crucial concern for policy makers.
Young-Ha Kim, George N. Kiladis, John R. Albers, Juliana Dias, Masatomo Fujiwara, James A. Anstey, In-Sun Song, Corwin J. Wright, Yoshio Kawatani, François Lott, and Changhyun Yoo
Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, https://doi.org/10.5194/acp-19-10027-2019, 2019
Short summary
Short summary
Reanalyses are widely used products of meteorological variables, generated using observational data and assimilation systems. We compare six modern reanalyses, with focus on their representation of equatorial waves which are important in stratospheric variability and stratosphere–troposphere exchange. Agreement/spreads among the reanalyses in the spectral properties and spatial distributions of the waves are examined, and satellite impacts on the wave representation in reanalyses are discussed.
Qianshan He, Jianzhong Ma, Xiangdong Zheng, Xiaolu Yan, Holger Vömel, Frank G. Wienhold, Wei Gao, Dongwei Liu, Guangming Shi, and Tiantao Cheng
Atmos. Chem. Phys., 19, 8399–8406, https://doi.org/10.5194/acp-19-8399-2019, https://doi.org/10.5194/acp-19-8399-2019, 2019
Short summary
Short summary
An enhanced aerosol layer in the upper troposphere--lower stratosphere was observed by a COBALD over the Tibetan Plateau, in the summer of 2014. The color index of the enhanced aerosol layer indicates the prevalence of dominant fine particles with a mode radius < 0.1 μm. Unlike the very small particles at low relative humidity (RHi < 40%), the relatively large particles in the aerosol layer were generally very hydrophilic as their size increased dramatically with relative humidity.
Eriko Kobayashi, Shunsuke Hoshino, Masami Iwabuchi, Takuji Sugidachi, Kensaku Shimizu, and Masatomo Fujiwara
Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, https://doi.org/10.5194/amt-12-3039-2019, 2019
Short summary
Short summary
The authors carried out dual flights of RS-11G and RS92-SGP radiosondes and investigated the differences in the performance of the radiosondes to help characterize GRUAN data products. A novel aspect of GRUAN data products is that vertically resolved uncertainty estimates and metadata are provided for each sounding and comparison of GRUAN data products is important in securing the temporal homogeneity of climate data records.
Noersomadi, Toshitaka Tsuda, and Masatomo Fujiwara
Atmos. Chem. Phys., 19, 6985–7000, https://doi.org/10.5194/acp-19-6985-2019, https://doi.org/10.5194/acp-19-6985-2019, 2019
Short summary
Short summary
Characteristics of static stability (N2) in the tropical tropopause are analyzed using 0.1 km vertical resolution temperature profiles retrieved from COSMIC GNSS-RO. We define the tropopause inversion layer (TIL) by the sharp increase in N2 across the cold point tropopause (CPT) and the thickness of the enhanced peak in N2 just above the CPT. We investigated the TIL at the intraseasonal to interannual timescales above the Maritime Continent and Pacific Ocean with different land–sea distribution.
Rohit Chakraborty, Madineni Venkat Ratnam, and Shaik Ghouse Basha
Atmos. Chem. Phys., 19, 3687–3705, https://doi.org/10.5194/acp-19-3687-2019, https://doi.org/10.5194/acp-19-3687-2019, 2019
Short summary
Short summary
Intense convective phenomena are a common climatic feature in the Indian tropical region which occur during the pre-monsoon to post-monsoon seasons (April–October) and are generally accompanied by intense thunderstorms, lightning, and wind gusts with heavy rainfall. Here we show long-term trends of the parameters related to convection and instability obtained from 27 radiosonde stations across six subdivisions over the Indian region during the period 1980–2016.
Simone Brunamonti, Teresa Jorge, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, K. Ravi Kumar, Sunil Sonbawne, Susanne Meier, Deepak Singh, Frank G. Wienhold, Bei Ping Luo, Maxi Boettcher, Yann Poltera, Hannu Jauhiainen, Rijan Kayastha, Jagadishwor Karmacharya, Ruud Dirksen, Manish Naja, Markus Rex, Suvarna Fadnavis, and Thomas Peter
Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, https://doi.org/10.5194/acp-18-15937-2018, 2018
Short summary
Short summary
Based on balloon-borne measurements performed in India and Nepal in 2016–2017, we infer the vertical distributions of water vapor, ozone and aerosols in the atmosphere, from the surface to 30 km altitude. Our measurements show that the atmospheric dynamics of the Asian summer monsoon system over the polluted Indian subcontinent lead to increased concentrations of water vapor and aerosols in the high atmosphere (approximately 14–20 km altitude), which can have an important effect on climate.
Patrick Martineau, Jonathon S. Wright, Nuanliang Zhu, and Masatomo Fujiwara
Earth Syst. Sci. Data, 10, 1925–1941, https://doi.org/10.5194/essd-10-1925-2018, https://doi.org/10.5194/essd-10-1925-2018, 2018
Short summary
Short summary
This data set provides 6-hourly zonal-mean diagnostics derived from global atmospheric reanalyses on pressure levels. Data include basic variables, such as temperature and three-dimensional winds, advanced diagnostics based on the momentum and thermodynamic equations, and model-generated diabatic heating rates. Diagnostics are provided both on latitude–vertical grids corresponding to data as originally obtained from the reanalysis centers and on a standardized grid to facilitate intercomparison.
Nelli Narendra Reddy, Madineni Venkat Ratnam, Ghouse Basha, and Varaha Ravikiran
Atmos. Chem. Phys., 18, 11709–11727, https://doi.org/10.5194/acp-18-11709-2018, https://doi.org/10.5194/acp-18-11709-2018, 2018
Short summary
Short summary
Cloud vertical structure affects large-scale atmosphere circulation by altering gradients in total diabatic heating and cooling and latent heat release. Detailed cloud vertical structure in all seasons, including diurnal variation over the Indian region, is made for the first time. The detected cloud layers are verified with independent observations using cloud particle sensor sonde. Heating and cooling in the troposphere and lower stratosphere due to these cloud layers are also investigated.
Lukas Pfitzenmaier, Christine M. H. Unal, Yann Dufournet, and Herman W. J. Russchenberg
Atmos. Chem. Phys., 18, 7843–7862, https://doi.org/10.5194/acp-18-7843-2018, https://doi.org/10.5194/acp-18-7843-2018, 2018
Short summary
Short summary
In this paper, particle fall streaks are analyzed to understand ice particle growth processes within precipitating mixed-phase cloud systems. The analysis is done by rearranging spectral polarimetric radar measurements along the retrieved fall streaks. Therefore, it is possible to identify and study the growth of single ice particle populations from the top to the bottom of the cloud system. The results show that such small scale processes can be analyzed using a precipitation radar.
Dimitra Mamali, Eleni Marinou, Jean Sciare, Michael Pikridas, Panagiotis Kokkalis, Michael Kottas, Ioannis Binietoglou, Alexandra Tsekeri, Christos Keleshis, Ronny Engelmann, Holger Baars, Albert Ansmann, Vassilis Amiridis, Herman Russchenberg, and George Biskos
Atmos. Meas. Tech., 11, 2897–2910, https://doi.org/10.5194/amt-11-2897-2018, https://doi.org/10.5194/amt-11-2897-2018, 2018
Short summary
Short summary
The paper's scope is to evaluate the performance of in situ atmospheric aerosol instrumentation on board unmanned aerial vehicles (UAVs) and the performance of algorithms used to calculate the aerosol mass from remote sensing instruments by comparing the two independent techniques to each other. Our results indicate that UAV-based aerosol measurements (using specific in situ and remote sensing instrumentation) can provide reliable ways to determine the aerosol mass throughout the atmosphere.
Takatoshi Sakazaki, Masatomo Fujiwara, and Masato Shiotani
Atmos. Chem. Phys., 18, 1437–1456, https://doi.org/10.5194/acp-18-1437-2018, https://doi.org/10.5194/acp-18-1437-2018, 2018
Short summary
Short summary
Atmospheric solar tides in the stratosphere and lower mesosphere are examined using temperature data from five reanalyses and satellite measurements. The reanalyses agree reasonably well with each other and with the satellite observations, but the agreement among the reanalyses is weaker in the mesosphere. The assimilation of satellite data improves the representation of tides in the reanalyses, while long-term changes are mostly artificial and driven by changes in the input data employed.
Sivan Thankamani Akhil Raj, Madineni Venkat Ratnam, Daggumati Narayana Rao, and Boddam Venkata Krishna Murthy
Ann. Geophys., 36, 149–165, https://doi.org/10.5194/angeo-36-149-2018, https://doi.org/10.5194/angeo-36-149-2018, 2018
Short summary
Short summary
Ozone and water vapor are two potent greenhouse gases in the atmosphere. They influence the temperature structure greatly, particularly in the upper troposphere and lower stratosphere. We have investigated the long-term trends in these trace gases over the Indian region using long-term data (1993–2015) constructed from multi-satellite observations. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere and a good correlation between N2O and O3 is found.
Stephanie P. Rusli, David P. Donovan, and Herman W. J. Russchenberg
Atmos. Meas. Tech., 10, 4777–4803, https://doi.org/10.5194/amt-10-4777-2017, https://doi.org/10.5194/amt-10-4777-2017, 2017
Short summary
Short summary
A retrieval method exploiting a synergy of radar, lidar, and microwave radiometer measurements is developed to simultaneously derive microphysical properties of cloud and drizzle in a physically consistent way. After successful tests with simulated scenes, this technique is applied to data collected in Cabauw, the Netherlands. Evaluation of the results shows that the retrieved cloud and drizzle properties are consistent with what is derived from multiple independent retrieval methods.
Craig S. Long, Masatomo Fujiwara, Sean Davis, Daniel M. Mitchell, and Corwin J. Wright
Atmos. Chem. Phys., 17, 14593–14629, https://doi.org/10.5194/acp-17-14593-2017, https://doi.org/10.5194/acp-17-14593-2017, 2017
Short summary
Short summary
As part of the SPARC Reanalysis Intercomparison Project, we evaluate the temperature and wind structure of all the recent and past reanalyses with 2.5-degree monthly zonal mean data sets from 1979–2014. There is a distinct change in the temperature structure in the stratosphere in 1998. Zonal winds are in greater agreement than temperatures. All reanalyses have issues analysing the tropical stratospheric winds. Caution is advised for using reanalysis temperatures for trend detection.
Sean M. Davis, Michaela I. Hegglin, Masatomo Fujiwara, Rossana Dragani, Yayoi Harada, Chiaki Kobayashi, Craig Long, Gloria L. Manney, Eric R. Nash, Gerald L. Potter, Susann Tegtmeier, Tao Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, https://doi.org/10.5194/acp-17-12743-2017, 2017
Short summary
Short summary
Ozone and water vapor in the stratosphere are important gases that affect surface climate and absorb incoming solar ultraviolet radiation. These gases are represented in reanalyses, which create a complete picture of the state of Earth's atmosphere using limited observations. We evaluate reanalysis water vapor and ozone fidelity by intercomparing them, and comparing them to independent observations. Generally reanalyses do a good job at representing ozone, but have problems with water vapor.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Karolina Sarna and Herman W. J. Russchenberg
Atmos. Meas. Tech., 10, 1987–1997, https://doi.org/10.5194/amt-10-1987-2017, https://doi.org/10.5194/amt-10-1987-2017, 2017
Bomidi Lakshmi Madhavan, Hartwig Deneke, Jonas Witthuhn, and Andreas Macke
Atmos. Chem. Phys., 17, 3317–3338, https://doi.org/10.5194/acp-17-3317-2017, https://doi.org/10.5194/acp-17-3317-2017, 2017
Short summary
Short summary
A method has been introduced to assess the representativeness of the time series of a point measurement compared to results for a larger area centered around the measurement location. This method allows one to determine the optimal accuracy that can be achieved for the validation of satellite products for a given pixel footprint, or the evaluation of an atmospheric model with a given grid-cell resolution.
Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin, Cameron R. Homeyer, John A. Knox, Kirstin Krüger, Alyn Lambert, Craig S. Long, Patrick Martineau, Andrea Molod, Beatriz M. Monge-Sanz, Michelle L. Santee, Susann Tegtmeier, Simon Chabrillat, David G. H. Tan, David R. Jackson, Saroja Polavarapu, Gilbert P. Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S. Whitaker, and Cheng-Zhi Zou
Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, https://doi.org/10.5194/acp-17-1417-2017, 2017
Short summary
Short summary
We introduce the SPARC Reanalysis Intercomparison Project (S-RIP), review key concepts and elements of atmospheric reanalysis systems, and summarize the technical details of and differences among 11 of these systems. This work supports scientific studies and intercomparisons of reanalysis products by collecting these background materials and technical details into a single reference. We also address several common misunderstandings and points of confusion regarding reanalyses.
Sanjay Kumar Mehta, Madineni Venkat Ratnam, Sukumarapillai V. Sunilkumar, Daggumati Narayana Rao, and Boddapaty V. Krishna Murthy
Atmos. Chem. Phys., 17, 531–549, https://doi.org/10.5194/acp-17-531-2017, https://doi.org/10.5194/acp-17-531-2017, 2017
Short summary
Short summary
Study of the diurnal variation of the atmospheric boundary layer (ABL) height is important for the knowledge of pollutant dispersion, crucial for all living beings. The most difficult part in the study of the diurnal variation is in identification of the stable boundary layer which occurs ~ 50% of times only and mostly during nighttime winter. Surface temperature and clouds directly affect the diurnal pattern of the ABL. Thus, stronger (weaker) diurnal variation found during pre-monsoon (winter).
Masatomo Fujiwara, Takuji Sugidachi, Toru Arai, Kensaku Shimizu, Mayumi Hayashi, Yasuhisa Noma, Hideaki Kawagita, Kazuo Sagara, Taro Nakagawa, Satoshi Okumura, Yoichi Inai, Takashi Shibata, Suginori Iwasaki, and Atsushi Shimizu
Atmos. Meas. Tech., 9, 5911–5931, https://doi.org/10.5194/amt-9-5911-2016, https://doi.org/10.5194/amt-9-5911-2016, 2016
Short summary
Short summary
A meteorological balloon-borne cloud sensor called the cloud particle sensor (CPS) has been developed. The CPS can count the number of particles per second and can obtain the cloud phase information (i.e. liquid, ice, or mixed). Twenty-five test flights have been made between 2012 and 2015 at midlatitude and tropical sites. The results from the four flights are discussed.
Madineni Venkat Ratnam, Alladi Hemanth Kumar, and Achuthan Jayaraman
Atmos. Meas. Tech., 9, 5735–5745, https://doi.org/10.5194/amt-9-5735-2016, https://doi.org/10.5194/amt-9-5735-2016, 2016
Short summary
Short summary
Launch of INSAT-3D carrying a multi-spectral imager by the ISRO made it possible to obtain profiles of temperature and water vapour over India with higher temporal and vertical resolutions. Initial validation is made with the radiosonde, other satellites and reanalysis data sets. Good correlation between INSAT-3D and in situ measurements is noticed with a few cautions. Temperature data from INSAT-3D are of high quality and can be directly assimilated for better forecasts over India.
Sergey M. Khaykin, Jean-Pierre Pommereau, Emmanuel D. Riviere, Gerhard Held, Felix Ploeger, Melanie Ghysels, Nadir Amarouche, Jean-Paul Vernier, Frank G. Wienhold, and Dmitry Ionov
Atmos. Chem. Phys., 16, 12273–12286, https://doi.org/10.5194/acp-16-12273-2016, https://doi.org/10.5194/acp-16-12273-2016, 2016
Short summary
Short summary
The study makes use of a series of field experiments conducted in Brazil and aimed at studying the processes controlling the composition of the tropical lower stratosphere. High-resolution balloon-borne measurements together with global-coverage satellite observations and weather radar acquisitions are analysed using trajectory and transport modelling in order to evaluate the contribution of different transport pathways to the stratospheric water budget.
Sean M. Davis, Karen H. Rosenlof, Birgit Hassler, Dale F. Hurst, William G. Read, Holger Vömel, Henry Selkirk, Masatomo Fujiwara, and Robert Damadeo
Earth Syst. Sci. Data, 8, 461–490, https://doi.org/10.5194/essd-8-461-2016, https://doi.org/10.5194/essd-8-461-2016, 2016
Short summary
Short summary
This paper describes the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, whose main feature is a combined data product created by homogenizing multiple satellite records. This motivation for SWOOSH is that in order to study multiyear to decadal variability in ozone and water vapor concentrations, it is necessary to have a continuous and smooth record without artificial jumps in the data.
M. Venkat Ratnam, S. Ravindra Babu, S. S. Das, G. Basha, B. V. Krishnamurthy, and B. Venkateswararao
Atmos. Chem. Phys., 16, 8581–8591, https://doi.org/10.5194/acp-16-8581-2016, https://doi.org/10.5194/acp-16-8581-2016, 2016
Short summary
Short summary
The impact of cyclones that occurred over the north Indian Ocean during 2007–2013 on the STE process is quantified using satellite observations. It is shown that cyclones have a significant impact on the tropopause structure, ozone and water vapour budget, and consequentially STE in the UTLS region. The cross-tropopause mass flux from the stratosphere to the troposphere for cyclonic storms is found to be 0.05 ± 0.29 × 10−3 kg m−2, and for very severe cyclonic storms it is 0.5 ± 1.07 × 10−3 kg m−2.
K. K. Shukla, K. Niranjan Kumar, D. V. Phanikumar, R. K. Newsom, V. R. Kotamarthi, T. B. M. J. Ouarda, and M. V. Ratnam
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-162, https://doi.org/10.5194/amt-2016-162, 2016
Revised manuscript not accepted
Short summary
Short summary
Estimation of Cloud base height was carried out by using various ground based instruments (Doppler Lidar and Ceilometer) and satellite datasets (MODIS) over central Himalayan region for the first time. The present study demonstrates the potential of Doppler Lidar in precise estimation of cloud base height and updraft velocities. More such deployments will be invaluable inputs for regional weather prediction models over complex Himalayan terrains.
Yoshio Kawatani, Kevin Hamilton, Kazuyuki Miyazaki, Masatomo Fujiwara, and James A. Anstey
Atmos. Chem. Phys., 16, 6681–6699, https://doi.org/10.5194/acp-16-6681-2016, https://doi.org/10.5194/acp-16-6681-2016, 2016
Short summary
Short summary
This paper compares the representation of the monthly-mean zonal wind in the equatorial stratosphere among major global atmospheric reanalysis data sets. Differences among reanalysis display a prominent equatorial maximum, indicating the particularly challenging nature of the reanalysis problem in the low-latitude stratosphere. Our study confirms that the high accuracy in situ wind measurements have provided important constraints to reanalyses of circulation in the tropical stratosphere.
Siddarth Shankar Das, Madineni Venkat Ratnam, Kizhathur Narasimhan Uma, Kandula Venkata Subrahmanyam, Imran Asatar Girach, Amit Kumar Patra, Sundaresan Aneesh, Kuniyil Viswanathan Suneeth, Karanam Kishore Kumar, Amit Parashuram Kesarkar, Sivarajan Sijikumar, and Geetha Ramkumar
Atmos. Chem. Phys., 16, 4837–4847, https://doi.org/10.5194/acp-16-4837-2016, https://doi.org/10.5194/acp-16-4837-2016, 2016
Short summary
Short summary
The present study examines the role of tropical cyclones in the enhancement of tropospheric ozone. The most significant and new observation reported is the increase in the upper-tropospheric ozone by 20–50 ppbv, which has extended down to the middle and lower troposphere. The descent rate of enhanced ozone layer during the passage of tropical cyclone is 0.8–1 km day−1. Enhancement of surface ozone concentration by ~ 10 ppbv in the daytime and 10–15 ppbv at night-time is observed.
Sanjeev Dwivedi, M. S. Narayanan, M. Venkat Ratnam, and D. Narayana Rao
Atmos. Chem. Phys., 16, 4497–4509, https://doi.org/10.5194/acp-16-4497-2016, https://doi.org/10.5194/acp-16-4497-2016, 2016
Short summary
Short summary
Monsoon inversion (MI) over the Arabian Sea is one of the important characteristics associated with the monsoon activity over Indian region. The initiation and dissipation times of MI, their percentage of occurrence, strength etc., has been examined. We suggest MI could also be included as one of the semi-permanent features of southwest monsoon.
Bomidi Lakshmi Madhavan, John Kalisch, and Andreas Macke
Atmos. Meas. Tech., 9, 1153–1166, https://doi.org/10.5194/amt-9-1153-2016, https://doi.org/10.5194/amt-9-1153-2016, 2016
Short summary
Short summary
As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of pyranometer stations (99 nos.) was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. This paper provides the details of this unique setup of the network, data, quality control, uncertainty estimation and discussion of some case days.
Karolina Sarna and Herman W. J. Russchenberg
Atmos. Meas. Tech., 9, 1039–1050, https://doi.org/10.5194/amt-9-1039-2016, https://doi.org/10.5194/amt-9-1039-2016, 2016
A. K. Pandit, H. S. Gadhavi, M. Venkat Ratnam, K. Raghunath, S. V. B. Rao, and A. Jayaraman
Atmos. Chem. Phys., 15, 13833–13848, https://doi.org/10.5194/acp-15-13833-2015, https://doi.org/10.5194/acp-15-13833-2015, 2015
Short summary
Short summary
We present the longest (1998 to 2013) cirrus cloud climatology over a tropical station using a ground-based lidar. A statistically significant increase is found in the altitude of sub-visible cirrus clouds. Also a systematic shift from thin to sub-visible cirrus cloud type is observed. Ground-based lidar is found to detect more number of sub-visible cirrus clouds than space-based lidar. These findings have implications to global warming and stratosphere-troposphere water vapour exchange studies.
M. Fujiwara, T. Hibino, S. K. Mehta, L. Gray, D. Mitchell, and J. Anstey
Atmos. Chem. Phys., 15, 13507–13518, https://doi.org/10.5194/acp-15-13507-2015, https://doi.org/10.5194/acp-15-13507-2015, 2015
Short summary
Short summary
This paper evaluates the temperature response in the troposphere and the stratosphere to the three major volcanic eruptions between the 1960s and the 1990s by comparing nine reanalysis data sets. It was found that the volcanic temperature response patterns differ among the major eruptions and that in general, more recent reanalysis data sets show a more consistent response pattern.
Y. Inai, M. Shiotani, M. Fujiwara, F. Hasebe, and H. Vömel
Atmos. Meas. Tech., 8, 4043–4054, https://doi.org/10.5194/amt-8-4043-2015, https://doi.org/10.5194/amt-8-4043-2015, 2015
Short summary
Short summary
For conventional soundings, the pressure bias of radiosonde leads to an altitude misestimation, which can lead to offsets in any meteorological profile. Therefore, we must take this issue into account to improve historical data sets.
S. Ravindra Babu, M. Venkat Ratnam, G. Basha, B. V. Krishnamurthy, and B. Venkateswararao
Atmos. Chem. Phys., 15, 10239–10249, https://doi.org/10.5194/acp-15-10239-2015, https://doi.org/10.5194/acp-15-10239-2015, 2015
Short summary
Short summary
The effect of tropical cyclones (TCs) that occurred over the north Indian Ocean in the last decade on the tropical tropopause parameters has been quantified for the first time. The vertical structure of temperature and tropopause parameters within the 5º radius away from the cyclone centre during TC period is also presented. The water vapour variability in the vicinity of TC is investigated.
It is demonstrated that the TCs can significantly affect the tropical tropopause and thus STE processes.
