Articles | Volume 16, issue 8
https://doi.org/10.5194/amt-16-2129-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-2129-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stratospheric temperature measurements from nanosatellite stellar occultation observations of refractive bending
Dana L. McGuffin
CORRESPONDING AUTHOR
Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, United States
Philip J. Cameron-Smith
Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, United States
Matthew A. Horsley
Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, United States
Brian J. Bauman
Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, United States
Wim De Vries
Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, United States
Denis Healy
Terran Orbital, Irvine, CA, United States
Alex Pertica
Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, United States
Chris Shaffer
Terran Orbital, Irvine, CA, United States
Lance M. Simms
Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, United States
Related authors
Dana L. McGuffin, Yuanlong Huang, Richard C. Flagan, Tuukka Petäjä, B. Erik Ydstie, and Peter J. Adams
Geosci. Model Dev., 14, 1821–1839, https://doi.org/10.5194/gmd-14-1821-2021, https://doi.org/10.5194/gmd-14-1821-2021, 2021
Short summary
Short summary
Atmospheric particle formation, emissions, and growth process rates are significant sources of uncertainty in predicting climate change. We aim to reduce that uncertainty by using measurements from several ground-based sites across Europe. We developed an estimation technique to adapt the governing process rates so model–measurement bias decays. The estimation framework developed has potential to improve model predictions while providing insight into the underlying atmospheric particle physics.
Jishi Zhang, Jean–Christophe Golaz, Matthew Vincent Signorotti, Hsiang–He Lee, Peter Bogenschutz, Minda Monteagudo, Paul Aaron Ullrich, Robert S. Arthur, Stephen Po–Chedley, Philip Cameron–smith, and Jean–Paul Watson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3947, https://doi.org/10.5194/egusphere-2025-3947, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We ran a convection-permitting model with regional mesh refinement (3.25 km and 800 m) to simulate present-day wind and solar capacity factors over California, coupling it to an energy generation model. The high-resolution models captured realistic seasonal and diurnal cycles, with wind markedly better than a 25 km model and solar outperforming a 3 km operational forecast. We highlight the critical role of resolution, modeling assumptions, and data reliability in renewable energy assessment.
Jishi Zhang, Peter Bogenschutz, Mark Taylor, and Philip Cameron-Smith
EGUsphere, https://doi.org/10.5194/egusphere-2025-2223, https://doi.org/10.5194/egusphere-2025-2223, 2025
Short summary
Short summary
We pushed a global cloud-resolving model to a novel 100 m resolution setup over the San Francisco Bay Area using a regionally refined mesh. The model captured fine-scale air motions over complex terrain and coastal regions at large-eddy scales with fully comprehensive global modeling configuration, enabled by scale-aware turbulence parameterization. Performance tests demonstrated that GPU acceleration can make such high-resolution simulations feasible within practical timeframes.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Jishi Zhang, Peter Bogenschutz, Qi Tang, Philip Cameron-smith, and Chengzhu Zhang
Geosci. Model Dev., 17, 3687–3731, https://doi.org/10.5194/gmd-17-3687-2024, https://doi.org/10.5194/gmd-17-3687-2024, 2024
Short summary
Short summary
We developed a regionally refined climate model that allows resolved convection and performed a 20-year projection to the end of the century. The model has a resolution of 3.25 km in California, which allows us to predict climate with unprecedented accuracy, and a resolution of 100 km for the rest of the globe to achieve efficient, self-consistent simulations. The model produces superior results in reproducing climate patterns over California that typical modern climate models cannot resolve.
Xue Zheng, Qing Li, Tian Zhou, Qi Tang, Luke P. Van Roekel, Jean-Christophe Golaz, Hailong Wang, and Philip Cameron-Smith
Geosci. Model Dev., 15, 3941–3967, https://doi.org/10.5194/gmd-15-3941-2022, https://doi.org/10.5194/gmd-15-3941-2022, 2022
Short summary
Short summary
We document the model experiments for the future climate projection by E3SMv1.0. At the highest future emission scenario, E3SMv1.0 projects a strong surface warming with rapid changes in the atmosphere, ocean, sea ice, and land runoff. Specifically, we detect a significant polar amplification and accelerated warming linked to the unmasking of the aerosol effects. The impact of greenhouse gas forcing is examined in different climate components.
