Articles | Volume 16, issue 3
https://doi.org/10.5194/amt-16-791-2023
https://doi.org/10.5194/amt-16-791-2023
Research article
 | 
10 Feb 2023
Research article |  | 10 Feb 2023

A fiber-optic distributed temperature sensor for continuous in situ profiling up to 2 km beneath constant-altitude scientific balloons

J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander

Related authors

A reel-down instrument system for profile measurements of water vapor, temperature, clouds, and aerosol beneath constant-altitude scientific balloons
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021,https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Speciated online PM1 from South Asian combustion sources – Part 1: Fuel-based emission factors and size distributions
J. Douglas Goetz, Michael R. Giordano, Chelsea E. Stockwell, Ted J. Christian, Rashmi Maharjan, Sagar Adhikari, Prakash V. Bhave, Puppala S. Praveen, Arnico K. Panday, Thilina Jayarathne, Elizabeth A. Stone, Robert J. Yokelson, and Peter F. DeCarlo
Atmos. Chem. Phys., 18, 14653–14679, https://doi.org/10.5194/acp-18-14653-2018,https://doi.org/10.5194/acp-18-14653-2018, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024,https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey
Atmos. Meas. Tech., 17, 4863–4889, https://doi.org/10.5194/amt-17-4863-2024,https://doi.org/10.5194/amt-17-4863-2024, 2024
Short summary
Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024,https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary
Cost-effective off-grid automatic precipitation samplers for pollutant and biogeochemical atmospheric deposition
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024,https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Modelling of cup anemometry and dynamic overspeeding in average wind speed measurements
Troels Friis Pedersen and Jan-Åke Dahlberg
Atmos. Meas. Tech., 17, 1441–1461, https://doi.org/10.5194/amt-17-1441-2024,https://doi.org/10.5194/amt-17-1441-2024, 2024
Short summary

Cited articles

Alexander, S. P., Tsuda, T., Kawatani, Y., and Takahashi, M.: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions, J. Geophys. Res.-Atmos., 113, D24115, https://doi.org/10.1029/2008JD010039, 2008. 
Bramberger, M., Alexander, M. J., Davis, S., Podglajen, A., Hertzog, A., Kalnajs, L., Deshler, T., Goetz, J. D., and Khaykin, S.: First Super-Pressure Balloon-Borne Fine-Vertical-Scale Profiles in the Upper TTL: Impacts of Atmospheric Waves on Cirrus Clouds and the QBO, Geophys. Res. Lett., 49, e2021GL097596, https://doi.org/10.1029/2021GL097596, 2022. 
Chang, K.-W. and L'Ecuyer, T.: Influence of gravity wave temperature anomalies and their vertical gradients on cirrus clouds in the tropical tropopause layer – a satellite-based view, Atmos. Chem. Phys., 20, 12499–12514, https://doi.org/10.5194/acp-20-12499-2020, 2020. 
de Jong, S. A. P., Slingerland, J. D., and van de Giesen, N. C.: Fiber optic distributed temperature sensing for the determination of air temperature, Atmos. Meas. Tech., 8, 335–339, https://doi.org/10.5194/amt-8-335-2015, 2015. 
Drusová, S., Bakx, W., Doornenbal, P. J., Wagterveld, R. M., Bense, V. F., and Offerhaus, H. L.: Comparison of three types of fiber optic sensors for temperature monitoring in a groundwater flow simulator, Sensor. Actuat. A-Phys., 331, 112682, https://doi.org/10.1016/j.sna.2021.112682, 2021. 
Download
Short summary
An instrument for in situ continuous 2 km vertical profiles of temperature below high-altitude balloons was developed for high-temporal-resolution measurements within the upper troposphere and lower stratosphere using fiber-optic distributed temperature sensing. The mechanical, electrical, and temperature calibration systems were validated from a short mid-latitude constant-altitude balloon flight within the lower stratosphere. The instrument observed small-scale and inertial gravity waves.