M. Pramitha, M. Venkat Ratnam, A. Taori, B. V. Krishna Murthy, D. Pallamraju, and S. Vijaya Bhaskar Rao
Atmos. Chem. Phys., 15, 2709–2721, https://doi.org/10.5194/acp-15-2709-2015, https://doi.org/10.5194/acp-15-2709-2015, 2015
Short summary
Short summary
Sources and propagation characteristics of high-frequency gravity waves observed in the mesosphere using airglow emissions from Gadanki and Hyderabad, India, are investigated using reverse ray tracing. Wave amplitudes are also traced back, including both radiative and diffusive damping. Interestingly, large vertical shears in the horizontal wind are noticed near the ray terminal points (at 10-12km altitude) and are thus identified to be the source for generating the observed gravity waves.
H. S. Gadhavi, K. Renuka, V. Ravi Kiran, A. Jayaraman, A. Stohl, Z. Klimont, and G. Beig
Atmos. Chem. Phys., 15, 1447–1461, https://doi.org/10.5194/acp-15-1447-2015, https://doi.org/10.5194/acp-15-1447-2015, 2015
Short summary
Short summary
Emission inventories are a key component of simulating past, present and future climate. In this article we have evaluated three black carbon emission inventories for emissions of India using observations made from a strategic location. Annual average simulated black carbon concentration is found to be 35% to 60% lower than observed concentration because of underestimation of emissions of southern India in the inventories.
K. Ramesh, A. P. Kesarkar, J. Bhate, M. Venkat Ratnam, and A. Jayaraman
Atmos. Meas. Tech., 8, 369–384, https://doi.org/10.5194/amt-8-369-2015, https://doi.org/10.5194/amt-8-369-2015, 2015
Short summary
Short summary
The study of atmospheric convection is important for the understanding of evolution of diurnal cycles of rainfall. High-resolution observations of vertical profiles of temperature and relative humidity are very useful for understanding the behaviour of these convections. Microwave radiometers are becoming useful tools for it. In this paper, we propose a new method to retrieve these profiles based on adaptive neuro-fuzzy interface systems and find that this method has a better skill of retrieval.
M. Venkat Ratnam, N. Pravallika, S. Ravindra Babu, G. Basha, M. Pramitha, and B. V. Krishna Murthy
Atmos. Meas. Tech., 7, 1011–1025, https://doi.org/10.5194/amt-7-1011-2014, https://doi.org/10.5194/amt-7-1011-2014, 2014
M. N. Sai Suman, H. Gadhavi, V. Ravi Kiran, A. Jayaraman, and S. V. B. Rao
Atmos. Meas. Tech., 7, 907–917, https://doi.org/10.5194/amt-7-907-2014, https://doi.org/10.5194/amt-7-907-2014, 2014
P. Kishore, M. Venkat Ratnam, I. Velicogna, V. Sivakumar, H. Bencherif, B. R. Clemesha, D. M. Simonich, P. P. Batista, and G. Beig
Ann. Geophys., 32, 301–317, https://doi.org/10.5194/angeo-32-301-2014, https://doi.org/10.5194/angeo-32-301-2014, 2014
D. V. Phanikumar, K. Niranjan Kumar, K. K. Shukla, H. Joshi, M. Venkat Ratnam, M. Naja, and K. Reddy
Ann. Geophys., 32, 175–180, https://doi.org/10.5194/angeo-32-175-2014, https://doi.org/10.5194/angeo-32-175-2014, 2014
Y. Kasai, H. Sagawa, D. Kreyling, E. Dupuy, P. Baron, J. Mendrok, K. Suzuki, T. O. Sato, T. Nishibori, S. Mizobuchi, K. Kikuchi, T. Manabe, H. Ozeki, T. Sugita, M. Fujiwara, Y. Irimajiri, K. A. Walker, P. F. Bernath, C. Boone, G. Stiller, T. von Clarmann, J. Orphal, J. Urban, D. Murtagh, E. J. Llewellyn, D. Degenstein, A. E. Bourassa, N. D. Lloyd, L. Froidevaux, M. Birk, G. Wagner, F. Schreier, J. Xu, P. Vogt, T. Trautmann, and M. Yasui
Atmos. Meas. Tech., 6, 2311–2338, https://doi.org/10.5194/amt-6-2311-2013, https://doi.org/10.5194/amt-6-2311-2013, 2013
Y. Inai, F. Hasebe, M. Fujiwara, M. Shiotani, N. Nishi, S.-Y. Ogino, H. Vömel, S. Iwasaki, and T. Shibata
Atmos. Chem. Phys., 13, 8623–8642, https://doi.org/10.5194/acp-13-8623-2013, https://doi.org/10.5194/acp-13-8623-2013, 2013
F. Hasebe, Y. Inai, M. Shiotani, M. Fujiwara, H. Vömel, N. Nishi, S.-Y. Ogino, T. Shibata, S. Iwasaki, N. Komala, T. Peter, and S. J. Oltmans
Atmos. Chem. Phys., 13, 4393–4411, https://doi.org/10.5194/acp-13-4393-2013, https://doi.org/10.5194/acp-13-4393-2013, 2013
G. A. Morris, G. Labow, H. Akimoto, M. Takigawa, M. Fujiwara, F. Hasebe, J. Hirokawa, and T. Koide
Atmos. Chem. Phys., 13, 1243–1260, https://doi.org/10.5194/acp-13-1243-2013, https://doi.org/10.5194/acp-13-1243-2013, 2013
Related subject area
Subject: Aerosols | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Calibration of PurpleAir low-cost particulate matter sensors: model development for air quality under high relative humidity conditions
Testing ion exchange resin for quantifying bulk and throughfall deposition of macro- and micro-elements in forests
Classification accuracy and compatibility across devices of a new Rapid-E+ flow cytometer
A 2-year intercomparison of three methods for measuring black carbon concentration at a high-altitude research station in Europe
The Fifth International Workshop on Ice Nucleation Phase 3 (FIN-03): Field Intercomparison of Ice Nucleation Measurements
Comparison of the LEO and CPMA-SP2 techniques for black-carbon mixing-state measurements
Aerosol trace element solubility determined using ultrapure water batch leaching: an intercomparison study of four different leaching protocols
Field comparison of dual- and single-spot Aethalometers: equivalent black carbon, light absorption, Ångström exponent and secondary brown carbon estimations
Comparison of the imaginary parts of the atmospheric refractive index structure parameter and aerosol flux based on different measurement methods
Spectral analysis approach for assessing the accuracy of low-cost air quality sensor network data
Challenges and solutions in determining dilution ratios and emission factors from chase measurements of passenger vehicles
Seasonally optimized calibrations improve low-cost sensor performance: long-term field evaluation of PurpleAir sensors in urban and rural India
Performance evaluation of portable dual-spot micro-aethalometers for source identification of black carbon aerosols: application to wildfire smoke and traffic emissions in the Pacific Northwest
Further validation of the estimates of the downwelling solar radiation at ground level in cloud-free conditions provided by the McClear service: the case of Sub-Saharan Africa and the Maldives Archipelago
Identifying optimal co-location calibration periods for low-cost sensors
Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments
Correcting for filter-based aerosol light absorption biases at the Atmospheric Radiation Measurement program's Southern Great Plains site using photoacoustic measurements and machine learning
Development and evaluation of correction models for a low-cost fine particulate matter monitor
Relative errors in derived multi-wavelength intensive aerosol optical properties using cavity attenuated phase shift single-scattering albedo monitors, a nephelometer, and tricolour absorption photometer measurements
Aircraft-engine particulate matter emissions from conventional and sustainable aviation fuel combustion: comparison of measurement techniques for mass, number, and size
Inter-comparison of online and offline methods for measuring ambient heavy and trace elements and water-soluble inorganic ions (NO3−, SO42−, NH4+, and Cl−) in PM2.5 over a heavily polluted megacity, Delhi
Measurement of black carbon emissions from multiple engine and source types using laser-induced incandescence: sensitivity to laser fluence
Compositional data analysis (CoDA) as a tool to evaluate a new low-cost settling-based PM10 sampling head in a desert dust source region
On the use of reference mass spectra for reducing uncertainty in source apportionment of solid-fuel burning in ambient organic aerosol
Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic
Effects of different correction algorithms on absorption coefficient – a comparison of three optical absorption photometers at a boreal forest site
Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes: a multi-instrumental approach
Evaluation of retrieval methods for planetary boundary layer height based on radiosonde data
Absorption instruments inter-comparison campaign at the Arctic Pallas station
Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor
Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index
Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 2: Spatiotemporal trends
The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission
Intercomparison of thermal–optical carbon measurements by Sunset and Desert Research Institute (DRI) analyzers using the IMPROVE_A protocol
Ångström exponent errors prevent accurate visibility measurement
Comparison of co-located refractory black carbon (rBC) and elemental carbon (EC) mass concentration measurements during field campaigns at several European sites
Real-time measurement of radionuclide concentrations and its impact on inverse modeling of 106Ru release in the fall of 2017
Effects of the prewhitening method, the time granularity, and the time segmentation on the Mann–Kendall trend detection and the associated Sen's slope
Best practices for precipitation sample storage for offline studies of ice nucleation in marine and coastal environments
Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples
Multi-year ACSM measurements at the central European research station Melpitz (Germany) – Part 1: Instrument robustness, quality assurance, and impact of upper size cutoff diameter
The new instrument using a TC–BC (total carbon–black carbon) method for the online measurement of carbonaceous aerosols
Aerosol retrievals from the EKO MS-711 spectral direct irradiance measurements and corrections of the circumsolar radiation
Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer
Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods
Intercomparison between the aerosol optical properties retrieved by different inversion methods from SKYNET sky radiometer observations over Qionghai and Yucheng in China
A comparison of lognormal and gamma size distributions for characterizing the stratospheric aerosol phase function from optical particle counter measurements
Comparison of aircraft measurements during GoAmazon2014/5 and ACRIDICON-CHUVA
Field comparison of dry deposition samplers for collection of atmospheric mineral dust: results from single-particle characterization
On-flight intercomparison of three miniature aerosol absorption sensors using unmanned aerial systems (UASs)
Martine E. Mathieu-Campbell, Chuqi Guo, Andrew P. Grieshop, and Jennifer Richmond-Bryant
Atmos. Meas. Tech., 17, 6735–6749, https://doi.org/10.5194/amt-17-6735-2024, https://doi.org/10.5194/amt-17-6735-2024, 2024
Short summary
Short summary
The main source of measurement error from particulate matter PurpleAir sensors is relative humidity. Recent bias correction methods have not focused on the humid southeastern United States (US). To provide high-quality spatial and temporal data to inform community exposure in this area, our study developed and evaluated PurpleAir correction models for use in the warm–humid climate zones of the US. We found improved performance metrics, with error metrics decreasing by 16–23 % for our models.
Marleen A. E. Vos, Wim de Vries, G. F. (Ciska) Veen, Marcel R. Hoosbeek, and Frank J. Sterck
Atmos. Meas. Tech., 17, 6579–6594, https://doi.org/10.5194/amt-17-6579-2024, https://doi.org/10.5194/amt-17-6579-2024, 2024
Short summary
Short summary
Atmospheric deposition poses risks with high anthropogenic inputs. Current deposition measurement methods are labor-intensive. Ion exchange resin (IER) offers a promising, cost-effective alternative. We assessed IER for bulk deposition and throughfall, testing adsorption capacity, recovery efficiency and field performance. IER showed good adsorption and recovery and was unaffected by environmental conditions, showing potential for robust and efficient measurements of atmospheric deposition.
Branko Sikoparija, Predrag Matavulj, Isidora Simovic, Predrag Radisic, Sanja Brdar, Vladan Minic, Danijela Tesendic, Evgeny Kadantsev, Julia Palamarchuk, and Mikhail Sofiev
Atmos. Meas. Tech., 17, 5051–5070, https://doi.org/10.5194/amt-17-5051-2024, https://doi.org/10.5194/amt-17-5051-2024, 2024
Short summary
Short summary
We assess the suitability of a Rapid-E+ particle counter for use in pollen monitoring networks. The criterion was the ability of different devices to provide the same signal for the same pollen type, which would allow for unified reference libraries and recognition algorithms for Rapid-E+. We tested three devices and found notable differences between their fluorescence measurements. Each one showed potential for pollen identification, but the large variability between them needs to be addressed.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Véronique Pont, Mathilde Arnaud, Thierry Bourrianne, Maria Dias Alves, and Eric Gardrat
Atmos. Meas. Tech., 17, 3897–3915, https://doi.org/10.5194/amt-17-3897-2024, https://doi.org/10.5194/amt-17-3897-2024, 2024
Short summary
Short summary
The three most widely used techniques for measuring black carbon (BC) have been deployed continuously for 2 years at a French high-altitude research station. Despite a similar temporal variation in the BC load, we found significant biases by up to a factor of 8 between the three instruments. This study raises questions about the relevance of using these instruments for specific background sites, as well as the processing of their data, which can vary according to the atmospheric conditions.