Dana L. McGuffin, Yuanlong Huang, Richard C. Flagan, Tuukka Petäjä, B. Erik Ydstie, and Peter J. Adams
Geosci. Model Dev., 14, 1821–1839, https://doi.org/10.5194/gmd-14-1821-2021, https://doi.org/10.5194/gmd-14-1821-2021, 2021
Short summary
Short summary
Atmospheric particle formation, emissions, and growth process rates are significant sources of uncertainty in predicting climate change. We aim to reduce that uncertainty by using measurements from several ground-based sites across Europe. We developed an estimation technique to adapt the governing process rates so model–measurement bias decays. The estimation framework developed has potential to improve model predictions while providing insight into the underlying atmospheric particle physics.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Qi Tang, Michael J. Prather, Juno Hsu, Daniel J. Ruiz, Philip J. Cameron-Smith, Shaocheng Xie, and Jean-Christophe Golaz
Geosci. Model Dev., 14, 1219–1236, https://doi.org/10.5194/gmd-14-1219-2021, https://doi.org/10.5194/gmd-14-1219-2021, 2021
Cited articles
Anthes, R. A.: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather, Atmos. Meas. Tech., 4, 1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011. a
Barrell, H. and Sears, J.: The refraction and dispersion of air and dispersion of air for the visible spectrum, Philos. T. R. Soc. S. A, 238, 1–64, https://doi.org/10.1098/rsta.1939.0004, 1939. a
Bauman, B. and Pertica, A. J.: Integrated telescope for imaging applications, Lawrence Livermore National Security, LLC, #10935780, https://www.osti.gov/biblio/1805583 (last access: 28 March 2023), 2021. a
Bertaux, J. L., Kyrölä, E., Fussen, D., Hauchecorne, A., Dalaudier, F., Sofieva, V., Tamminen, J., Vanhellemont, F., Fanton d'Andon, O., Barrot, G., Mangin, A., Blanot, L., Lebrun, J. C., Pérot, K., Fehr, T., Saavedra, L., Leppelmeier, G. W., and Fraisse, R.: Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT, Atmos. Chem. Phys., 10, 12091–12148, https://doi.org/10.5194/acp-10-12091-2010, 2010. a, b
Culverwell, I. D., Lewis, H. W., Offiler, D., Marquardt, C., and Burrows, C. P.: The Radio Occultation Processing Package, ROPP, Atmos. Meas. Tech., 8, 1887–1899, https://doi.org/10.5194/amt-8-1887-2015, 2015. a
Edlén, B.: The Refractive Index of Air, Metrologia, 2, 71–80,
https://doi.org/10.1088/0026-1394/2/2/002, 1966. a
Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones Jr., M., Mlynczak, M. G., Bernath, P. F., Chu, X., Doornbos, E., Funke, B., Goncharenko, L. P., Hervig, M. E., Schwartz, M. J., Sheese, P. E., Vargas, F., Williams, B. P., and Yuan, T.: NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities, Earth and Space Science, 8, e2020EA001321, https://doi.org/10.1029/2020EA001321, 2021. a
Fried, D. L.: Statistics of a Geometric Representation of Wavefront Distortion, J. Opt. Soc. Am., 55, 1427–1435, https://doi.org/10.1364/JOSA.55.001427, 1965. a
Global Modeling and Assimilation Office (GMAO): MERRA-2 inst3_3d_gas_Nv: 3d,3-Hourly,Instantaneous,Model-Level,Assimilation,Aerosol Mixing Ratio Analysis Increments V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/96BUID8HGGX5, 2015a. a
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg3_3d_asm_Nv: 3d,3-Hourly,Time-Averaged,Model-Level,Assimilation,Assimilated Meteorological Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/SUOQESM06LPK, 2015b. a, b
Gurvich, A. and Kan, V.: Structure of air density irregularities in the
stratosphere from spacecraft observations of stellar scintillation 2. Characteristic scales, structure characteristics, and kinetic energy
