Articles | Volume 16, issue 14
https://doi.org/10.5194/amt-16-3531-2023
https://doi.org/10.5194/amt-16-3531-2023
Research article
 | 
25 Jul 2023
Research article |  | 25 Jul 2023

What CloudSat cannot see: liquid water content profiles inferred from MODIS and CALIOP observations

Richard M. Schulte, Matthew D. Lebsock, and John M. Haynes

Related authors

A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat/CALIPSO observations
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-266,https://doi.org/10.5194/amt-2023-266, 2024
Preprint under review for AMT
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
An intercomparison of EarthCARE cloud, aerosol, and precipitation retrieval products
Shannon L. Mason, Howard W. Barker, Jason N. S. Cole, Nicole Docter, David P. Donovan, Robin J. Hogan, Anja Hünerbein, Pavlos Kollias, Bernat Puigdomènech Treserras, Zhipeng Qu, Ulla Wandinger, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 17, 875–898, https://doi.org/10.5194/amt-17-875-2024,https://doi.org/10.5194/amt-17-875-2024, 2024
Short summary
First results of cloud retrieval from the Geostationary Environmental Monitoring Spectrometer
Bo-Ram Kim, Gyuyeon Kim, Minjeong Cho, Yong-Sang Choi, and Jhoon Kim
Atmos. Meas. Tech., 17, 453–470, https://doi.org/10.5194/amt-17-453-2024,https://doi.org/10.5194/amt-17-453-2024, 2024
Short summary
Thundercloud structures detected and analyzed based on coherent Doppler wind lidar
Kenan Wu, Tianwen Wei, Jinlong Yuan, Haiyun Xia, Xin Huang, Gaopeng Lu, Yunpeng Zhang, Feifan Liu, Baoyou Zhu, and Weidong Ding
Atmos. Meas. Tech., 16, 5811–5825, https://doi.org/10.5194/amt-16-5811-2023,https://doi.org/10.5194/amt-16-5811-2023, 2023
Short summary
Assessing Arctic low-level clouds and precipitation from above – a radar perspective
Imke Schirmacher, Pavlos Kollias, Katia Lamer, Mario Mech, Lukas Pfitzenmaier, Manfred Wendisch, and Susanne Crewell
Atmos. Meas. Tech., 16, 4081–4100, https://doi.org/10.5194/amt-16-4081-2023,https://doi.org/10.5194/amt-16-4081-2023, 2023
Short summary
Improved RepVGG Ground-Based Cloud Image Classification with Attention Convolution
Chaojun Shi, Leile Han, Ke Zhang, Hongyin Xiang, Xingkuan Li, Zibo Su, and Xian Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2023-1094,https://doi.org/10.5194/egusphere-2023-1094, 2023
Short summary

Cited articles

Boers, R., Acarreta, J. R., and Gras, J. L.: Satellite monitoring of the first indirect aerosol effect: Retrieval of the droplet concentration of water clouds, J. Geophys. Res.-Atmos., 111, D22208, https://doi.org/10.1029/2005JD006838, 2006. 
Brenguier, J.-L., Pawlowska, H., Schüller, L., Preusker, R., Fischer, J., and Fouquart, Y.: Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration, J. Atmos. Sci., 57, 803–821, https://doi.org/10.1175/1520-0469(2000)057<0803:RPOBLC>2.0.CO;2, 2000. 
Brenguier, J.-L., Pawlowska, H., and Schüller, L.: Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate, J. Geophys. Res.-Atmos., 108, D158632, https://doi.org/10.1029/2002JD002682, 2003. 
Christensen, M. W., Stephens, G. L., and Lebsock, M. D.: Exposing biases in retrieved low cloud properties from CloudSat: A guide for evaluating observations and climate data, J. Geophys. Res.-Atmos., 118, 12120–12131, https://doi.org/10.1002/2013JD020224, 2013. 
Download
Short summary
In order to constrain climate models and better understand how clouds might change in future climates, accurate satellite estimates of cloud liquid water content are important. The satellite currently best suited to this purpose, CloudSat, is not sensitive enough to detect some non-raining low clouds. In this study we show that information from two other satellite instruments, MODIS and CALIOP, can be combined to provide cloud water estimates for many of the clouds that are missed by CloudSat.