Paul DeMott, Jessica Mirrielees, Sarah Petters, Daniel Cziczo, Markus Petters, Heinz Bingemer, Thomas Hill, Karl Froyd, Sarvesh Garimella, Gannet Hallar, Ezra Levin, Ian McCubbin, Anne Perring, Christopher Rapp, Thea Schiebel, Jann Schrod, Kaitlyn Suski, Daniel Weber, Martin Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah Brooks
EGUsphere, https://doi.org/10.5194/egusphere-2024-1744, https://doi.org/10.5194/egusphere-2024-1744, 2024
Short summary
Short summary
The Fifth International Ice Nucleation Workshop 3rd Phase (FIN-03) compared the ambient atmospheric performance of ice nucleating particle (INP) measuring systems and explored general methods for discerning atmospheric INP compositions. Mirroring laboratory results, most measurements agreed within one order of magnitude. Measurements of total aerosol properties and investigations of INP compositions supported a dominant role of soil and plant organic aerosol elements as INPs during the study.
Arash Naseri, Joel C. Corbin, and Jason S. Olfert
Atmos. Meas. Tech., 17, 3719–3738, https://doi.org/10.5194/amt-17-3719-2024, https://doi.org/10.5194/amt-17-3719-2024, 2024
Short summary
Short summary
It is crucial to accurately measure the mixing states of light-absorbing carbon particles from emission sources like wildfires and biomass combustion to decrease climate forcing uncertainties. This study compares methods that measure light-absorbing carbon in the atmosphere. The CPMA-SP2 method offers more accurate results than traditional light-scattering methods, such as the leading-edge-only (LEO) method, thereby enhancing the accuracy of measuring the mixing states of light-absorbing carbon.
Rui Li, Prema Piyusha Panda, Yizhu Chen, Zhenming Zhu, Fu Wang, Yujiao Zhu, He Meng, Yan Ren, Ashwini Kumar, and Mingjin Tang
Atmos. Meas. Tech., 17, 3147–3156, https://doi.org/10.5194/amt-17-3147-2024, https://doi.org/10.5194/amt-17-3147-2024, 2024
Short summary
Short summary
We found that for ultrapure water batch leaching, the difference in specific experimental parameters, including agitation methods, filter pore size, and contact time, only led to a small and sometimes insignificant difference in determined aerosol trace element solubility. Furthermore, aerosol trace element solubility determined using four common ultrapure water leaching protocols showed good agreement.
Liangbin Wu, Cheng Wu, Tao Deng, Dui Wu, Mei Li, Yong Jie Li, and Zhen Zhou
Atmos. Meas. Tech., 17, 2917–2936, https://doi.org/10.5194/amt-17-2917-2024, https://doi.org/10.5194/amt-17-2917-2024, 2024
Short summary
Short summary
Field comparison of dual-spot (AE33) and single-spot (AE31) Aethalometers by full-year collocated measurements suggests that site-specific correction factors are needed to ensure the long-term data continuity for AE31-to-AE33 transition in black carbon monitoring networks; babs agrees well between AE33 and AE31, with slight variations by wavelength (slope: 0.87–1.04; R2: 0.95–0.97). A ~ 20 % difference in secondary brown carbon light absorption was found between AE33 and AE31.
Renmin Yuan, Hongsheng Zhang, Jiajia Hua, Hao Liu, Peizhe Wu, Xingyu Zhu, and Jianning Sun
Atmos. Meas. Tech., 17, 2089–2102, https://doi.org/10.5194/amt-17-2089-2024, https://doi.org/10.5194/amt-17-2089-2024, 2024
Short summary
Short summary
Previously, a new method for atmospheric aerosol flux was proposed, and a large-aperture scintillometer was developed for experimental measurements, but the method was consistently not validated. In this paper, eddy correlation experiments for aerosol vertical transport fluxes were conducted to verify the reliability of the previous large-aperture scintillometer method. The experimental results also show that urban green land is a sink area for aerosol particles.
Vijay Kumar, Dinushani Senarathna, Supraja Gurajala, William Olsen, Shantanu Sur, Sumona Mondal, and Suresh Dhaniyala
Atmos. Meas. Tech., 16, 5415–5427, https://doi.org/10.5194/amt-16-5415-2023, https://doi.org/10.5194/amt-16-5415-2023, 2023
Short summary
Short summary
Low-cost sensors are becoming increasingly important in air quality monitoring due to their affordability and ease of deployment. While low-cost sensors have the potential to democratize air quality monitoring, their use must be accompanied by careful interpretation and validation of the data. Analysis of their long-term data record clearly shows that the reported data from low-cost sensors may not be equally sensitive to all emission sources, which can complicate policy-making.
Ville Leinonen, Miska Olin, Sampsa Martikainen, Panu Karjalainen, and Santtu Mikkonen
Atmos. Meas. Tech., 16, 5075–5089, https://doi.org/10.5194/amt-16-5075-2023, https://doi.org/10.5194/amt-16-5075-2023, 2023
Short summary
Short summary
Emission factor calculation was studied to provide models that do not use traditional CO2-based calculation in exhaust plume analysis. Two types of models, one based on the physical dependency of dilution of the exhaust flow rate and speed and two based on the statistical, measured dependency of dilution of the exhaust flow rate, acceleration, speed, altitude change, and/or wind, were developed. These methods could possibly be extended to also calculate non-exhaust emissions in the future.
Mark Joseph Campmier, Jonathan Gingrich, Saumya Singh, Nisar Baig, Shahzad Gani, Adithi Upadhya, Pratyush Agrawal, Meenakshi Kushwaha, Harsh Raj Mishra, Ajay Pillarisetti, Sreekanth Vakacherla, Ravi Kant Pathak, and Joshua S. Apte
Atmos. Meas. Tech., 16, 4357–4374, https://doi.org/10.5194/amt-16-4357-2023, https://doi.org/10.5194/amt-16-4357-2023, 2023
Short summary
Short summary
We studied a low-cost air pollution sensor called PurpleAir PA-II in three different locations in India (Delhi, Hamirpur, and Bangalore) to characterize its performance. We compared its signal to more expensive reference sensors and found that the PurpleAir sensor was precise but inaccurate without calibration. We created a custom calibration equation for each location, which improved the accuracy of the PurpleAir sensor, and found that calibrations should be adjusted for different seasons.
Mrinmoy Chakraborty, Amanda Giang, and Naomi Zimmerman
Atmos. Meas. Tech., 16, 2333–2352, https://doi.org/10.5194/amt-16-2333-2023, https://doi.org/10.5194/amt-16-2333-2023, 2023
Short summary
Short summary
Black carbon (BC) has important climate and human health impacts. Aethalometers are used to measure BC, but they are hard to deploy in many environments (remote, mobile). We evaluate how well a portable micro-aethalometer (MA300) performs compared to a reference aethalometer at a road-side site in Vancouver, BC, Canada, during regular and wildfire conditions. We find that the MA300 can reproduce overall patterns in concentrations and source characterization but with some underestimation.
William Wandji Nyamsi, Yves-Marie Saint-Drenan, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 16, 2001–2036, https://doi.org/10.5194/amt-16-2001-2023, https://doi.org/10.5194/amt-16-2001-2023, 2023
Short summary
Short summary
The McClear service provides estimates of surface solar irradiances in cloud-free conditions. By comparing McClear estimates to 1 min measurements performed in Sub-Saharan Africa and the Maldives Archipelago in the Indian Ocean, McClear accurately estimates global irradiance and tends to overestimate direct irrradiance. This work establishes a general overview of the performance of the McClear service.
Misti Levy Zamora, Colby Buehler, Abhirup Datta, Drew R. Gentner, and Kirsten Koehler
Atmos. Meas. Tech., 16, 169–179, https://doi.org/10.5194/amt-16-169-2023, https://doi.org/10.5194/amt-16-169-2023, 2023
Short summary
Short summary
We assessed five pairs of co-located reference and low-cost sensor data sets (PM2.5, O3, NO2, NO, and CO) to make recommendations for best practices regarding the field calibration of low-cost air quality sensors. We found diminishing improvements for calibration periods longer than about 6 weeks for all sensors and that co-location can be minimized if the period is strategically selected and monitored so that the calibration period is representative of the desired measurement setting.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Joshin Kumar, Theo Paik, Nishit J. Shetty, Patrick Sheridan, Allison C. Aiken, Manvendra K. Dubey, and Rajan K. Chakrabarty
Atmos. Meas. Tech., 15, 4569–4583, https://doi.org/10.5194/amt-15-4569-2022, https://doi.org/10.5194/amt-15-4569-2022, 2022
Short summary
Short summary
Accurate long-term measurement of aerosol light absorption is vital for assessing direct aerosol radiative forcing. Light absorption by aerosols at the US Department of Energy long-term climate monitoring SGP site is measured using the Particle Soot Absorption Photometer (PSAP), which suffers from artifacts and biases difficult to quantify. Machine learning offers a promising path forward to correct for biases in the long-term absorption dataset at the SGP site and similar Class-I areas.
Brayden Nilson, Peter L. Jackson, Corinne L. Schiller, and Matthew T. Parsons
Atmos. Meas. Tech., 15, 3315–3328, https://doi.org/10.5194/amt-15-3315-2022, https://doi.org/10.5194/amt-15-3315-2022, 2022
Short summary
Short summary
Correction models were developed using PurpleAir–Federal Equivalent Method (FEM) hourly fine particulate matter (PM2.5) observation colocation sites across North America (NA). These were evaluated in comparison with four existing models at an additional 15 NA colocation sites. This study provides a robust framework for the evaluation of low-cost PM2.5 sensor correction models using the Canadian AQHI+ system and presents an optimized general correction model for North American PA sensors.
Patrick Weber, Andreas Petzold, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Andrew Freedman, Timothy B. Onasch, and Ulrich Bundke
Atmos. Meas. Tech., 15, 3279–3296, https://doi.org/10.5194/amt-15-3279-2022, https://doi.org/10.5194/amt-15-3279-2022, 2022
Short summary
Short summary
In our laboratory closure study, we measured the full set of aerosol optical properties for different light-absorbing aerosols using a set of instruments.
Our key finding is that the extensive and intensive aerosol optical properties obtained agree with data from reference instruments, except the absorption Ångström exponent of externally mixed aerosols. The reported uncertainty in the single-scattering albedo fulfils the defined goals for Global Climate Observing System applications of 10 %.
Joel C. Corbin, Tobias Schripp, Bruce E. Anderson, Greg J. Smallwood, Patrick LeClercq, Ewan C. Crosbie, Steven Achterberg, Philip D. Whitefield, Richard C. Miake-Lye, Zhenhong Yu, Andrew Freedman, Max Trueblood, David Satterfield, Wenyan Liu, Patrick Oßwald, Claire Robinson, Michael A. Shook, Richard H. Moore, and Prem Lobo
Atmos. Meas. Tech., 15, 3223–3242, https://doi.org/10.5194/amt-15-3223-2022, https://doi.org/10.5194/amt-15-3223-2022, 2022
Short summary
Short summary
The combustion of sustainable aviation fuels in aircraft engines produces particulate matter (PM) emissions with different properties than conventional fuels due to changes in fuel composition. Consequently, the response of various diagnostic instruments to PM emissions may be impacted. We found no significant instrument biases in terms of particle mass, number, and size measurements for conventional and sustainable aviation fuel blends despite large differences in the magnitude of emissions.