dissipation, Izv. Atmos. Ocean. Phy.+, 39, 311–321,
2003b. a
Gurvich, A. S. and Brekhovskikh, V. L.: Study of the turbulence and inner waves in the stratosphere based on the observations of stellar scintillations from space: a model of scintillation spectra, Wave. Random Media, 11, 163,
https://doi.org/10.1088/0959-7174/11/3/302, 2001. a
Hajj, G., Kursinski, E., Romans, L., Bertiger, W., and Leroy, S.: A technical
description of atmospheric sounding by GPS occultation, J. Atmos. Sol.-Terr. Phy., 64, 451–469, https://doi.org/10.1016/S1364-6826(01)00114-6, 2002. a
Hays, P. B. and Roble, R. G.: Observation of mesospheric ozone at low
altitudes, Planet. Space Sci., 21, 273–279, 1973. a
Janson, S. W.: Nanosatellites: Space and Ground Technologies, Operations and
Economics, chap. I-1: A Brief History of Nanosatellites, John
Wiley Sons, Ltd, 1–30, https://doi.org/10.1002/9781119042044.ch1, 2020. a
Jones, L., Fischbach, F., and Peterson, J.: Satellite measurements of
atmospheric structure by refraction, Planet. Space Sci., 9,
351–352, https://doi.org/10.1016/0032-0633(62)90035-1, 1962. a
Moffat, A. F. J.: A Theoretical Investigation of Focal Stellar Images in the Photographic Emulsion and Application to Photographic Photometry, Astron. Astrophys., 3, 455–461, 1969. a
NOAA NASA US Air Force: US standard atmosphere, 1976, National Oceanic and Atmospheric Administration, NOAA NASA US standard atmosphere report NOAA-S/T-76-1562, https://ntrs.nasa.gov/citations/19770009539 (last access: 28 March 2023), 1976. a
Perlot, N.: Atmospheric occultation of optical intersatellite links: coherence loss and related parameters, Appl. Optics, 48, 2290–2302,
https://doi.org/10.1364/AO.48.002290, 2009. a
Riot, V. J., Bauman, B., Carter, D., DeVries, W. H., and Oliver, S. S.:
Integrated telescope for imaging applications, Lawrence Livermore National
Security, LLC, #9720223, patent OSTI identifier 1805583, https://www.osti.gov/biblio/1805583 (last access: 28 March 2023), 2017. a
Scherllin-Pirscher, B., Steiner, A. K., Anthes, R. A., Alexander, M. J., Alexander, S. P., Biondi, R., Birner, T., Kim, J., Randel, W. J., Son, S.-W., Tsuda, T., and Zeng, Z.: Tropical Temperature Variability in the UTLS: New Insights from GPS Radio Occultation Observations, J. Climate, 34, 2813–2838, https://doi.org/10.1175/JCLI-D-20-0385.1, 2021. a
Simms, L. M., Phillion, D., Vries, W. D., Bauman, B. J., and Carter, D.: Orbit Refinement with the STARE Telescope, Journal of Small Satellites, 2, 235–251, https://www.jossonline.com/wp-content/uploads/2014/12/0202-Orbit-Refinement-with-the-STARE-Telescope.pdf (last access: 28 March 2023), 2013. a
Sofieva, V., Kyrola, E., and Ferraguto, M.: From pointing measurements in stellar occultation to atmospheric temperature, pressure and density profiling: simulations and first GOMOS results, in: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium, 21–25 July 2003, Toulouse, France, Proceedings, IEEE Cat. No. 03CH37477, vol. 5, 2990–2992, https://doi.org/10.1109/IGARSS.2003.1294657, 2003. a
Sofieva, V. F. and Kyrölä, E.: Abel Integral Inversion in Occultation
Measurements, Springer Berlin Heidelberg, Berlin, Heidelberg, 77–85,
https://doi.org/10.1007/978-3-662-09041-1_8, 2004. a
Sofieva, V. F., Gurvich, A. S., Dalaudier, F., and Kan, V.: Reconstruction of internal gravity wave and turbulence parameters in the stratosphere using GOMOS scintillation measurements, J. Geophys. Res.-Atmos., 112, D12113, https://doi.org/10.1029/2006JD007483, 2007.