Himadri Sekhar Bhowmik, Ashutosh Shukla, Vipul Lalchandani, Jay Dave, Neeraj Rastogi, Mayank Kumar, Vikram Singh, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 15, 2667–2684, https://doi.org/10.5194/amt-15-2667-2022, https://doi.org/10.5194/amt-15-2667-2022, 2022
Short summary
Short summary
This study presents comparisons between online and offline measurements of both refractory and non-refractory aerosol. This study shows differences between the measurements, related to either the limitations of the instrument (e.g., aerosol mass spectrometer only observing non-refractory aerosol) or known interferences with the technique (e.g., volatilization or reactions). The findings highlight the measurement methods' accuracy and imply the particular type of measurements needed.
Ruoyang Yuan, Prem Lobo, Greg J. Smallwood, Mark P. Johnson, Matthew C. Parker, Daniel Butcher, and Adrian Spencer
Atmos. Meas. Tech., 15, 241–259, https://doi.org/10.5194/amt-15-241-2022, https://doi.org/10.5194/amt-15-241-2022, 2022
Short summary
Short summary
The relationship between the non-volatile particulate matter (nvPM) mass emissions produced by different engine sources and the response of the LII 300 instrument, used for regulatory measurements of nvPM mass emissions in aircraft engine certification tests, was investigated for different sources and operating conditions. Laser fluence optimisation was required for real-time nvPM mass concentration measurements. These results will inform the development of updated calibration protocols.
Yangjunjie Xu-Yang, Rémi Losno, Fabrice Monna, Jean-Louis Rajot, Mohamed Labiadh, Gilles Bergametti, and Béatrice Marticorena
Atmos. Meas. Tech., 14, 7657–7680, https://doi.org/10.5194/amt-14-7657-2021, https://doi.org/10.5194/amt-14-7657-2021, 2021
Short summary
Short summary
Suspended particles in air (aerosols) are sampled with a pump drawing ambient air through a filter. The air inlet must be carefully designed to control the size of sampled particles and to reject the largest ones (> 10 µm). A low-cost sampling head for determination of the finest fraction of aerosol (> 10 µm in diameter) is presented. Compositional data analysis (CoDA) tools are extensively used here to demonstrate similarity between the low-cost sampling head and other existing systems.
Chunshui Lin, Darius Ceburnis, Anna Trubetskaya, Wei Xu, William Smith, Stig Hellebust, John Wenger, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Meas. Tech., 14, 6905–6916, https://doi.org/10.5194/amt-14-6905-2021, https://doi.org/10.5194/amt-14-6905-2021, 2021
Short summary
Short summary
Source apportionment of solid-fuel-burning emissions can be complicated by the use of different fuels, stoves, and burning conditions. Here, the organic aerosol mass spectra produced from burning a range of solid fuels in several stoves were compared. This study accounts for the source variability and provides better constraints on the primary factor contributions to the ambient organic aerosol estimations, holding significant implications for public health and policymakers.
Sho Ohata, Tatsuhiro Mori, Yutaka Kondo, Sangeeta Sharma, Antti Hyvärinen, Elisabeth Andrews, Peter Tunved, Eija Asmi, John Backman, Henri Servomaa, Daniel Veber, Konstantinos Eleftheriadis, Stergios Vratolis, Radovan Krejci, Paul Zieger, Makoto Koike, Yugo Kanaya, Atsushi Yoshida, Nobuhiro Moteki, Yongjing Zhao, Yutaka Tobo, Junji Matsushita, and Naga Oshima
Atmos. Meas. Tech., 14, 6723–6748, https://doi.org/10.5194/amt-14-6723-2021, https://doi.org/10.5194/amt-14-6723-2021, 2021
Short summary
Short summary
Reliable values of mass absorption cross sections (MACs) of black carbon (BC) are required to determine mass concentrations of BC at Arctic sites using different types of filter-based absorption photometers. We successfully estimated MAC values for these instruments through comparison with independent measurements of BC by a continuous soot monitoring system called COSMOS. These MAC values are consistent with each other and applicable to study spatial and temporal variation in BC in the Arctic.
Krista Luoma, Aki Virkkula, Pasi Aalto, Katrianne Lehtipalo, Tuukka Petäjä, and Markku Kulmala
Atmos. Meas. Tech., 14, 6419–6441, https://doi.org/10.5194/amt-14-6419-2021, https://doi.org/10.5194/amt-14-6419-2021, 2021
Short summary
Short summary
The study presents a comparison of three absorption photometers that measured ambient aerosol particles at a boreal forest site. The study aims to better understand problems related to filter-based measurements. Results show how different correction algorithms, which are used to produce the data, affect the derived optical properties of aerosol particles.
Jesús Yus-Díez, Vera Bernardoni, Griša Močnik, Andrés Alastuey, Davide Ciniglia, Matic Ivančič, Xavier Querol, Noemí Perez, Cristina Reche, Martin Rigler, Roberta Vecchi, Sara Valentini, and Marco Pandolfi
Atmos. Meas. Tech., 14, 6335–6355, https://doi.org/10.5194/amt-14-6335-2021, https://doi.org/10.5194/amt-14-6335-2021, 2021
Short summary
Short summary
Here we characterize the multiple-scattering factor, C, of the dual-spot Aethalometer AE33 and its cross-sensitivity to scattering and wavelength dependence for three background stations: urban, regional and mountaintop. C was obtained for two sets of filter tapes: M8020 and M8060. The cross-sensitivity to scattering and wavelength dependence of C were determined by inter-comparing with other absorption and scattering measurements including multi-angle off-line absorption measurements.
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021, https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary
Short summary
Radiosonde (RS) is widely used to detect the vertical structures of the planetary boundary layer (PBL), and numerous methods have been proposed for retrieving PBL height (PBLH) from RS data. However, an algorithm that is suitable under all atmospheric conditions does not exist. This study evaluates the performance of four common PBLH algorithms under different thermodynamic stability conditions based on RS data.
Eija Asmi, John Backman, Henri Servomaa, Aki Virkkula, Maria I. Gini, Konstantinos Eleftheriadis, Thomas Müller, Sho Ohata, Yutaka Kondo, and Antti Hyvärinen
Atmos. Meas. Tech., 14, 5397–5413, https://doi.org/10.5194/amt-14-5397-2021, https://doi.org/10.5194/amt-14-5397-2021, 2021
Short summary
Short summary
Absorbing aerosols are warming the planet and accurate measurements of their concentrations in pristine environments are needed. We applied eight different absorbing-aerosol measurement methods in a field campaign at the Arctic Pallas station. The filter-based techniques were found to be the most sensitive to detect the minuscule amounts of black carbon present, showing a 40 % agreement between them. Our results help to reduce uncertainties in absorbing aerosol measurements.
Karoline K. Barkjohn, Brett Gantt, and Andrea L. Clements
Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, https://doi.org/10.5194/amt-14-4617-2021, 2021
Short summary
Short summary
Although widely used, air sensor measurements are often biased. In this work we develop a correction with a relative humidity term that reduces the bias and improves consistency between different United States regions. This correction equation, along with proposed data cleaning criteria, has been applied to PurpleAir PM2.5 measurements across the US on the AirNow Fire and Smoke Map and has the potential to be successfully used in other air quality and public health applications.
Richard H. Moore, Elizabeth B. Wiggins, Adam T. Ahern, Stephen Zimmerman, Lauren Montgomery, Pedro Campuzano Jost, Claire E. Robinson, Luke D. Ziemba, Edward L. Winstead, Bruce E. Anderson, Charles A. Brock, Matthew D. Brown, Gao Chen, Ewan C. Crosbie, Hongyu Guo, Jose L. Jimenez, Carolyn E. Jordan, Ming Lyu, Benjamin A. Nault, Nicholas E. Rothfuss, Kevin J. Sanchez, Melinda Schueneman, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Nicholas L. Wagner, and Jian Wang
Atmos. Meas. Tech., 14, 4517–4542, https://doi.org/10.5194/amt-14-4517-2021, https://doi.org/10.5194/amt-14-4517-2021, 2021
Short summary
Short summary
Atmospheric particles are everywhere and exist in a range of sizes, from a few nanometers to hundreds of microns. Because particle size determines the behavior of chemical and physical processes, accurately measuring particle sizes is an important and integral part of atmospheric field measurements! Here, we discuss the performance of two commonly used particle sizers and how changes in particle composition and optical properties may result in sizing uncertainties, which we quantify.
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Stephanie L. Shaw, Eric S. Edgerton, Taekyu Joo, Nga L. Ng, and Ann M. Dillner
Atmos. Meas. Tech., 14, 4355–4374, https://doi.org/10.5194/amt-14-4355-2021, https://doi.org/10.5194/amt-14-4355-2021, 2021
Short summary
Short summary
Infrared spectrometry can be applied in routine monitoring of atmospheric particles to give comprehensive characterization of the organic material by bond rather than species. Using this technique, the concentrations of particle organic material were found to decrease 2011–2016 in the southeastern US, driven by a decline in highly aged material, concurrent with declining anthropogenic emissions. However, an increase was observed in the fraction of more moderately aged organic matter.
Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Douglas A. Day, Jason C. Schroder, Dongwook Kim, Jack E. Dibb, Maximilian Dollner, Bernadett Weinzierl, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 3631–3655, https://doi.org/10.5194/amt-14-3631-2021, https://doi.org/10.5194/amt-14-3631-2021, 2021
Short summary
Short summary
We utilize a set of high-quality datasets collected during the NASA Atmospheric Tomography Mission to investigate the impact of differences in observable particle sizes across aerosol instruments in aerosol measurement comparisons. Very good agreement was found between chemically and physically derived submicron aerosol volume. Results support a lack of significant unknown biases in the response of an Aerodyne aerosol mass spectrometer (AMS) when sampling remote aerosols across the globe.
Xiaolu Zhang, Krystyna Trzepla, Warren White, Sean Raffuse, and Nicole Pauly Hyslop
Atmos. Meas. Tech., 14, 3217–3231, https://doi.org/10.5194/amt-14-3217-2021, https://doi.org/10.5194/amt-14-3217-2021, 2021
Short summary
Short summary
Three models of carbon analyzer were used in the past decade to measure carbonaceous particles from samples collected within the Chemical Speciation Network. This study compares results from these analyzer models to investigate the impact on long-term data from instrument differences. Good agreement was found among the three models for total carbon, organic carbon, and elemental carbon, while the reasons for and implications of some notable differences in their subtractions are investigated.
Hengnan Guo, Zefeng Zhang, Lin Jiang, Junlin An, Bin Zhu, Hanqing Kang, and Jing Wang
Atmos. Meas. Tech., 14, 2441–2450, https://doi.org/10.5194/amt-14-2441-2021, https://doi.org/10.5194/amt-14-2441-2021, 2021
Short summary
Short summary
Visibility is an indicator of atmospheric transparency and is widely used in many research fields. Although efforts have been made to improve the performance of visibility meters, a significant error exists in measured visibility data. This is because current methods of visibility measurement include a false assumption, which leads to the long-term neglect of an important source of visibility errors. Without major adjustments to current methods, it is not possible to obtain reliable data.
Rosaria E. Pileci, Robin L. Modini, Michele Bertò, Jinfeng Yuan, Joel C. Corbin, Angela Marinoni, Bas Henzing, Marcel M. Moerman, Jean P. Putaud, Gerald Spindler, Birgit Wehner, Thomas Müller, Thomas Tuch, Arianna Trentini, Marco Zanatta, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Meas. Tech., 14, 1379–1403, https://doi.org/10.5194/amt-14-1379-2021, https://doi.org/10.5194/amt-14-1379-2021, 2021
Short summary
Short summary
Black carbon (BC), which is an important constituent of atmospheric aerosols, remains difficult to quantify due to various limitations of available methods. This study provides an extensive comparison of co-located field measurements, applying two methods based on different principles. It was shown that both methods indeed quantify the same aerosol property – BC mass concentration. The level of agreement that can be expected was quantified, and some reasons for discrepancy were identified.
Ondřej Tichý, Miroslav Hýža, Nikolaos Evangeliou, and Václav Šmídl
Atmos. Meas. Tech., 14, 803–818, https://doi.org/10.5194/amt-14-803-2021, https://doi.org/10.5194/amt-14-803-2021, 2021
Short summary
Short summary
We present an investigation of the usability of newly developed real-time concentration monitoring systems, which are based on the gamma-ray counting of aerosol filters. These high-resolution data were used for inverse modeling of the 106Ru release in 2017. Our inverse modeling results agree with previously published estimates and provide better temporal resolution of the estimates.
Martine Collaud Coen, Elisabeth Andrews, Alessandro Bigi, Giovanni Martucci, Gonzague Romanens, Frédéric P. A. Vogt, and Laurent Vuilleumier
Atmos. Meas. Tech., 13, 6945–6964, https://doi.org/10.5194/amt-13-6945-2020, https://doi.org/10.5194/amt-13-6945-2020, 2020
Short summary
Short summary
The Mann–Kendall trend test requires prewhitening in the presence of serially correlated data. The effects of five prewhitening methods and time granularity, autocorrelation, temporal segmentation and length of the time series on the statistical significance and the slope are studies for seven atmospheric datasets. Finally, a new algorithm using three prewhitening methods is proposed in order to optimize the power of the test, the amount of erroneous false positive trends and the slope estimate.
Charlotte M. Beall, Dolan Lucero, Thomas C. Hill, Paul J. DeMott, M. Dale Stokes, and Kimberly A. Prather
Atmos. Meas. Tech., 13, 6473–6486, https://doi.org/10.5194/amt-13-6473-2020, https://doi.org/10.5194/amt-13-6473-2020, 2020
Short summary
Short summary
Ice-nucleating particles (INPs) can influence multiple climate-relevant cloud properties. Previous studies report INP observations from precipitation samples that were stored prior to analysis, yet storage protocols vary widely, and little is known about how storage impacts INPs. This study finds that storing samples at −20 °C best preserves INP concentrations and that significant losses of small INPs occur across all storage protocols.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Hongyu Guo, Duseong S. Jo, Anne V. Handschy, Demetrios Pagonis, Jason C. Schroder, Melinda K. Schueneman, Michael J. Cubison, Jack E. Dibb, Alma Hodzic, Weiwei Hu, Brett B. Palm, and Jose L. Jimenez
Atmos. Meas. Tech., 13, 6193–6213, https://doi.org/10.5194/amt-13-6193-2020, https://doi.org/10.5194/amt-13-6193-2020, 2020
Short summary
Short summary
Collecting particulate matter, or aerosols, onto filters to be analyzed offline is a widely used method to investigate the mass concentration and chemical composition of the aerosol, especially the inorganic portion. Here, we show that acidic aerosol (sulfuric acid) collected onto filters and then exposed to high ammonia mixing ratios (from human emissions) will lead to biases in the ammonium collected onto filters, and the uptake of ammonia is rapid (< 10 s), which impacts the filter data.
Laurent Poulain, Gerald Spindler, Achim Grüner, Thomas Tuch, Bastian Stieger, Dominik van Pinxteren, Jean-Eudes Petit, Olivier Favez, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Meas. Tech., 13, 4973–4994, https://doi.org/10.5194/amt-13-4973-2020, https://doi.org/10.5194/amt-13-4973-2020, 2020
Short summary
Short summary
The stability and the comparability between ACSM and collocated filter sampling and MPSS measurements was investigated in order to examine the instruments robustness for year-long measurements. Specific attention was paid to the influence of the upper size cutoff diameter to better understand how it might affect the data validation. Recommendations are provided for better on-site quality assurance and quality control of the ACSM, which would be useful for either long-term or intensive campaigns.
Martin Rigler, Luka Drinovec, Gašper Lavrič, Athanasia Vlachou, André S. H. Prévôt, Jean Luc Jaffrezo, Iasonas Stavroulas, Jean Sciare, Judita Burger, Irena Kranjc, Janja Turšič, Anthony D. A. Hansen, and Griša Močnik
Atmos. Meas. Tech., 13, 4333–4351, https://doi.org/10.5194/amt-13-4333-2020, https://doi.org/10.5194/amt-13-4333-2020, 2020
Short summary
Short summary
Carbonaceous aerosols are a large fraction of fine particulate matter. They are extremely diverse, and they directly impact air quality, visibility, cloud formation and public health. In this paper we present a new instrument and new method to measure carbon content in particulate matter in real time and at a high time resolution. The new method was validated in a 1-month winter field campaign in Ljubljana, Slovenia.
Rosa Delia García-Cabrera, Emilio Cuevas-Agulló, África Barreto, Victoria Eugenia Cachorro, Mario Pó, Ramón Ramos, and Kees Hoogendijk
Atmos. Meas. Tech., 13, 2601–2621, https://doi.org/10.5194/amt-13-2601-2020, https://doi.org/10.5194/amt-13-2601-2020, 2020
Short summary
Short summary
Spectral direct UV–visible normal solar irradiance, measured with an EKO MS-711 grating spectroradiometer at the Izaña Atmospheric Observatory (Spain), has been used to determine aerosol optical depth (AOD) at several wavelengths, and has been compared to synchronous AOD measurements from a reference AERONET (Aerosol RObotic NETwork) Cimel sun photometer.
Yan Zheng, Xi Cheng, Keren Liao, Yaowei Li, Yong Jie Li, Ru-Jin Huang, Weiwei Hu, Ying Liu, Tong Zhu, Shiyi Chen, Limin Zeng, Douglas R. Worsnop, and Qi Chen
Atmos. Meas. Tech., 13, 2457–2472, https://doi.org/10.5194/amt-13-2457-2020, https://doi.org/10.5194/amt-13-2457-2020, 2020
Short summary
Short summary
This paper provides important information to help researchers to understand the mass quantification and source apportionment by Aerodyne aerosol mass spectrometers.
Minxing Si, Ying Xiong, Shan Du, and Ke Du
Atmos. Meas. Tech., 13, 1693–1707, https://doi.org/10.5194/amt-13-1693-2020, https://doi.org/10.5194/amt-13-1693-2020, 2020
Short summary
Short summary
The study evaluated the performance of a low-cost PM sensor in ambient conditions and calibrated its readings using simple linear regression (SLR), multiple linear regression (MLR), and two more powerful machine-learning algorithms with random search techniques for the best model architectures. The two machine-learning algorithms are XGBoost and a feedforward neural network (NN).
Zhe Jiang, Minzheng Duan, Huizheng Che, Wenxing Zhang, Teruyuki Nakajima, Makiko Hashimoto, Bin Chen, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 1195–1212, https://doi.org/10.5194/amt-13-1195-2020, https://doi.org/10.5194/amt-13-1195-2020, 2020
Short summary
Short summary
This study analyzed the aerosol optical properties derived by SKYRAD.pack versions 5.0 and 4.2 using the radiometer measurements over Qionghai and Yucheng in China, which are two new sites of SKYNET. The seasonal variability of the aerosol properties over the two sites were investigated based on SKYRAD.pack V5.0. The validation results provide valuable references for continued improvement of the retrieval algorithms of SKYNET and other aerosol observational networks.
Ernest Nyaku, Robert Loughman, Pawan K. Bhartia, Terry Deshler, Zhong Chen, and Peter R. Colarco
Atmos. Meas. Tech., 13, 1071–1087, https://doi.org/10.5194/amt-13-1071-2020, https://doi.org/10.5194/amt-13-1071-2020, 2020
Short summary
Short summary
This paper shows the importance of the nature of the aerosol phase function used in the retrieval of the stratospheric aerosol extinction from limb scattering measurements. The aerosol phase function is derived from the parameters using either a unimodal lognormal or gamma aerosol size distribution. These two distributions were fitted to the same aerosol concentration measurements at two altitudes, and depending on the nature of the measurements, each distribution shows its strengths.
Fan Mei, Jian Wang, Jennifer M. Comstock, Ralf Weigel, Martina Krämer, Christoph Mahnke, John E. Shilling, Johannes Schneider, Christiane Schulz, Charles N. Long, Manfred Wendisch, Luiz A. T. Machado, Beat Schmid, Trismono Krisna, Mikhail Pekour, John Hubbe, Andreas Giez, Bernadett Weinzierl, Martin Zoeger, Mira L. Pöhlker, Hans Schlager, Micael A. Cecchini, Meinrat O. Andreae, Scot T. Martin, Suzane S. de Sá, Jiwen Fan, Jason Tomlinson, Stephen Springston, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker, Thomas Klimach, Andreas Minikin, Armin Afchine, and Stephan Borrmann
Atmos. Meas. Tech., 13, 661–684, https://doi.org/10.5194/amt-13-661-2020, https://doi.org/10.5194/amt-13-661-2020, 2020
Short summary
Short summary
In 2014, the US DOE G1 aircraft and the German HALO aircraft overflew the Amazon basin to study how aerosols influence cloud cycles under a clean condition and around a tropical megacity. This paper describes how to meaningfully compare similar measurements from two research aircraft and identify the potential measurement issue. We also discuss the uncertainty range for each measurement for further usage in model evaluation and satellite data validation.
Andebo Waza, Kilian Schneiders, Jan May, Sergio Rodríguez, Bernd Epple, and Konrad Kandler
Atmos. Meas. Tech., 12, 6647–6665, https://doi.org/10.5194/amt-12-6647-2019, https://doi.org/10.5194/amt-12-6647-2019, 2019
Short summary
Short summary
Deposition or other passive measurement techniques are used to sample mineral dust from the atmosphere. However, there exist a multitude of different collection instruments with different, usually not well-characterized sampling efficiencies, so the resulting data might be considerably biased with respect to their size representatively. In the paper, we report on collection properties of different deposition and other passive samplers based on single-particle measurements.
Michael Pikridas, Spiros Bezantakos, Griša Močnik, Christos Keleshis, Fred Brechtel, Iasonas Stavroulas, Gregoris Demetriades, Panayiota Antoniou, Panagiotis Vouterakos, Marios Argyrides, Eleni Liakakou, Luka Drinovec, Eleni Marinou, Vassilis Amiridis, Mihalis Vrekoussis, Nikolaos Mihalopoulos, and Jean Sciare
Atmos. Meas. Tech., 12, 6425–6447, https://doi.org/10.5194/amt-12-6425-2019, https://doi.org/10.5194/amt-12-6425-2019, 2019
Short summary
Short summary
This work evaluates the performance of three sensors that monitor black carbon (soot). These sensors exhibit similar behavior to their rack-mounted counterparts and are therefore promising for more extended use. A reconstruction of the black carbon mass vertical distribution above Athens, Greece, is shown using drones, similar to those acquired by remote-sensing techniques. The potential of combining miniature sensors with drones for at least the lower part of the atmosphere is exhibited.
Cited articles
Abbott, T. H. and Cronin, T. W.: Aerosol invigoration of atmospheric convection through increases in humidity, Science, 371, 83–85, https://doi.org/10.1126/science.abc5181, 2021.
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 24–29, 1989.
Brabec, M., Wienhold, F. G., Luo, B. P., Vömel, H., Immler, F., Steiner, P., Hausammann, E., Weers, U., and Peter, T.: Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling, Atmos. Chem. Phys., 12, 9135–9148, https://doi.org/10.5194/acp-12-9135-2012, 2012.
Brunamonti, S., Jorge, T., Oelsner, P., Hanumanthu, S., Singh, B. B., Kumar, K. R., Sonbawne, S., Meier, S., Singh, D., Wienhold, F. G., Luo, B. P., Boettcher, M., Poltera, Y., Jauhiainen, H., Kayastha, R., Karmacharya, J., Dirksen, R., Naja, M., Rex, M., Fadnavis, S., and Peter, T.: Balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter on the southern slopes of the Himalayas during StratoClim 2016–2017, Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, 2018.