a, b
Sofieva, V. F., Dalaudier, F., Hauchecorne, A., and Kan, V.: High-resolution temperature profiles retrieved from bichromatic stellar scintillation measurements by GOMOS/Envisat, Atmos. Meas. Tech., 12, 585–598, https://doi.org/10.5194/amt-12-585-2019, 2019. a
Thomas, S., Fusco, T., Tokovinin, A., Nicolle, M., Michau, V., and Rousset, G.: Comparison of centroid computation algorithms in a Shack–Hartmann sensor, Mon. Not. R. Astron. Soc., 371, 323–336,
https://doi.org/10.1111/j.1365-2966.2006.10661.x, 2006. a, b
Trujillo, I., Aguerri, J., Cepa, J., and Gutiérrez, C.: The effects of seeing on Sérsic profiles – II. The Moffat PSF, Mon. Not. R. Astron. Soc., 328, 977–985, https://doi.org/10.1046/j.1365-8711.2001.04937.x, 2001. a
White, R. L., Tanner, W. E., and Polidan, R. S.: Star line-of-sight refraction observations from the Orbiting Astronomical Observatory Copernicus and deduction of stratospheric structure in the tropical region, J. Geophys. Res.-Oceans, 88, 8535–8542, https://doi.org/10.1029/JC088iC13p08535, 1983. a
Woellert, K., Ehrenfreund, P., Ricco, A. J., and Hertzfeld, H.: Cubesats:
Cost-effective science and technology platforms for emerging and developing
nations, Adv. Space Res., 47, 663–684, https://doi.org/10.1016/j.asr.2010.10.009, 2011. a
Yee, J.-H., Vervack Jr., R. J., DeMajistre, R., Morgan, F., Carbary, J. F., Romick, G. J., Morrison, D., Lloyd, S. A., DeCola, P. L., Paxton, L. J., Anderson, D. E., Kumar, C. K., and Meng, C.-I.: Atmospheric remote sensing using a combined extinctive and refractive stellar occultation technique 1. Overview and proof-of-concept observations, J. Geophys. Res.-Atmos., 107, ACH 15-1–ACH 15-13, https://doi.org/10.1029/2001JD000794, 2002. a, b
Yunck, T., Lindal, G., and Liu, C.: The role of GPS in precise Earth observation, in: IEEE PLANS '88, Position Location and Navigation Symposium, 29 November–2 December 1988, Orlando, FL, USA, Record, Navigation into the 21st Century, 251–258, https://doi.org/10.1109/PLANS.1988.195491, 1988. a
Zou, X., Vandenberghe, F., Wang, B., Gorbunov, M. E., Kuo, Y.-H., Sokolovskiy, S., Chang, J. C., Sela, J. G., and Anthes, R. A.: A ray-tracing operator and its adjoint for the use of GPS/MET refraction angle measurements, J. Geophys. Res.-Atmos., 104, 22301–22318,
https://doi.org/10.1029/1999JD900450, 1999. a
Short summary
This work demonstrates the viability of a remote sensing technique using nanosatellites to measure stratospheric temperature. This measurement technique can probe the stratosphere and mesosphere at a fine vertical scale around the globe unlike other high-altitude measurement techniques, which would provide an opportunity to observe atmospheric gravity waves and turbulence. We analyze observations from two satellite platforms to provide a proof of concept and characterize measurement uncertainty.
This work demonstrates the viability of a remote sensing technique using nanosatellites to...