Brunamonti, S., Martucci, G., Romanens, G., Poltera, Y., Wienhold, F. G., Hervo, M., Haefele, A., and Navas-Guzmán, F.: Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements, Atmos. Chem. Phys., 21, 2267–2285, https://doi.org/10.5194/acp-21-2267-2021, 2021.
Cherian, T., Kumar, Y. B., Reddy, B. S., Optics, G., Limited, A., Nr, R. S., and Road, N.: LIDAR for Atmospheric Measurement and Probing, International Journal of Engineering and Technology, 5,
5114–5124, 2014.
Cirisan, A., Luo, B. P., Engel, I., Wienhold, F. G., Sprenger, M., Krieger, U. K., Weers, U., Romanens, G., Levrat, G., Jeannet, P., Ruffieux, D., Philipona, R., Calpini, B., Spichtinger, P., and Peter, T.: Balloon-borne match measurements of midlatitude cirrus clouds, Atmos. Chem. Phys., 14, 7341–7365, https://doi.org/10.5194/acp-14-7341-2014, 2014.
Coakley, J. A., Bernstein, R. L., and Durkee, P. A.: Effect of Ship-Stack
Effluents on Cloud Reflectivity, Science, 237, 1020–1022, https://doi.org/10.1126/science.237.4818.1020, 1987.
Corrigan, C. E., Roberts, G. C., Ramana, M. V., Kim, D., and Ramanathan, V.: Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles, Atmos. Chem. Phys., 8, 737–747, https://doi.org/10.5194/acp-8-737-2008, 2008.
Costantino, L. and Bréon, F. M.: Analysis of aerosol-cloud interaction
from multi-sensor satellite observations, Geophys. Res. Lett., 37, 1–5,
https://doi.org/10.1029/2009GL041828, 2010.
Deshler, T., Hervig, M. E., Hofmann, D. J., Rosen, J. M., and Liley, J. B.:
Thirty years of in situ stratospheric aerosol size distribution measurements
from Laramie, Wyoming (41∘ N), using balloon-borne instruments, J.
Geophys. Res.-Atmos., 108, 1–13, https://doi.org/10.1029/2002jd002514, 2003.
Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of aerosol-cloud
interactions: Mechanisms, significance, and challenges, J. Atmos. Sci.,
73, 4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1, 2016.
Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A.
T., Martin, S. T., Yang, Y., Wang, J., Artaxo, P., Barbosa, H. M. J., Braga,
R. C., Comstock, J. M., Feng, Z., Gao, W., Gomes, H. B., Mei, F.,
Pöhlker, C., Pöhlker, M. L., Pöschl, U., and de Souza, R. A. F.:
Substantial convection and precipitation enhancements by ultrafine aerosol
particles, Science, 359, 411–418, https://doi.org/10.1126/science.aan8461, 2018.
Feingold, G., Eberhard, W. L., Veron, D. E., and Previdi, M.: First
measurements of the Twomey indirect effect using ground-based remote
sensors, Geophys. Res. Lett., 30, 19–22, https://doi.org/10.1029/2002GL016633, 2003.
Feingold, G., Furrer, R., Pilewskie, P., Remer, L. A., Min, Q., and Jonsson,
H.: Aerosol indirect effect studies at Southern Great Plains during the May
2003 Intensive Operations Period, J. Geophys. Res.-Atmos., 111, 1–13,
https://doi.org/10.1029/2004JD005648, 2006.
Fujiwara, M., Shiotani, M., Hasebe, F., Vömel, H., Oltmans, S. J.,
Ruppert, P. W., Horinouchi, T., and Tsuda, T.: Performance of the Meteolabor
“Snow White” chilled-mirror hygrometer in the tropical troposphere:
Comparisons with the Vaisala RS80 A/H-Humicap sensors, J. Atmos. Ocean.
Technol., 20, 1534–1542, https://doi.org/10.1175/1520-0426(2003)020<1534:POTMSW>2.0.CO;2, 2003.
Fujiwara, M., Sugidachi, T., Arai, T., Shimizu, K., Hayashi, M., Noma, Y., Kawagita, H., Sagara, K., Nakagawa, T., Okumura, S., Inai, Y., Shibata, T., Iwasaki, S., and Shimizu, A.: Development of a cloud particle sensor for radiosonde sounding, Atmos. Meas. Tech., 9, 5911–5931, https://doi.org/10.5194/amt-9-5911-2016, 2016.
Girdwood, J., Smith, H., Stanley, W., Ulanowski, Z., Stopford, C., Chemel, C., Doulgeris, K.-M., Brus, D., Campbell, D., and Mackenzie, R.: Design and field campaign validation of a multi-rotor unmanned aerial vehicle and optical particle counter, Atmos. Meas. Tech., 13, 6613–6630, https://doi.org/10.5194/amt-13-6613-2020, 2020.
Girdwood, J., Stanley, W., Stopford, C., and Brus, D.: Simulation and field campaign evaluation of an optical particle counter on a fixed-wing UAV, Atmos. Meas. Tech., 15, 2061–2076, https://doi.org/10.5194/amt-15-2061-2022, 2022.
Grosvenor, D. P., Sourdeval, O., Zuidema, P., Ackerman, A., Alexandrov, M.
D., Bennartz, R., Boers, R., Cairns, B., Chiu, J. C., Christensen, M.,
Deneke, H., Diamond, M., Feingold, G., Fridlind, A., Hünerbein, A.,
Knist, C., Kollias, P., Marshak, A., McCoy, D., Merk, D., Painemal, D.,
Rausch, J., Rosenfeld, D., Russchenberg, H., Seifert, P., Sinclair, K.,
Stier, P., van Diedenhoven, B., Wendisch, M., Werner, F., Wood, R., Zhang,
Z., and Quaas, J.: Remote Sensing of Droplet Number Concentration in Warm
Clouds: A Review of the Current State of Knowledge and Perspectives, Rev.
Geophys., 56, 409–453, https://doi.org/10.1029/2017RG000593, 2018.
Gupta, G., Ratnam, M. V., Madhavan, B. L., Prasad, P., and Narayanamurthy, C.
S.: Vertical and spatial distribution of elevated aerosol layers obtained
using long-term ground-based and space-borne lidar observations, Atmos.
Environ., 246, 118172, https://doi.org/10.1016/j.atmosenv.2020.118172,
2021.
Hanumanthu, S., Vogel, B., Müller, R., Brunamonti, S., Fadnavis, S., Li, D., Ölsner, P., Naja, M., Singh, B. B., Kumar, K. R., Sonbawne, S., Jauhiainen, H., Vömel, H., Luo, B., Jorge, T., Wienhold, F. G., Dirkson, R., and Peter, T.: Strong day-to-day variability of the Asian Tropopause Aerosol Layer (ATAL) in August 2016 at the Himalayan foothills, Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, 2020.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: A review, Rev. Geophys., 38,
513–543, https://doi.org/10.1029/1999RG000078, 2000.
Inoue, J., Tobo, Y., Sato, K., Taketani, F., and Maturilli, M.: Application of cloud particle sensor sondes for estimating the number concentration of cloud water droplets and liquid water content: case studies in the Arctic region, Atmos. Meas. Tech., 14, 4971–4987, https://doi.org/10.5194/amt-14-4971-2021, 2021.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press, https://doi.org/10.1017/9781009157896, 2021.
Jain, C. D., Madhavan, B. L., and Ratnam, M. V.: Source apportionment of
rainwater chemical composition to investigate the transport of lower
atmospheric pollutants to the UTLS region, Environ. Pollut., 248, 166–174,
https://doi.org/10.1016/j.envpol.2019.02.007, 2019.
Jose, S., Nair, V. S., and Babu, S. S.: Anthropogenic emissions from South
Asia reverses the aerosol indirect effect over the northern Indian Ocean,
Sci. Rep., 10, 1–8, https://doi.org/10.1038/s41598-020-74897-x, 2020.
Kezoudi, M., Tesche, M., Smith, H., Tsekeri, A., Baars, H., Dollner, M., Estellés, V., Bühl, J., Weinzierl, B., Ulanowski, Z., Müller, D., and Amiridis, V.: Measurement report: Balloon-borne in situ profiling of Saharan dust over Cyprus with the UCASS optical particle counter, Atmos. Chem. Phys., 21, 6781–6797, https://doi.org/10.5194/acp-21-6781-2021, 2021.
Kobayashi, E., Hoshino, S., Iwabuchi, M., Sugidachi, T., Shimizu, K., and Fujiwara, M.: Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06∘ N, 140.13∘ E), Japan, Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, 2019.
Koren, I., Remer, L. A., Altaratz, O., Martins, J. V., and Davidi, A.: Aerosol-induced changes of convective cloud anvils produce strong climate warming, Atmos. Chem. Phys., 10, 5001–5010, https://doi.org/10.5194/acp-10-5001-2010, 2010.
Kulkarni, J. R., Maheskumar, R. S., Morwal, S. B., Padma Kumari, B., Konwar,
M., Deshpande, C. G., Joshi, R. R., Bhalwankar, R. V., Pandithurai, G.,
Safai, P. D., Narkhedkar, S. G., Dani, K. K., Nath, A., Nair, S., Sapre, V.
V., Puranik, P. V., Kandalgaonkar, S. S., Mujumdar, V. R., Khaladkar, R. M.,
Vijayakumar, R., Prabha, T. V., and Goswami, B. N.: The cloud aerosol
interaction and precipitation enhancement experiment (CAIPEEX): Overview and
preliminary results, Curr. Sci., 102, 413–425, 2012.
L'Ecuyer, T. S.: Touring the atmosphere aboard the A-Train (vol. 63, pg. 36,
2010), Phys. Today, 63, 36, https://doi.org/10.1063/1.3463626, 2010.
Lohmann, U.: Aerosol effects on clouds and climate, Space Sci. Rev.,
125, 129–137, https://doi.org/10.1007/s11214-006-9051-8, 2006.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Mamali, D., Marinou, E., Sciare, J., Pikridas, M., Kokkalis, P., Kottas, M., Binietoglou, I., Tsekeri, A., Keleshis, C., Engelmann, R., Baars, H., Ansmann, A., Amiridis, V., Russchenberg, H., and Biskos, G.: Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events, Atmos. Meas. Tech., 11, 2897–2910, https://doi.org/10.5194/amt-11-2897-2018, 2018.
McComiskey, A. and Feingold, G.: The scale problem in quantifying aerosol indirect effects, Atmos. Chem. Phys., 12, 1031–1049, https://doi.org/10.5194/acp-12-1031-2012, 2012.
McComiskey, A., Feingold, G., Frisch, A. S., Turner, D. D., Miller, M. A.,
Chiu, J. C., Min, Q., and Ogren, J. A.: An assessment of aerosol-cloud
interactions in marine stratus clouds based on surface remote sensing, J.
Geophys. Res.-Atmos., 114, 1–15, https://doi.org/10.1029/2008JD011006, 2009.
Mishra, M. K., Rajeev, K., Thampi, B. V., Parameswaran, K., and Nair, A. K.
M.: Micro pulse lidar observations of mineral dust layer in the lower
troposphere over the southwest coast of Peninsular India during the Asian
summer monsoon season, J. Atmos. Sol.-Terr. Phys., 72,
1251–1259, https://doi.org/10.1016/j.jastp.2010.08.012, 2010.
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and
supercooled water for atmospheric applications, Q. J. R. Meteorol. Soc.,
131, 1539–1565, https://doi.org/10.1256/qj.04.94, 2005.
Narendra Reddy, N., Venkat Ratnam, M., Basha, G., and Ravikiran, V.: Cloud vertical structure over a tropical station obtained using long-term high-resolution radiosonde measurements, Atmos. Chem. Phys., 18, 11709–11727, https://doi.org/10.5194/acp-18-11709-2018, 2018.
Pandit, A. K., Gadhavi, H., Ratnam, M. V., Jayaraman, A., Raghunath, K., and
Rao, S. V. B.: Characteristics of cirrus clouds and tropical tropopause
layer: Seasonal variation and long-term trends, J. Atmos. Sol.-Terr.
Phys., 121, 248–256, https://doi.org/10.1016/j.jastp.2014.07.008, 2014.
Pandit, A. K., Gadhavi, H. S., Venkat Ratnam, M., Raghunath, K., Rao, S. V. B., and Jayaraman, A.: Long-term trend analysis and climatology of tropical cirrus clouds using 16 years of lidar data set over Southern India, Atmos. Chem. Phys., 15, 13833–13848, https://doi.org/10.5194/acp-15-13833-2015, 2015.
Pandithurai, G., Takamura, T., Yamaguchi, J., Miyagi, K., Takano, T.,
Ishizaka, Y., Dipu, S., and Shimizu, A.: Aerosol effect on cloud droplet size
as monitored from surface-based remote sensing over East China Sea region,
Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL038451, 2009.
Prasad, P., Raman, M. R., Ratnam, M. V., Ravikiran, V., Madhavan, B. L., and
Bhaskara, S. V.: Nocturnal, seasonal and intra-annual variability of
tropospheric aerosols observed using ground-based and space-borne lidars
over a tropical location of India, Atmos. Environ., 213, 185–198,
https://doi.org/10.1016/j.atmosenv.2019.06.008, 2019.
Radke, L. F., Coakley, J. A., and King, M. D.: Direct and remote sensing
observations of the effects of ships on clouds, Science, 246,
1146–1149, https://doi.org/10.1126/science.246.4934.1146, 1989.
Rao, P. B., Jain, A. R., Kishore, P., Balamuralidhar, P., Damle, S. H., and
Viswanathan, G.: Indian MST radar 1. System description and sample vector
wind measurements in ST mode, Radio Sci., 30, 1125–1138,
https://doi.org/10.1029/95RS00787, 1995.
Ratnam, M. V., Prasad, P., Raman, M. R., Ravikiran, V., Bhaskara, S. V.,
Murthy, B. V. K., and Jayaraman, A.: Role of dynamics on the formation and
maintenance of the elevated aerosol layer during monsoon season over
south-east peninsular India, Atmos. Environ., 188, 43–49,
https://doi.org/10.1016/j.atmosenv.2018.06.023, 2018.
Ravi Kiran, V., Venkat Ratnam, M., Fujiwara, M., Russchenberg, H., Weinhold, F. G., Madhavan, B. L., Roja Raman, M., Nandan, R., Akhil Raj, S. T., Hemanth Kumar, A., and Radindra Babu, S.: Balloon-borne Aerosol-Cloud Interaction Studies (BACIS): Field campaigns to understand and quantify aerosol effects on clouds, Zenodo [data set], https://doi.org/10.5281/zenodo.5749293, 2021.
Ravi Kiran, V., Venkat Ratnam, M., Fujiwara, M., Russchenberg, H., Weinhold, F. G., Madhavan, B. L., Roja Raman, M., Nandan, R., Akhil Raj, S. T., Hemanth Kumar, A., and Radindra Babu, S.: Supporting dataset of Balloon-bore Aerosol-Cloud Interaction Studies (BACIS): Field campaigns to understand and quantiy aerosol effects on clouds, Zenodo [data set], https://doi.org/10.5281/zenodo.7007628, 2022.
Redemann, J., Wood, R., Zuidema, P., Doherty, S. J., Luna, B., LeBlanc, S. E., Diamond, M. S., Shinozuka, Y., Chang, I. Y., Ueyama, R., Pfister, L., Ryoo, J.-M., Dobracki, A. N., da Silva, A. M., Longo, K. M., Kacenelenbogen, M. S., Flynn, C. J., Pistone, K., Knox, N. M., Piketh, S. J., Haywood, J. M., Formenti, P., Mallet, M., Stier, P., Ackerman, A. S., Bauer, S. E., Fridlind, A. M., Carmichael, G. R., Saide, P. E., Ferrada, G. A., Howell, S. G., Freitag, S., Cairns, B., Holben, B. N., Knobelspiesse, K. D., Tanelli, S., L'Ecuyer, T. S., Dzambo, A. M., Sy, O. O., McFarquhar, G. M., Poellot, M. R., Gupta, S., O'Brien, J. R., Nenes, A., Kacarab, M., Wong, J. P. S., Small-Griswold, J. D., Thornhill, K. L., Noone, D., Podolske, J. R., Schmidt, K. S., Pilewskie, P., Chen, H., Cochrane, S. P., Sedlacek, A. J., Lang, T. J., Stith, E., Segal-Rozenhaimer, M., Ferrare, R. A., Burton, S. P., Hostetler, C. A., Diner, D. J., Seidel, F. C., Platnick, S. E., Myers, J. S., Meyer, K. G., Spangenberg, D. A., Maring, H., and Gao, L.: An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin, Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, 2021.
Rosen, J. M. and Kjome, N. T.: Backscattersonde: a new instrument for
atmospheric aerosol research, Appl. Optics, 30, 1552,
https://doi.org/10.1364/ao.30.001552, 1991.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi,
S., Reissell, A., and Andreae, M. O.: Flood or drought: How do aerosols
affect precipitation?, Science, 321, 1309–1313,
https://doi.org/10.1126/science.1160606, 2008.
Rosenfeld, D., Sherwood, S., Wood, R., and Donner, L.: Climate Effects of
Aerosol-Cloud Interactions, Science, 343, 379–380,
https://doi.org/10.1126/science.1247490, 2014a.
Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., Leeuw, G., Donovan, D.
P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt, K.
S., Suni, T., Wagner, T., Wild, M., and Quaas, J.: Global observations
of aerosol-cloud-precipitation climate interactions, Rev. Geophys., 52,
750–808, https://doi.org/10.1002/2013RG000441, 2014b.
Sarna, K. and Russchenberg, H. W. J.: Ground-based remote sensing scheme for monitoring aerosol–cloud interactions, Atmos. Meas. Tech., 9, 1039–1050, https://doi.org/10.5194/amt-9-1039-2016, 2016.
Sarna, K. and Russchenberg, H. W. J.: Monitoring aerosol–cloud interactions at the CESAR Observatory in the Netherlands, Atmos. Meas. Tech., 10, 1987–1997, https://doi.org/10.5194/amt-10-1987-2017, 2017.
Sathiyamoorthy, V., Mahesh, C., Gopalan, K., Prakash, S., Shukla, B. P., and
Mathur, A. K.: Characteristics of low clouds over the Arabian Sea, J. Geophys. Res., 118, 489–503, https://doi.org/10.1002/2013JD020553, 2013.
Schmidt, J., Ansmann, A., Bühl, J., Baars, H., Wandinger, U.,
Müller, D., and Malinka, A. V.: Dual-FOV raman and Doppler lidar studies
of aerosol-cloud interactions: Simultaneous profiling of aerosols,
warm-cloud properties, and vertical wind, J. Geophys. Res., 119,
5512–5527, https://doi.org/10.1002/2013JD020424, 2014.
Schmidt, J., Ansmann, A., Bühl, J., and Wandinger, U.: Strong aerosol–cloud interaction in altocumulus during updraft periods: lidar observations over central Europe, Atmos. Chem. Phys., 15, 10687–10700, https://doi.org/10.5194/acp-15-10687-2015, 2015.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K.
A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol-cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790,
https://doi.org/10.1073/pnas.1514043113, 2016.
Sena, E. T., McComiskey, A., and Feingold, G.: A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements, Atmos. Chem. Phys., 16, 11301–11318, https://doi.org/10.5194/acp-16-11301-2016, 2016.
Small, J. D., Chuang, P. Y., Feingold, G., and Jiang, H.: Can aerosol
decrease cloud lifetime?, Geophys. Res. Lett., 36, 1–5,
https://doi.org/10.1029/2009GL038888, 2009.
Smith, H. R., Ulanowski, Z., Kaye, P. H., Hirst, E., Stanley, W., Kaye, R., Wieser, A., Stopford, C., Kezoudi, M., Girdwood, J., Greenaway, R., and Mackenzie, R.: The Universal Cloud and Aerosol Sounding System (UCASS): a low-cost miniature optical particle counter for use in dropsonde or balloon-borne sounding systems, Atmos. Meas. Tech., 12, 6579–6599, https://doi.org/10.5194/amt-12-6579-2019, 2019.
Srinivasulu, P., Yasodha, P., Kamaraj, P., Rao, T. N., Jayaraman, A., Reddy,
S. N., and Satyanarayana, S.: 1280-MHz active array radar wind profiler for
lower atmosphere: System description and data validation, J. Atmos. Ocean.
Technol., 29, 1455–1470, https://doi.org/10.1175/JTECH-D-12-00030.1, 2012.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: Noaa's hysplit atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds, J.
Atmos. Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Vernier, J., Fairlie, T. D., Natarajan, M., Wienhold, F. G., Bian, J.,
Martinsson, B. G., Crumeyrolle, S., Thomason, L. W., and Bedka, K. M.:
J. Geophys. Res.-Atmos., 120, 1608–1619, https://doi.org/10.1002/2014JD022372, 2015.
Vernier, J. P., Fairlie, T. D., Deshler, T., Venkat Ratnam, M., Gadhavi, H.,
Kumar, B. S., Natarajan, M., Pandit, A. K., Akhil Raj, S. T., Hemanth Kumar,
A., Jayaraman, A., Singh, A. K., Rastogi, N., Sinha, P. R., Kumar, S.,
Tiwari, S., Wegner, T., Baker, N., Vignelles, D., Stenchikov, G.,
Shevchenko, I., Smith, J., Bedka, K., Kesarkar, A., Singh, V., Bhate, J.,
Ravikiran, V., Durga Rao, M., Ravindrababu, S., Patel, A., Vernier, H.,
Wienhold, F. G., Liu, H., Knepp, T. N., Thomason, L., Crawford, J., Ziemba,
L., Moore, J., Crumeyrolle, S., Williamson, M., Berthet, G., Jégou, F., and Renard, J. B.: BATAL: The balloon measurement campaigns of the Asian
tropopause aerosol layer, B. Am. Meteorol. Soc., 99, 955–973,
https://doi.org/10.1175/BAMS-D-17-0014.1, 2018.
Vernier, J. P., Kalnajs, L., Diaz, J. A., Reese, T., Corrales, E., Alan, A.,
Vernier, H., Holland, L., Patel, A., Rastogi, N., Wienhold, F., Carn, S.,
Krotkov, N., and Murray, J.: VolKilau: Volcano rapid response balloon
campaign during the 2018 Kilauea eruption, B. Am. Meteorol. Soc.,
101(10), E1602–E1618, https://doi.org/10.1175/BAMS-D-19-0011.1, 2020.
Weinzierl, B., Ansmann, A., Prospero, J. M., Althausen, D., Benker, N.,
Chouza, F., Dollner, M., Farrell, D., Fomba, W. K., Freudenthaler, V.,
Gasteiger, J., Groß, S., Haarig, M., Heinold, B., Kandler, K.,
Kristensen, T. B., Mayol-Bracero, O. L., Müller, T., Reitebuch, O.,
Sauer, D., Schäfler, A., Schepanski, K., Spanu, A., Tegen, I., Toledano,
C., and Walser, A.: The Saharan aerosol long-range transport and
aerosol-cloud-interaction experiment: Overview and selected highlights,
B. Am. Meteorol. Soc., 98, 1427–1451, https://doi.org/10.1175/BAMS-D-15-00142.1,
2017.
Wiegner, M., Madonna, F., Binietoglou, I., Forkel, R., Gasteiger, J., Geiß, A., Pappalardo, G., Schäfer, K., and Thomas, W.: What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET, Atmos. Meas. Tech., 7, 1979–1997, https://doi.org/10.5194/amt-7-1979-2014, 2014.
Winker, D. M., Hunt, W. H., and McGill, M. J.: Initial performance assessment
of CALIOP, Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2007GL030135,
2007.
Short summary
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction Studies) field campaigns using balloon-borne in situ measurements and ground-based and space-borne remote sensing instruments. Aerosol-cloud interaction is quantified for liquid clouds by segregating aerosol and cloud information in a balloon profile. Overall, the observational approach proposed here demonstrated its capability for understanding the aerosol–cloud interaction process.
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction...