Articles | Volume 17, issue 9
https://doi.org/10.5194/amt-17-2649-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-2649-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intercomparison of eddy-covariance software for urban tall-tower sites
Institute of Meteorology and Climate Research – Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
Matthias Mauder
Institute of Meteorology and Climate Research – Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
Institute of Hydrology and Meteorology, Dresden University of Technology (TUD), 01069 Dresden, Germany
Stavros Stagakis
Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
Benjamin Loubet
ECOSYS, INRAE, AgroParisTech, Université Paris Saclay, ECOSYS, Palaiseau, 91120, France
Claudio D'Onofrio
Department of Physical Geography and Ecosystem Science, Lund University, Lund, 22362, Sweden
Stefan Metzger
National Ecological Observatory Network, Battelle, Boulder, CO, 80301, USA
Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
AtmoFacts, Longmont, CO, 80503, USA
David Durden
National Ecological Observatory Network, Battelle, Boulder, CO, 80301, USA
Pedro-Henrique Herig-Coimbra
ECOSYS, INRAE, AgroParisTech, Université Paris Saclay, ECOSYS, Palaiseau, 91120, France
Related authors
No articles found.
Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-168, https://doi.org/10.5194/amt-2024-168, 2024
Preprint under review for AMT
Short summary
Short summary
Humidity transport from the Earth's surface into the atmosphere is relevant for many processes. However, knowledge on the actual distribution of humidity concentrations is sparse – mainly due to technological limitations. With the herein presented lidar, it is possible to measure humidity concentrations and their vertical fluxes up to altitudes of >3 km with high spatio-temporal resolution, opening new possibilities for detailed process understanding and, ultimately, better model representation.
Stavros Stagakis, Dominik Brunner, Junwei Li, Leif Backman, Anni Karvonen, Lionel Constantin, Leena Järvi, Minttu Havu, Jia Chen, Sophie Emberger, and Liisa Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2024-2475, https://doi.org/10.5194/egusphere-2024-2475, 2024
Short summary
Short summary
The balance between CO2 uptake and emissions from urban green areas is still not well understood. This study evaluated for the first time the urban park CO2 exchange simulations by four different types of biosphere models by comparing them with observations. Even though some advantages and disadvantages of the different model types were identified, there was no strong evidence that more complex models performed better than simple ones.
Inge Wiekenkamp, Anna Katharina Lehmann, Alexander Bütow, Jörg Hartmann, Stefan Metzger, Thomas Ruhtz, Christian Wille, Mathias Zöllner, and Torsten Sachs
EGUsphere, https://doi.org/10.5194/egusphere-2024-1586, https://doi.org/10.5194/egusphere-2024-1586, 2024
Short summary
Short summary
Airborne eddy covariance platforms are crucial, as they measure the three-dimension wind, and turbulent transport of matter and energy between the surface and the atmosphere at larger scales. In this study we introduce the new ASK-16 eddy covariance platform that is able to accurately measure turbulent fluxes and wind vectors. Data from this platform can help to build bridges between local tower measurements and regional remote sensing fluxes or inversion products.
Kevin Wolz, Christopher Holst, Frank Beyrich, Eileen Päschke, and Matthias Mauder
Geosci. Instrum. Method. Data Syst., 13, 205–223, https://doi.org/10.5194/gi-13-205-2024, https://doi.org/10.5194/gi-13-205-2024, 2024
Short summary
Short summary
We compared wind measurements using different lidar setups at various heights. The triple Doppler lidar, sonic anemometer, and two single Doppler lidars were tested. Overall, the lidar methods showed good agreement with the sonic anemometer. The triple Doppler lidar performed better than single Doppler lidars, especially at higher altitudes. We also developed a new filtering approach for virtual tower scanning strategies. Single Doppler lidars provide reliable wind data over flat terrain.
Pedro Henrique Herig Coimbra, Benjamin Loubet, Olivier Laurent, Laura Bignotti, Mathis Lozano, and Michel Ramonet
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-71, https://doi.org/10.5194/amt-2024-71, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study explores using infrastructure built to assess atmospheric gas concentration with high precision to measure local emissions and sequestration. This only requires, relatively inexpensive, 3D wind measurements. The study uses the Saclay tower near Paris, in a mixed urban, forest and agricultural area. Results identified strong heating plant emissions and carbon uptake by the forest. Collaboration between scientific communities is further encouraged, so to better monitor greenhouse gases.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Victor Moinard, Antoine Savoie, Catherine Pasquier, Adeline Besnault, Yolaine Goubard-Delaunay, Baptiste Esnault, Marco Carozzi, Polina Voylokov, Sophie Génermont, Benjamin Loubet, Catherine Hénault, Florent Levavasseur, Jean-Marie Paillat, and Sabine Houot
EGUsphere, https://doi.org/10.5194/egusphere-2024-161, https://doi.org/10.5194/egusphere-2024-161, 2024
Preprint archived
Short summary
Short summary
Anaerobic digestion is used for biogas production. The resulting digestates may be associated with different crop performances and N losses compared to undigested animal effluents. We monitored N flows during a three-year field experiment with different fertilizations based on cattle effluents, digestates, or mineral fertilizers. Digestates were effective N fertilizer but required attention to NH3 volatilization. We identified no additional risks of N2O emissions with digestates.
Pauline Buysse, Benjamin Loubet, Raluca Ciuraru, Florence Lafouge, Brigitte Durand, Olivier Zurfluh, Céline Décuq, Olivier Fanucci, Lais Gonzaga Gomez, Jean-Christophe Gueudet, Sandy Bsaibes, Nora Zannoni, and Valérie Gros
EGUsphere, https://doi.org/10.5194/egusphere-2023-2438, https://doi.org/10.5194/egusphere-2023-2438, 2024
Preprint withdrawn
Short summary
Short summary
This research aimed at quantifying biogenic volatile organic compounds (BVOCs) emissions by a rapeseed crop field. Such compounds are precursors of atmospheric pollutants. Our study revealed that methanol, a BVOC that is not very reactive in the atmosphere, is by far the most emitted BVOC, while monoterpenes, being highly reactive, were emitted in larger quantities than expected. Our study therefore points out the potentially more significant contribution of croplands to atmospheric pollution.
Sreenath Paleri, Luise Wanner, Matthias Sühring, Ankur Desai, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2023-1721, https://doi.org/10.5194/egusphere-2023-1721, 2023
Preprint archived
Short summary
Short summary
We present a description and evaluation of numerical simulations of field experiment days during the CHEESEHEAD19 field campaign, conducted over a heterogeneous forested domain in Northern Wisconsin, USA. Diurnal simulations, informed and constrained by field measurements for two days during the summer and autumn were performed. The model could simulate near surface time series and profiles of atmospheric state variables and fluxes that matched relatively well with observations.
Danica L. Lombardozzi, William R. Wieder, Negin Sobhani, Gordon B. Bonan, David Durden, Dawn Lenz, Michael SanClements, Samantha Weintraub-Leff, Edward Ayres, Christopher R. Florian, Kyla Dahlin, Sanjiv Kumar, Abigail L. S. Swann, Claire M. Zarakas, Charles Vardeman, and Valerio Pascucci
Geosci. Model Dev., 16, 5979–6000, https://doi.org/10.5194/gmd-16-5979-2023, https://doi.org/10.5194/gmd-16-5979-2023, 2023
Short summary
Short summary
We present a novel cyberinfrastructure system that uses National Ecological Observatory Network measurements to run Community Terrestrial System Model point simulations in a containerized system. The simple interface and tutorials expand access to data and models used in Earth system research by removing technical barriers and facilitating research, educational opportunities, and community engagement. The NCAR–NEON system enables convergence of climate and ecological sciences.
Ida Storm, Ute Karstens, Claudio D'Onofrio, Alex Vermeulen, and Wouter Peters
Atmos. Chem. Phys., 23, 4993–5008, https://doi.org/10.5194/acp-23-4993-2023, https://doi.org/10.5194/acp-23-4993-2023, 2023
Short summary
Short summary
In this study, we evaluate what is in the influence regions of the ICOS atmospheric measurement stations to gain insight into what land cover types and land-cover-associated fluxes the network represents. Subsequently, insights about strengths, weaknesses, and potential gaps can assist in future network expansion decisions. The network is concentrated in central Europe, which leads to a general overrepresentation of coniferous forest and cropland and underrepresentation of grass and shrubland.
Samuel J. Cliff, Will Drysdale, James D. Lee, Carole Helfter, Eiko Nemitz, Stefan Metzger, and Janet F. Barlow
Atmos. Chem. Phys., 23, 2315–2330, https://doi.org/10.5194/acp-23-2315-2023, https://doi.org/10.5194/acp-23-2315-2023, 2023
Short summary
Short summary
Emissions of nitrogen oxides (NOx) to the atmosphere are an ongoing air quality issue. This study directly measures emissions of NOx and carbon dioxide from a tall tower in central London during the coronavirus pandemic. It was found that transport NOx emissions had reduced by >73 % since 2017 as a result of air quality policy and reduced congestion during coronavirus restrictions. During this period, central London was thought to be dominated by point-source heat and power generation emissions.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, https://doi.org/10.5194/acp-22-9413-2022, 2022
Short summary
Short summary
Measurements of NOx emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints on emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017 and compares them with inventories, finding that they underestimate by a factor of ∼1.48.
Benjamin Loubet, Pauline Buysse, Lais Gonzaga-Gomez, Florence Lafouge, Raluca Ciuraru, Céline Decuq, Julien Kammer, Sandy Bsaibes, Christophe Boissard, Brigitte Durand, Jean-Christophe Gueudet, Olivier Fanucci, Olivier Zurfluh, Letizia Abis, Nora Zannoni, François Truong, Dominique Baisnée, Roland Sarda-Estève, Michael Staudt, and Valérie Gros
Atmos. Chem. Phys., 22, 2817–2842, https://doi.org/10.5194/acp-22-2817-2022, https://doi.org/10.5194/acp-22-2817-2022, 2022
Short summary
Short summary
Volatile organic compounds (VOCs) are precursors of tropospheric pollutants like ozone or aerosols. Emission by agricultural land was still poorly characterized. We report experimental measurements of ecosystem-scale VOC fluxes above a wheat field with a highly sensitive proton transfer mass spectrometer. We report the fluxes of 123 compounds and confirm that methanol is the most emitted VOC by wheat. The second most emitted compound was C6H4O. Around 75 % of the compounds were deposited.
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021, https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Short summary
Turbulent flux measurements suffer from a general systematic underestimation. One reason for this bias is non-local transport by large-scale circulations. A recently developed model for this additional transport of sensible and latent energy is evaluated for three different test sites. Different options on how to apply this correction are presented, and the results are evaluated against independent measurements.
Stefan Metzger, David Durden, Sreenath Paleri, Matthias Sühring, Brian J. Butterworth, Christopher Florian, Matthias Mauder, David M. Plummer, Luise Wanner, Ke Xu, and Ankur R. Desai
Atmos. Meas. Tech., 14, 6929–6954, https://doi.org/10.5194/amt-14-6929-2021, https://doi.org/10.5194/amt-14-6929-2021, 2021
Short summary
Short summary
The key points are the following. (i) Integrative observing system design can multiply the information gain of surface–atmosphere field measurements. (ii) Catalyzing numerical simulations and first-principles machine learning open up observing system simulation experiments to novel applications. (iii) Use cases include natural climate solutions, emission inventory validation, urban air quality, and industry leak detection.
Adam R. Vaughan, James D. Lee, Stefan Metzger, David Durden, Alastair C. Lewis, Marvin D. Shaw, Will S. Drysdale, Ruth M. Purvis, Brian Davison, and C. Nicholas Hewitt
Atmos. Chem. Phys., 21, 15283–15298, https://doi.org/10.5194/acp-21-15283-2021, https://doi.org/10.5194/acp-21-15283-2021, 2021
Short summary
Short summary
Validating emissions estimates of atmospheric pollutants is a vital pathway towards reducing urban concentrations of air pollution and ensuring effective legislative controls are implemented. The work presented here highlights a strategy capable of quantifying and spatially disaggregating NOx emissions over challenging urban terrain. This work shows great scope as a tool for emission inventory validation and independent generation of high-resolution surface emissions on a city-wide scale.
Letizia Abis, Carmen Kalalian, Bastien Lunardelli, Tao Wang, Liwu Zhang, Jianmin Chen, Sébastien Perrier, Benjamin Loubet, Raluca Ciuraru, and Christian George
Atmos. Chem. Phys., 21, 12613–12629, https://doi.org/10.5194/acp-21-12613-2021, https://doi.org/10.5194/acp-21-12613-2021, 2021
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been investigated by means of a controlled atmospheric simulation chamber. The diversity of emitted VOCs increased also in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and ozone, indicating a potential contribution to particle formation or growth at local scales.
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020, https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary
Short summary
The loss of ozone to the sea surface was measured from the south coast of the UK and was found to be more rapid than previous observations over the open ocean. This is likely a consequence of different chemistry and biology in coastal environments. Strong winds appeared to speed up the loss of ozone. A better understanding of what influences ozone loss over the sea will lead to better model estimates of total ozone in the troposphere.
W. Joe F. Acton, Zhonghui Huang, Brian Davison, Will S. Drysdale, Pingqing Fu, Michael Hollaway, Ben Langford, James Lee, Yanhui Liu, Stefan Metzger, Neil Mullinger, Eiko Nemitz, Claire E. Reeves, Freya A. Squires, Adam R. Vaughan, Xinming Wang, Zhaoyi Wang, Oliver Wild, Qiang Zhang, Yanli Zhang, and C. Nicholas Hewitt
Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020, https://doi.org/10.5194/acp-20-15101-2020, 2020
Short summary
Short summary
Air quality in Beijing is of concern to both policy makers and the general public. In order to address concerns about air quality it is vital that the sources of atmospheric pollutants are understood. This work presents the first top-down measurement of volatile organic compound (VOC) emissions in Beijing. These measurements are used to evaluate the emissions inventory and assess the impact of VOC emission from the city centre on atmospheric chemistry.
Freya A. Squires, Eiko Nemitz, Ben Langford, Oliver Wild, Will S. Drysdale, W. Joe F. Acton, Pingqing Fu, C. Sue B. Grimmond, Jacqueline F. Hamilton, C. Nicholas Hewitt, Michael Hollaway, Simone Kotthaus, James Lee, Stefan Metzger, Natchaya Pingintha-Durden, Marvin Shaw, Adam R. Vaughan, Xinming Wang, Ruili Wu, Qiang Zhang, and Yanli Zhang
Atmos. Chem. Phys., 20, 8737–8761, https://doi.org/10.5194/acp-20-8737-2020, https://doi.org/10.5194/acp-20-8737-2020, 2020
Short summary
Short summary
Significant air quality problems exist in megacities like Beijing, China. To manage air pollution, legislators need a clear understanding of pollutant emissions. However, emissions inventories have large uncertainties, and reliable field measurements of pollutant emissions are required to constrain them. This work presents the first measurements of traffic-dominated emissions in Beijing which suggest that inventories overestimate these emissions in the region during both winter and summer.
Benjamin Fersch, Alfonso Senatore, Bianca Adler, Joël Arnault, Matthias Mauder, Katrin Schneider, Ingo Völksch, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020, https://doi.org/10.5194/hess-24-2457-2020, 2020
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Short summary
In this paper, we describe the PALM model system 6.0. PALM is a Fortran-based turbulence-resolving code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. During the last years, PALM has been significantly improved and now offers a variety of new components that are especially designed to simulate the urban atmosphere at building-resolving resolution.
Matthias Mauder, Michael Eggert, Christian Gutsmuths, Stefan Oertel, Paul Wilhelm, Ingo Voelksch, Luise Wanner, Jens Tambke, and Ivan Bogoev
Atmos. Meas. Tech., 13, 969–983, https://doi.org/10.5194/amt-13-969-2020, https://doi.org/10.5194/amt-13-969-2020, 2020
Short summary
Short summary
Sonic anemometers are prone to probe-induced flow distortion effects. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of flow distortion. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with comparabilities of 0.082 and 0.020 m s−1, respectively. Friction velocity is underestimated by the CSAT3B by 3 %.
Genki Katata, Rüdiger Grote, Matthias Mauder, Matthias J. Zeeman, and Masakazu Ota
Biogeosciences, 17, 1071–1085, https://doi.org/10.5194/bg-17-1071-2020, https://doi.org/10.5194/bg-17-1071-2020, 2020
Short summary
Short summary
In this paper, we demonstrate that high physiological activity levels during the extremely warm winter are allocated into the below-ground biomass and only to a minor extent used for additional plant growth during early spring. This process is so far largely unaccounted for in scenario analysis using global terrestrial biosphere models, and it may lead to carbon accumulation in the soil and/or carbon loss from the soil as a response to global warming.
Nicholas Cowan, Peter Levy, Andrea Moring, Ivan Simmons, Colin Bache, Amy Stephens, Joana Marinheiro, Jocelyn Brichet, Ling Song, Amy Pickard, Connie McNeill, Roseanne McDonald, Juliette Maire, Benjamin Loubet, Polina Voylokov, Mark Sutton, and Ute Skiba
Biogeosciences, 16, 4731–4745, https://doi.org/10.5194/bg-16-4731-2019, https://doi.org/10.5194/bg-16-4731-2019, 2019
Short summary
Short summary
Commonly used nitrogen fertilisers, ammonium nitrate, urea and urea coated with a urease inhibitor, were applied to experimental plots. Fertilisation with ammonium nitrate supported the largest yields but also resulted in the largest nitrous oxide emissions. Urea was the largest emitter of ammonia. The coated urea did not significantly increase yields; however, ammonia emissions were substantially smaller than urea. The coated urea was the best environmentally but is economically unattractive.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Sadiq Huq, Frederik De Roo, Siegfried Raasch, and Matthias Mauder
Geosci. Model Dev., 12, 2523–2538, https://doi.org/10.5194/gmd-12-2523-2019, https://doi.org/10.5194/gmd-12-2523-2019, 2019
Short summary
Short summary
To study turbulence in heterogeneous terrain, high-resolution LES is desired. However, the desired resolution is often restricted by computational constraints. We present a two-way interactive vertical grid nesting technique that enables high-resolution LES of the surface layer. By employing a finer grid only close to the surface layer, the total computational memory requirement is reduced. We demonstrate the accuracy and performance of the method for a convective boundary layer simulation.
Claire Delon, Corinne Galy-Lacaux, Dominique Serça, Erwan Personne, Eric Mougin, Marcellin Adon, Valérie Le Dantec, Benjamin Loubet, Rasmus Fensholt, and Torbern Tagesson
Biogeosciences, 16, 2049–2077, https://doi.org/10.5194/bg-16-2049-2019, https://doi.org/10.5194/bg-16-2049-2019, 2019
Short summary
Short summary
In the Sahel region during the wet season, CO2 and NO are released to the atmosphere, and NH3 is deposited on the soil. During the dry season, processes are strongly reduced. This paper shows the temporal variation in these soil–atmosphere exchanges of trace gases for 2 years, their sharp increase when the first rains fall onto dry soils, and how microbial processes are involved. We use a modelling approach, which is necessary when continuous measurements are not possible in remote regions.
Anne Klosterhalfen, Alexander Graf, Nicolas Brüggemann, Clemens Drüe, Odilia Esser, María P. González-Dugo, Günther Heinemann, Cor M. J. Jacobs, Matthias Mauder, Arnold F. Moene, Patrizia Ney, Thomas Pütz, Corinna Rebmann, Mario Ramos Rodríguez, Todd M. Scanlon, Marius Schmidt, Rainer Steinbrecher, Christoph K. Thomas, Veronika Valler, Matthias J. Zeeman, and Harry Vereecken
Biogeosciences, 16, 1111–1132, https://doi.org/10.5194/bg-16-1111-2019, https://doi.org/10.5194/bg-16-1111-2019, 2019
Short summary
Short summary
To obtain magnitudes of flux components of H2O and CO2 (e.g., transpiration, soil respiration), we applied source partitioning approaches after Scanlon and Kustas (2010) and after Thomas et al. (2008) to high-frequency eddy covariance measurements of 12 study sites covering various ecosystems (croplands, grasslands, and forests) in different climatic regions. We analyzed the interrelations among turbulence, site characteristics, and the performance of both partitioning methods.
Angelo Finco, Mhairi Coyle, Eiko Nemitz, Riccardo Marzuoli, Maria Chiesa, Benjamin Loubet, Silvano Fares, Eugenio Diaz-Pines, Rainer Gasche, and Giacomo Gerosa
Atmos. Chem. Phys., 18, 17945–17961, https://doi.org/10.5194/acp-18-17945-2018, https://doi.org/10.5194/acp-18-17945-2018, 2018
Short summary
Short summary
A 1-month field campaign of ozone (O3) flux measurements along a five-level vertical profile of a mature broadleaf forest highlighted that the biosphere–atmosphere exchange of this pollutant is modulated by complex diel dynamics occurring within and below the canopy. The canopy removed nearly 80 % of the O3 deposited to the forest; only a minor part was removed by the soil and the understorey (2 %), while the remaining 18.2 % was removed by chemical reactions with NO mostly emitted from soil.
Jörg Hartmann, Martin Gehrmann, Katrin Kohnert, Stefan Metzger, and Torsten Sachs
Atmos. Meas. Tech., 11, 4567–4581, https://doi.org/10.5194/amt-11-4567-2018, https://doi.org/10.5194/amt-11-4567-2018, 2018
Short summary
Short summary
We present new in-flight calibration procedures for airborne turbulence measurements that exploit suitable regular flight legs without the need for dedicated calibration patterns. Furthermore we estimate the accuracy of the airborne wind measurement and of the turbulent fluxes of the traces gases methane and carbon dioxide.
Tirtha Banerjee, Peter Brugger, Frederik De Roo, Konstantin Kröniger, Dan Yakir, Eyal Rotenberg, and Matthias Mauder
Atmos. Chem. Phys., 18, 10025–10038, https://doi.org/10.5194/acp-18-10025-2018, https://doi.org/10.5194/acp-18-10025-2018, 2018
Short summary
Short summary
We studied the nature of turbulent transport over a well-defined surface heterogeneity (approximate scale 7 km) comprising a shrubland and a forest in the Yatir semiarid area in Israel. Using eddy covariance and Doppler lidar measurements, we studied the variations in the turbulent kinetic energy budget and turbulent fluxes, focusing especially on transport terms. We also confirmed the role of large-scale secondary circulations that transport energy between the shrubland and the forest.
Andrei Serafimovich, Stefan Metzger, Jörg Hartmann, Katrin Kohnert, Donatella Zona, and Torsten Sachs
Atmos. Chem. Phys., 18, 10007–10023, https://doi.org/10.5194/acp-18-10007-2018, https://doi.org/10.5194/acp-18-10007-2018, 2018
Short summary
Short summary
In order to support the evaluation of coupled atmospheric–land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties and upscaled airborne flux measurements to high resolution flux maps. A machine learning technique allows us to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers.
Benjamin Loubet, Marco Carozzi, Polina Voylokov, Jean-Pierre Cohan, Robert Trochard, and Sophie Génermont
Biogeosciences, 15, 3439–3460, https://doi.org/10.5194/bg-15-3439-2018, https://doi.org/10.5194/bg-15-3439-2018, 2018
Short summary
Short summary
Tropospheric ammonia is mainly emitted by agriculture. It constitutes a loss for the farmers and a threat to human health and the environment. It is therefore crucial to improve agricultural practices to reduce ammonia losses following fertilisation. In this study we propose an inverse dispersion modelling method to simultaneously quantify ammonia volatilisation from multiple small agronomic plots. The method was evaluated to be suitable (though slightly biased) based on a theoretical study.
Frederik De Roo and Matthias Mauder
Atmos. Chem. Phys., 18, 5059–5074, https://doi.org/10.5194/acp-18-5059-2018, https://doi.org/10.5194/acp-18-5059-2018, 2018
Short summary
Short summary
We investigate the mismatch between incoming energy and the turbulent flux of sensible heat at the Earth's surface and how surface heterogeneity affects this imbalance. To resolve the turbulent fluxes we employ large-eddy simulations. We study terrain with different heterogeneity lengths and quantify the contributions of advection by the mean flow and horizontal flux-divergence in the surface energy budget. We find that the latter contributions depend on the scale of the heterogeneity length.
Matthias Mauder and Matthias J. Zeeman
Atmos. Meas. Tech., 11, 249–263, https://doi.org/10.5194/amt-11-249-2018, https://doi.org/10.5194/amt-11-249-2018, 2018
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Stefan Metzger, David Durden, Cove Sturtevant, Hongyan Luo, Natchaya Pingintha-Durden, Torsten Sachs, Andrei Serafimovich, Jörg Hartmann, Jiahong Li, Ke Xu, and Ankur R. Desai
Geosci. Model Dev., 10, 3189–3206, https://doi.org/10.5194/gmd-10-3189-2017, https://doi.org/10.5194/gmd-10-3189-2017, 2017
Short summary
Short summary
We apply the
development and systems operationssoftware development model to create the eddy4R–Docker open-source, flexible, and modular eddy-covariance data processing environment. Test applications to aircraft and tower data, as well as a software cross validation demonstrate its efficiency and consistency. Key improvements in accessibility, extensibility, and reproducibility build the foundation for deploying complex scientific algorithms in an effective and scalable manner.
Tirtha Banerjee, Frederik De Roo, and Matthias Mauder
Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017, https://doi.org/10.5194/hess-21-2987-2017, 2017
Short summary
Short summary
The canopy convector effect in the context of canopy turbulence was recently introduced by Rotenberg and Yakir (Science, 2010). However, there was a lack of understanding of this phenomenon as a generic feature of canopy turbulence, as we have demonstrated in this paper. Uncertainties of existing parameterizations of canopy aerodynamic resistance to heat transfer are discussed and possible remedies are suggested.
Sebastian Laufs, Mathieu Cazaunau, Patrick Stella, Ralf Kurtenbach, Pierre Cellier, Abdelwahid Mellouki, Benjamin Loubet, and Jörg Kleffmann
Atmos. Chem. Phys., 17, 6907–6923, https://doi.org/10.5194/acp-17-6907-2017, https://doi.org/10.5194/acp-17-6907-2017, 2017
Short summary
Short summary
Sources of nitrous acid (HONO), a major precursor of the OH radical, are still under controversial discussion. Since mainly ground surface sources have been proposed, HONO fluxes were measured above an agricultural field. Positive daytime fluxes were observed which showed strong correlation with the product of the NO2 concentration and J(NO2). These results indicate HONO formation by photosensitized heterogeneous conversion of NO2 on soil surfaces as observed in recent laboratory studies.
Raffaella M. Vuolo, Benjamin Loubet, Nicolas Mascher, Jean-Christophe Gueudet, Brigitte Durand, Patricia Laville, Olivier Zurfluh, Raluca Ciuraru, Patrick Stella, and Ivonne Trebs
Biogeosciences, 14, 2225–2244, https://doi.org/10.5194/bg-14-2225-2017, https://doi.org/10.5194/bg-14-2225-2017, 2017
Short summary
Short summary
Atmospheric nitrogen oxides (NO and NO2) are a threat for the environment and human health. Agricultural soils are a large but uncertain source, partly due to a lack of direct fluxes measurements. We quantified NO, NO2 and ozone (O3) fluxes above an oilseed rape crop rotation. We found that 0.27 % of nitrogen applied was emitted as NO, whose emissions were favoured by fertilisation under dry and warm conditions. We found significant interactions between NO, NO2 and O3 even above bare soil.
Sauveur Belviso, Ilja Marco Reiter, Benjamin Loubet, Valérie Gros, Juliette Lathière, David Montagne, Marc Delmotte, Michel Ramonet, Cerise Kalogridis, Benjamin Lebegue, Nicolas Bonnaire, Victor Kazan, Thierry Gauquelin, Catherine Fernandez, and Bernard Genty
Atmos. Chem. Phys., 16, 14909–14923, https://doi.org/10.5194/acp-16-14909-2016, https://doi.org/10.5194/acp-16-14909-2016, 2016
Short summary
Short summary
The role that soil, foliage, and atmospheric dynamics have on surface OCS exchange in a Mediterranean forest ecosystem in southern France (O3HP) was investigated in June of 2012 and 2013 with essentially a top-down approach. Atmospheric data suggest that the site is appropriate for estimating GPP directly from eddy covariance measurements of OCS fluxes, but it is less adequate for scaling NEE to GPP from observations of vertical gradients of OCS relative to CO2 during the daytime.
Simon Schallhart, Pekka Rantala, Eiko Nemitz, Ditte Taipale, Ralf Tillmann, Thomas F. Mentel, Benjamin Loubet, Giacomo Gerosa, Angelo Finco, Janne Rinne, and Taina M. Ruuskanen
Atmos. Chem. Phys., 16, 7171–7194, https://doi.org/10.5194/acp-16-7171-2016, https://doi.org/10.5194/acp-16-7171-2016, 2016
Short summary
Short summary
We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. Detectable fluxes were observed for 29 compounds, dominated by isoprene, which comprised over 60 % of the upward flux. Methanol seemed to be deposited to dew, as the deposition happened in the early morning. We estimated that up to 30 % of the upward flux of methyl vinyl ketone and methacrolein originated from atmospheric oxidation of isoprene.
Stefan Metzger, George Burba, Sean P. Burns, Peter D. Blanken, Jiahong Li, Hongyan Luo, and Rommel C. Zulueta
Atmos. Meas. Tech., 9, 1341–1359, https://doi.org/10.5194/amt-9-1341-2016, https://doi.org/10.5194/amt-9-1341-2016, 2016
Short summary
Short summary
Enclosed infrared gas analyzers utilize a gas sampling system, which can substantially increase spectral corrections for eddy covariance applications. Here, we show that a requirements-based design can reduce high-frequency attenuation for H2O by ≈ 3/4, with the remaining flux correction not exceeding 3 %. The resulting gas sampling system can be used across a wide range of ecoclimates and site layouts, and enables more automated and comparable eddy covariance data processing across sites.
X. Wu, N. Vuichard, P. Ciais, N. Viovy, N. de Noblet-Ducoudré, X. Wang, V. Magliulo, M. Wattenbach, L. Vitale, P. Di Tommasi, E. J. Moors, W. Jans, J. Elbers, E. Ceschia, T. Tallec, C. Bernhofer, T. Grünwald, C. Moureaux, T. Manise, A. Ligne, P. Cellier, B. Loubet, E. Larmanou, and D. Ripoche
Geosci. Model Dev., 9, 857–873, https://doi.org/10.5194/gmd-9-857-2016, https://doi.org/10.5194/gmd-9-857-2016, 2016
Short summary
Short summary
The response of crops to changing climate and atmospheric CO2 could have large effects on food production, terrestrial carbon, water, energy fluxes and the climate feedbacks. We developed a new process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module into the land surface model ORCHIDEE. Our model has good ability to capture the spatial gradients of crop phenology, carbon and energy-related variables across Europe.
V. Maurer, N. Kalthoff, A. Wieser, M. Kohler, M. Mauder, and L. Gantner
Atmos. Chem. Phys., 16, 1377–1400, https://doi.org/10.5194/acp-16-1377-2016, https://doi.org/10.5194/acp-16-1377-2016, 2016
Short summary
Short summary
The measurement of turbulence in the lowest 1–2 km above the land surface is important for our understanding of boundary-layer processes. We compared turbulence profiles measured at three locations lying about 3 km apart and found that the deployment of the instruments in different crop fields has no direct influence on turbulence statistics on cloud-free days. Nevertheless, spatial differences as well as correlations were found, indicating the existence of organized structures of turbulence.
C. Kalogridis, V. Gros, R. Sarda-Esteve, B. Langford, B. Loubet, B. Bonsang, N. Bonnaire, E. Nemitz, A.-C. Genard, C. Boissard, C. Fernandez, E. Ormeño, D. Baisnée, I. Reiter, and J. Lathière
Atmos. Chem. Phys., 14, 10085–10102, https://doi.org/10.5194/acp-14-10085-2014, https://doi.org/10.5194/acp-14-10085-2014, 2014
G. Fratini and M. Mauder
Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014, https://doi.org/10.5194/amt-7-2273-2014, 2014
C. R. Flechard, R.-S. Massad, B. Loubet, E. Personne, D. Simpson, J. O. Bash, E. J. Cooter, E. Nemitz, and M. A. Sutton
Biogeosciences, 10, 5183–5225, https://doi.org/10.5194/bg-10-5183-2013, https://doi.org/10.5194/bg-10-5183-2013, 2013
S. Metzger, W. Junkermann, M. Mauder, K. Butterbach-Bahl, B. Trancón y Widemann, F. Neidl, K. Schäfer, S. Wieneke, X. H. Zheng, H. P. Schmid, and T. Foken
Biogeosciences, 10, 2193–2217, https://doi.org/10.5194/bg-10-2193-2013, https://doi.org/10.5194/bg-10-2193-2013, 2013
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Alternate materials for the capture and quantification of gaseous oxidized mercury in the atmosphere
Lower-cost eddy covariance for CO2 and H2O fluxes over grassland and agroforestry
Towards a high quality in-situ observation network for oxygenated volatile organic compounds (OVOCs) in Europe: transferring traceability to the International System of Units (SI) to the field
Evaluation of optimized flux chamber design for measurement of ammonia emission after field application of slurry with full-scale farm machinery
Methodology and uncertainty estimation for measurements of methane leakage in a manufactured house
Preparation of low-concentration H2 test gas mixtures in ambient air for calibration of H2 sensors
Pico-Light H2O: intercomparison of in situ water vapour measurements during the AsA 2022 campaign
Mobile air quality monitoring and comparison to fixed monitoring sites for instrument performance assessment
Validation of formaldehyde products from three satellite retrievals (OMI SAO, OMPS-NPP SAO, and OMI BIRA) in the marine atmosphere with four seasons of ATom aircraft observations
Assessment of current methane emission quantification techniques for natural gas midstream applications
Performance assessment of state-of-the-art and novel methods for remote compliance monitoring of sulfur emissions from shipping
Intercomparison of detection and quantification methods for methane emissions from the natural gas distribution network in Hamburg, Germany
Comparison of photoacoustic spectroscopy and cavity ring-down spectroscopy for ambient methane monitoring at Hohenpeißenberg
Comparison of atmospheric CO, CO2 and CH4 measurements at the Schneefernerhaus and the mountain ridge at Zugspitze
Intercomparison of commercial analyzers for atmospheric ethane and methane observations
Real-time measurement of phase partitioning of organic compounds using a proton-transfer-reaction time-of-flight mass spectrometer coupled to a CHARON inlet
A quantitative comparison of methods used to measure smaller methane emissions typically observed from superannuated oil and gas infrastructure
Comparing airborne algorithms for greenhouse gas flux measurements over the Alberta oil sands
Characterization of inexpensive metal oxide sensor performance for trace methane detection
Intercomparison of upper tropospheric and lower stratospheric water vapor measurements over the Asian Summer Monsoon during the StratoClim campaign
Air pollution measurement errors: is your data fit for purpose?
Performance characterization of low-cost air quality sensors for off-grid deployment in rural Malawi
Comment on “Comparison of ozone measurement methods in biomass burning smoke: an evaluation under field and laboratory conditions” by Long et al. (2021)
Homogenization of the Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data record: comparison with lidar and satellite observations
Long-term behavior and stability of calibration models for NO and NO2 low-cost sensors
Controlled-release experiment to investigate uncertainties in UAV-based emission quantification for methane point sources
Ozone formation sensitivity study using machine learning coupled with the reactivity of volatile organic compound species
Evaluating uncertainty in sensor networks for urban air pollution insights
Estimating oil sands emissions using horizontal path-integrated column measurements
Global evaluation of the precipitable-water-vapor product from MERSI-II (Medium Resolution Spectral Imager) on board the Fengyun-3D satellite
Field testing two flux footprint models
Validation of a new cavity ring-down spectrometer for measuring tropospheric gaseous hydrogen chloride
Comparison of formaldehyde measurements by Hantzsch, CRDS and DOAS in the SAPHIR chamber
A field intercomparison of three passive air samplers for gaseous mercury in ambient air
Beef cattle methane emissions measured with tracer-ratio and inverse dispersion modelling techniques
Methane emissions from an oil sands tailings pond: a quantitative comparison of fluxes derived by different methods
Performance of open-path GasFinder3 devices for CH4 concentration measurements close to ambient levels
Water vapor density and turbulent fluxes from three generations of infrared gas analyzers
Quantifying fugitive gas emissions from an oil sands tailings pond with open-path Fourier transform infrared measurements
Robust statistical calibration and characterization of portable low-cost air quality monitoring sensors to quantify real-time O3 and NO2 concentrations in diverse environments
A miniature Portable Emissions Measurement System (PEMS) for real-driving monitoring of motorcycles
In situ measurement of CO2 and CH4 from aircraft over northeast China and comparison with OCO-2 data
Mobile-platform measurement of air pollutant concentrations in California: performance assessment, statistical methods for evaluating spatial variations, and spatial representativeness
Continuous methane concentration measurements at the Greenland ice sheet–atmosphere interface using a low-cost, low-power metal oxide sensor system
The development of the Atmospheric Measurements by Ultra-Light Spectrometer (AMULSE) greenhouse gas profiling system and application for satellite retrieval validation
Atmospheric observations of the water vapour continuum in the near-infrared windows between 2500 and 6600 cm−1
Intercomparison study of atmospheric 222Rn and 222Rn progeny monitors
Sources of error in open-path FTIR measurements of N2O and CO2 emitted from agricultural fields
Constraining the accuracy of flux estimates using OTM 33A
Evaluating the measurement interference of wet rotating-denuder–ion chromatography in measuring atmospheric HONO in a highly polluted area
Livia Lown, Sarrah M. Dunham-Cheatham, Seth N. Lyman, and Mae S. Gustin
Atmos. Meas. Tech., 17, 6397–6413, https://doi.org/10.5194/amt-17-6397-2024, https://doi.org/10.5194/amt-17-6397-2024, 2024
Short summary
Short summary
New sorbent materials are needed to preconcentrate atmospheric oxidized mercury for analysis by developing mass spectrometry methods. Chitosan, α-Al2O3, and γ-Al2O3 were tested for quantitative gaseous oxidized mercury sorption in ambient air under laboratory and field conditions. Although these materials sorbed gaseous oxidized mercury without sorbing elemental mercury in the laboratory, less oxidized mercury was recovered from these materials compared to cation exchange membranes in the field.
Justus G. V. van Ramshorst, Alexander Knohl, José Ángel Callejas-Rodelas, Robert Clement, Timothy C. Hill, Lukas Siebicke, and Christian Markwitz
Atmos. Meas. Tech., 17, 6047–6071, https://doi.org/10.5194/amt-17-6047-2024, https://doi.org/10.5194/amt-17-6047-2024, 2024
Short summary
Short summary
In this work we present experimental field results of a lower-cost eddy covariance (LC-EC) system, which can measure the ecosystem exchange of carbon dioxide and water vapour with the atmosphere. During three field campaigns on a grassland and agroforestry grassland, we compared the LC-EC with a conventional eddy covariance (CON-EC) system. Our results show that LC-EC has the potential to measure EC fluxes at only approximately 25 % of the cost of a CON-EC system.
Maitane Iturrate-Garcia, Thérèse Salameh, Paul Schlauri, Annarita Baldan, Martin K. Vollmer, Evdokia Stratigou, Sebastian Dusanter, Jianrong Li, Stefan Persijn, Anja Claude, Rupert Holzinger, Christophe Sutour, Tatiana Macé, Yasin Elshorbany, Andreas Ackermann, Céline Pascale, and Stefan Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2236, https://doi.org/10.5194/egusphere-2024-2236, 2024
Short summary
Short summary
Accurate and comparable measurements of oxygenated organic compounds (OVOCs) are crucial to assess tropospheric ozone burdens and trends. However, monitoring of many OVOCs remains challenging because of their low atmospheric abundance and lack of stable and traceable calibration standards. This research describes the calibration standards developed for selected OVOCs at low amount of substance fractions (<100 nmol mol-1) to transfer traceability to the international system of units to the field.
Johanna Pedersen, Sasha D. Hafner, Andreas Pacholski, Valthor I. Karlsson, Li Rong, Rodrigo Labouriau, and Jesper N. Kamp
Atmos. Meas. Tech., 17, 4493–4505, https://doi.org/10.5194/amt-17-4493-2024, https://doi.org/10.5194/amt-17-4493-2024, 2024
Short summary
Short summary
Field-applied animal slurry is a significant source of NH3 emission. A new system of dynamic flux chambers for NH3 measurements was developed and validated using three field trials in order to assess the variability after application with a trailing hose at different scales: manual (handheld) application, a 3 m slurry boom, and a 30 m slurry boom. The system facilitates NH3 emission measurement with replication after both manual and farm-scale slurry application with relatively high precision.
Anna Karion, Michael F. Link, Rileigh Robertson, Tyler Boyle, and Dustin Poppendieck
EGUsphere, https://doi.org/10.5194/egusphere-2024-2129, https://doi.org/10.5194/egusphere-2024-2129, 2024
Short summary
Short summary
Methane leaks into houses that use natural gas, from appliances and from pipes and fittings. We measured methane emitted from a manufactured house under different ventilation conditions using indoor and outdoor concentration measurements. We injected methane at prescribed rates into the house and then measured the emissions using our method. We report the error in the calculation based on these tests. We also describe the method and provide guidance on conducting this type of experiment.
Niklas Karbach, Lisa Höhler, Peter Hoor, Heiko Bozem, Nicole Bobrowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 17, 4081–4086, https://doi.org/10.5194/amt-17-4081-2024, https://doi.org/10.5194/amt-17-4081-2024, 2024
Short summary
Short summary
The system presented here can accurately generate and reproduce a stable flow of gas mixtures of known concentrations over several days using ambient air as a dilution medium. In combination with the small size and low weight of the system, this enables the calibration of hydrogen sensors in the field, reducing the influence of matrix effects on the accuracy of the sensor. The system is inexpensive to assemble and easy to maintain, which is the key to reliable measurement results.
Mélanie Ghysels, Georges Durry, Nadir Amarouche, Dale Hurst, Emrys Hall, Kensy Xiong, Jean-Charles Dupont, Jean-Christophe Samake, Fabien Frérot, Raghed Bejjani, and Emmanuel D. Riviere
Atmos. Meas. Tech., 17, 3495–3513, https://doi.org/10.5194/amt-17-3495-2024, https://doi.org/10.5194/amt-17-3495-2024, 2024
Short summary
Short summary
A tunable diode laser hygrometer, “Pico-Light H2O”, is presented and its performances are evaluated during the AsA 2022 balloon-borne intercomparison campaign from Aire-sur-l'Adour (France) in September 2022. A total of 15 balloons were launched within the framework of the EU-funded HEMERA project. Pico-Light H2O has been compared in situ with the NOAA Frost Point Hygrometer in the upper troposphere and stratosphere, as well as with meteorological sondes (iMet-4 and M20) in the troposphere.
Andrew R. Whitehill, Melissa Lunden, Brian LaFranchi, Surender Kaushik, and Paul A. Solomon
Atmos. Meas. Tech., 17, 2991–3009, https://doi.org/10.5194/amt-17-2991-2024, https://doi.org/10.5194/amt-17-2991-2024, 2024
Short summary
Short summary
We present an analysis from two large-scale mobile air quality monitoring campaigns in Colorado and California. We compare mobile measurements of air quality to measurements from nearby regulatory sites. The goal of this paper is to explore how fixed-site measurements (such as regulatory site measurements) can be used for ongoing instrument performance assessment of mobile monitoring platforms over extended measurement campaigns.
Jin Liao, Glenn M. Wolfe, Alex E. Kotsakis, Julie M. Nicely, Jason M. St. Clair, Thomas F. Hanisco, Gonzalo Gonzalez Abad, Caroline R. Nowlan, Zolal Ayazpour, Isabelle De Smedt, Eric C. Apel, and Rebecca S. Hornbrook
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-72, https://doi.org/10.5194/amt-2024-72, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Validation of satellite HCHO over the remote marine regions is relatively few and modeled HCHO in these regions is usually added as a global satellite HCHO background. This paper intercompares three satellite HCHO retrievals and validates them against in situ observations from the NASA ATom mission. All retrievals are correlated with ATom integrated columns over remote oceans, with OMI SAO (v004) showing the best agreement. A persistent low bias is found in all retrievals at high latitudes.
Yunsong Liu, Jean-Daniel Paris, Gregoire Broquet, Violeta Bescós Roy, Tania Meixus Fernandez, Rasmus Andersen, Andrés Russu Berlanga, Emil Christensen, Yann Courtois, Sebastian Dominok, Corentin Dussenne, Travis Eckert, Andrew Finlayson, Aurora Fernández de la Fuente, Catlin Gunn, Ram Hashmonay, Juliano Grigoleto Hayashi, Jonathan Helmore, Soeren Honsel, Fabrizio Innocenti, Matti Irjala, Torgrim Log, Cristina Lopez, Francisco Cortés Martínez, Jonathan Martinez, Adrien Massardier, Helle Gottschalk Nygaard, Paula Agregan Reboredo, Elodie Rousset, Axel Scherello, Matthias Ulbricht, Damien Weidmann, Oliver Williams, Nigel Yarrow, Murès Zarea, Robert Ziegler, Jean Sciare, Mihalis Vrekoussis, and Philippe Bousquet
Atmos. Meas. Tech., 17, 1633–1649, https://doi.org/10.5194/amt-17-1633-2024, https://doi.org/10.5194/amt-17-1633-2024, 2024
Short summary
Short summary
We investigated the performance of 10 methane emission quantification techniques in a blind controlled-release experiment at an inerted natural gas compressor station. We reported their respective strengths, weaknesses, and potential complementarity depending on the emission rates and atmospheric conditions. Additionally, we assess the dependence of emission quantification performance on key parameters such as wind speed, deployment constraints, and measurement duration.
Jörg Beecken, Andreas Weigelt, Simone Griesel, Johan Mellqvist, Alexander V. Conde Jacobo, Daniëlle van Dinther, Jan Duyzer, Jon Knudsen, Bettina Knudsen, and Leonidas Ntziachristos
Atmos. Meas. Tech., 16, 5883–5895, https://doi.org/10.5194/amt-16-5883-2023, https://doi.org/10.5194/amt-16-5883-2023, 2023
Short summary
Short summary
Air pollution from shipping is a debated topic in science and politics. We compare different monitoring systems currently used in different European countries for the enforcement of emission limits regarding air pollution from ships according to regulation. The system performances were individually assessed in the field by comparison with true values. Non-compliant vessels with actual fuel sulfur contents > 0.15–0.19 % Sm/m can be detected by the compared systems with 95 % confidence.
Hossein Maazallahi, Antonio Delre, Charlotte Scheutz, Anders M. Fredenslund, Stefan Schwietzke, Hugo Denier van der Gon, and Thomas Röckmann
Atmos. Meas. Tech., 16, 5051–5073, https://doi.org/10.5194/amt-16-5051-2023, https://doi.org/10.5194/amt-16-5051-2023, 2023
Short summary
Short summary
Measurement methods are increasingly deployed to verify reported methane emissions of gas leaks. This study describes unique advantages and limitations of three methods. Two methods are rapidly deployed, but uncertainties and biases exist for some leak locations. In contrast, the suction method could accurately determine leak rates in principle. However, this method, which provides data for the German emission inventory, creates an overall low bias in our study due to non-random site selection.
Max Müller, Stefan Weigl, Jennifer Müller-Williams, Matthias Lindauer, Thomas Rück, Simon Jobst, Rudolf Bierl, and Frank-Michael Matysik
Atmos. Meas. Tech., 16, 4263–4270, https://doi.org/10.5194/amt-16-4263-2023, https://doi.org/10.5194/amt-16-4263-2023, 2023
Short summary
Short summary
Over a period of 5 d, a photoacoustic methane sensor was compared with a Picarro cavity ring-down (G2301) spectrometer. Both devices measured the ambient methane concentration at the meteorological observatory Hohenpeißenberg. Cross-sensitivities on the photoacoustic signal, due to fluctuating ambient humidity, were compensated by applying the CoNRad algorithm. The results show that photoacoustic sensors have the potential for accurate and precise greenhouse gas monitoring.
Antje Hoheisel, Cedric Couret, Bryan Hellack, and Martina Schmidt
Atmos. Meas. Tech., 16, 2399–2413, https://doi.org/10.5194/amt-16-2399-2023, https://doi.org/10.5194/amt-16-2399-2023, 2023
Short summary
Short summary
High-precision CO2, CH4 and CO measurements have been carried out at Zugspitze for decades. New technologies make it possible to analyse these gases with high temporal resolution. This allows the detection of local pollution. To this end, measurements have been performed on the mountain ridge (ZGR) and are compared to routine measurements at the Schneefernerhaus (ZSF). Careful manual flagging of pollution events in the ZSF data leads to consistency with the little influenced ZGR time series.
Róisín Commane, Andrew Hallward-Driemeier, and Lee T. Murray
Atmos. Meas. Tech., 16, 1431–1441, https://doi.org/10.5194/amt-16-1431-2023, https://doi.org/10.5194/amt-16-1431-2023, 2023
Short summary
Short summary
Methane / ethane ratios can be used to identify and partition the different sources of methane, especially in areas with natural gas mixed with biogenic methane emissions, such as cities. We tested three commercially available laser-based analyzers for sensitivity, precision, size, power requirement, ease of use on mobile platforms, and expertise needed to operate the instrument, and we make recommendations for use in various situations.
Yarong Peng, Hongli Wang, Yaqin Gao, Shengao Jing, Shuhui Zhu, Dandan Huang, Peizhi Hao, Shengrong Lou, Tiantao Cheng, Cheng Huang, and Xuan Zhang
Atmos. Meas. Tech., 16, 15–28, https://doi.org/10.5194/amt-16-15-2023, https://doi.org/10.5194/amt-16-15-2023, 2023
Short summary
Short summary
This work examined the phase partitioning behaviors of organic compounds at hourly resolution in ambient conditions with the use of the CHemical Analysis of aeRosols ONline (CHARON) inlet coupled to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS). Properly accounting for the neutral losses of small moieties during the molecular feature extraction from PTR mass spectra could significantly reduce uncertainties associated with the gas–particle partitioning measurements.
Stuart N. Riddick, Riley Ancona, Mercy Mbua, Clay S. Bell, Aidan Duggan, Timothy L. Vaughn, Kristine Bennett, and Daniel J. Zimmerle
Atmos. Meas. Tech., 15, 6285–6296, https://doi.org/10.5194/amt-15-6285-2022, https://doi.org/10.5194/amt-15-6285-2022, 2022
Short summary
Short summary
This describes controlled release experiments at the METEC facility in Fort Collins, USA, that investigates the accuracy and precision of five methods commonly used to measure methane emissions. Methods include static/dynamic chambers, hi flow sampling, a backward Lagrangian stochastic method, and a Gaussian plume method. This is the first time that methods for measuring CH4 emissions from point sources less than 200 g CH4 h−1 have been quantitively assessed against references and each other.
Broghan M. Erland, Cristen Adams, Andrea Darlington, Mackenzie L. Smith, Andrew K. Thorpe, Gregory R. Wentworth, Steve Conley, John Liggio, Shao-Meng Li, Charles E. Miller, and John A. Gamon
Atmos. Meas. Tech., 15, 5841–5859, https://doi.org/10.5194/amt-15-5841-2022, https://doi.org/10.5194/amt-15-5841-2022, 2022
Short summary
Short summary
Accurately estimating greenhouse gas (GHG) emissions is essential to reaching net-zero goals to combat the climate crisis. Airborne box-flights are ideal for assessing regional GHG emissions, as they can attain small error. We compare two box-flight algorithms and found they produce similar results, but daily variability must be considered when deriving emissions inventories. Increasing the consistency and agreement between airborne methods moves us closer to achieving more accurate estimates.
Daniel Furuta, Tofigh Sayahi, Jinsheng Li, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 15, 5117–5128, https://doi.org/10.5194/amt-15-5117-2022, https://doi.org/10.5194/amt-15-5117-2022, 2022
Short summary
Short summary
Methane is a major greenhouse gas and contributor to climate change with various human-caused and natural sources. Currently, atmospheric methane is expensive to sense. We investigate repurposing cheap methane safety sensors for atmospheric sensing, finding several promising sensors and identifying some of the challenges in this approach. This work will help in developing inexpensive sensor networks for methane monitoring, which will aid in reducing methane leaks and emissions.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Sebastian Diez, Stuart E. Lacy, Thomas J. Bannan, Michael Flynn, Tom Gardiner, David Harrison, Nicholas Marsden, Nicholas A. Martin, Katie Read, and Pete M. Edwards
Atmos. Meas. Tech., 15, 4091–4105, https://doi.org/10.5194/amt-15-4091-2022, https://doi.org/10.5194/amt-15-4091-2022, 2022
Short summary
Short summary
Regardless of the cost of the measuring instrument, there are no perfect measurements. For this reason, we compare the quality of the information provided by cheap devices when they are used to measure air pollutants and we try to emphasise that before judging the potential usefulness of the devices, the user must specify his own needs. Since commonly used performance indices/metrics can be misleading in qualifying this, we propose complementary visual analysis to the more commonly used metrics.
Ashley S. Bittner, Eben S. Cross, David H. Hagan, Carl Malings, Eric Lipsky, and Andrew P. Grieshop
Atmos. Meas. Tech., 15, 3353–3376, https://doi.org/10.5194/amt-15-3353-2022, https://doi.org/10.5194/amt-15-3353-2022, 2022
Short summary
Short summary
We present findings from a 1-year pilot deployment of low-cost integrated air quality sensor packages in rural Malawi using calibration models developed during collocation with US regulatory monitors. We compare the results with data from remote sensing products and previous field studies. We conclude that while the remote calibration approach can help extract useful data, great care is needed when assessing low-cost sensor data collected in regions without reference instrumentation.
Noah Bernays, Daniel A. Jaffe, Irina Petropavlovskikh, and Peter Effertz
Atmos. Meas. Tech., 15, 3189–3192, https://doi.org/10.5194/amt-15-3189-2022, https://doi.org/10.5194/amt-15-3189-2022, 2022
Short summary
Short summary
Ozone is an important pollutant that impacts millions of people worldwide. It is therefore important to ensure accurate measurements. A recent surge in wildfire activity in the USA has resulted in significant enhancements in ozone concentration. However given the nature of wildfire smoke, there are questions about our ability to accurately measure ozone. In this comment, we discuss possible biases in the UV measurements of ozone in the presence of smoke.
Gérard Ancellet, Sophie Godin-Beekmann, Herman G. J. Smit, Ryan M. Stauffer, Roeland Van Malderen, Renaud Bodichon, and Andrea Pazmiño
Atmos. Meas. Tech., 15, 3105–3120, https://doi.org/10.5194/amt-15-3105-2022, https://doi.org/10.5194/amt-15-3105-2022, 2022
Short summary
Short summary
The 1991–2021 Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data have been homogenized according to the recommendations of the Ozonesonde Data Quality Assessment panel. Comparisons with ground-based instruments also measuring ozone at the same station (lidar, surface measurements) and with colocated satellite observations show the benefits of this homogenization. Remaining differences between ECC and other observations in the stratosphere are also discussed.
Horim Kim, Michael Müller, Stephan Henne, and Christoph Hüglin
Atmos. Meas. Tech., 15, 2979–2992, https://doi.org/10.5194/amt-15-2979-2022, https://doi.org/10.5194/amt-15-2979-2022, 2022
Short summary
Short summary
In this study, the performance of electrochemical sensors for NO and NO2 for measuring air quality was determined over a longer operating period. The performance of NO sensors remained reliable for more than 18 months. However, the NO2 sensors showed decreasing performance over time. During deployment, we found that the NO2 sensors can distinguish general pollution levels, but they proved unsuitable for accurate measurements due to significant biases.
Randulph Morales, Jonas Ravelid, Katarina Vinkovic, Piotr Korbeń, Béla Tuzson, Lukas Emmenegger, Huilin Chen, Martina Schmidt, Sebastian Humbel, and Dominik Brunner
Atmos. Meas. Tech., 15, 2177–2198, https://doi.org/10.5194/amt-15-2177-2022, https://doi.org/10.5194/amt-15-2177-2022, 2022
Short summary
Short summary
Mapping trace gas emission plumes using in situ measurements from unmanned aerial vehicles (UAVs) is an emerging and attractive possibility to quantify emissions from localized sources. We performed an extensive controlled-release experiment to develop an optimal quantification method and to determine the related uncertainties under various environmental and sampling conditions. Our approach was successful in quantifying local methane sources from drone-based measurements.
Junlei Zhan, Yongchun Liu, Wei Ma, Xin Zhang, Xuezhong Wang, Fang Bi, Yujie Zhang, Zhenhai Wu, and Hong Li
Atmos. Meas. Tech., 15, 1511–1520, https://doi.org/10.5194/amt-15-1511-2022, https://doi.org/10.5194/amt-15-1511-2022, 2022
Short summary
Short summary
Our study investigated the O3 formation sensitivity in Beijing using a random forest model coupled with the reactivity of volatile organic
compound (VOC) species. Results found that random forest accurately predicted O3 concentration when initial VOCs were considered, and relative importance correlated well with O3 formation potential. The O3 isopleth curves calculated by the random forest model were generally comparable with those calculated by the box model.
Daniel R. Peters, Olalekan A. M. Popoola, Roderic L. Jones, Nicholas A. Martin, Jim Mills, Elizabeth R. Fonseca, Amy Stidworthy, Ella Forsyth, David Carruthers, Megan Dupuy-Todd, Felicia Douglas, Katie Moore, Rishabh U. Shah, Lauren E. Padilla, and Ramón A. Alvarez
Atmos. Meas. Tech., 15, 321–334, https://doi.org/10.5194/amt-15-321-2022, https://doi.org/10.5194/amt-15-321-2022, 2022
Short summary
Short summary
We present more than 2 years of NO2 pollution measurements from a sensor network in Greater London and compare results to an extensive network of expensive reference-grade monitors. We show the ability of our lower-cost network to generate robust insights about local air pollution. We also show how irregularities in sensor performance lead to some uncertainty in results and demonstrate ways that future users can characterize and mitigate uncertainties to get the most value from sensor data.
Timothy G. Pernini, T. Scott Zaccheo, Jeremy Dobler, and Nathan Blume
Atmos. Meas. Tech., 15, 225–240, https://doi.org/10.5194/amt-15-225-2022, https://doi.org/10.5194/amt-15-225-2022, 2022
Short summary
Short summary
We demonstrate a novel approach to estimating emissions from oil sands operations that utilizes the GreenLITE™ gas concentration measurement system and an atmospheric model. While deployed at a facility in the Athabasca region of Alberta, Canada, CH4 emissions from a tailings pond were estimated to be 7.2 t/d for July–October 2019, and 5.1 t/d for March–July 2020. CH4 emissions from an open-pit mine were estimated to be 24.6 t/d for September–October 2019.
Wengang Zhang, Ling Wang, Yang Yu, Guirong Xu, Xiuqing Hu, Zhikang Fu, and Chunguang Cui
Atmos. Meas. Tech., 14, 7821–7834, https://doi.org/10.5194/amt-14-7821-2021, https://doi.org/10.5194/amt-14-7821-2021, 2021
Short summary
Short summary
Global precipitable water vapor (PWV) derived from MERSI-II (Medium Resolution Spectral Imager) is compared with PWV from the Integrated Global Radiosonde Archive (IGRA). Our results show a good agreement between PWV from MERSI-II and IGRA and that MERSI-II PWV is slightly underestimated on the whole, especially in summer. The bias between MERSI-II and IGRA grows with a larger spatial distance between the footprint of the satellite and the IGRA station, as well as increasing PWV.
Trevor W. Coates, Monzurul Alam, Thomas K. Flesch, and Guillermo Hernandez-Ramirez
Atmos. Meas. Tech., 14, 7147–7152, https://doi.org/10.5194/amt-14-7147-2021, https://doi.org/10.5194/amt-14-7147-2021, 2021
Short summary
Short summary
A field study tested two footprint models for calculating surface emissions from downwind flux measurements. Emission rates from a 10 × 10 m synthetic source were estimated with the simple Kormann–Meixner model and a sophisticated Lagrangian stochastic model. Both models underestimated emissions by approximately 30 %, and no statistical differences were observed between the models. Footprint models are critically important for interpreting eddy covariance measurements.
Teles C. Furlani, Patrick R. Veres, Kathryn E. R. Dawe, J. Andrew Neuman, Steven S. Brown, Trevor C. VandenBoer, and Cora J. Young
Atmos. Meas. Tech., 14, 5859–5871, https://doi.org/10.5194/amt-14-5859-2021, https://doi.org/10.5194/amt-14-5859-2021, 2021
Short summary
Short summary
This study characterized and validated a commercial spectroscopic instrument for the measurement of hydrogen chloride (HCl) in the atmosphere. Near the Earth’s surface, HCl acts as the dominant reservoir for other chlorine-containing reactive chemicals that play an important role in atmospheric chemistry. The properties of HCl make it challenging to measure. This instrument can overcome many of these challenges, enabling reliable HCl measurements.
Marvin Glowania, Franz Rohrer, Hans-Peter Dorn, Andreas Hofzumahaus, Frank Holland, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Meas. Tech., 14, 4239–4253, https://doi.org/10.5194/amt-14-4239-2021, https://doi.org/10.5194/amt-14-4239-2021, 2021
Short summary
Short summary
Three instruments that use different techniques to measure gaseous formaldehyde concentrations were compared in experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich. The results demonstrated the need to correct the baseline in measurements by instruments that use the Hantzsch reaction or make use of cavity ring-down spectroscopy. After applying corrections, all three methods gave accurate and precise measurements within their specifications.
Attilio Naccarato, Antonella Tassone, Maria Martino, Sacha Moretti, Antonella Macagnano, Emiliano Zampetti, Paolo Papa, Joshua Avossa, Nicola Pirrone, Michelle Nerentorp, John Munthe, Ingvar Wängberg, Geoff W. Stupple, Carl P. J. Mitchell, Adam R. Martin, Alexandra Steffen, Diana Babi, Eric M. Prestbo, Francesca Sprovieri, and Frank Wania
Atmos. Meas. Tech., 14, 3657–3672, https://doi.org/10.5194/amt-14-3657-2021, https://doi.org/10.5194/amt-14-3657-2021, 2021
Short summary
Short summary
Mercury monitoring in support of the Minamata Convention requires effective and reliable analytical tools. Passive sampling is a promising approach for creating a sustainable long-term network for atmospheric mercury with improved spatial resolution and global coverage. In this study the analytical performance of three passive air samplers (CNR-PAS, IVL-PAS, and MerPAS) was assessed over extended deployment periods and the accuracy of concentrations was judged by comparison with active sampling.
Mei Bai, José I. Velazco, Trevor W. Coates, Frances A. Phillips, Thomas K. Flesch, Julian Hill, David G. Mayer, Nigel W. Tomkins, Roger S. Hegarty, and Deli Chen
Atmos. Meas. Tech., 14, 3469–3479, https://doi.org/10.5194/amt-14-3469-2021, https://doi.org/10.5194/amt-14-3469-2021, 2021
Short summary
Short summary
The development and validation of management practices to mitigate methane (CH4) emissions from livestock require accurate emission measurements. We compared the inverse dispersion modelling (IDM) and tracer-ratio techniques to measure CH4 emissions from cattle. Both measurements agreed well but were higher than IPCC estimates. We suggest that the IDM approach can provide an accurate method of estimating cattle emissions, and IPCC estimates may have larger uncertainties.
Yuan You, Ralf M. Staebler, Samar G. Moussa, James Beck, and Richard L. Mittermeier
Atmos. Meas. Tech., 14, 1879–1892, https://doi.org/10.5194/amt-14-1879-2021, https://doi.org/10.5194/amt-14-1879-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands can be significant sources of methane, an important greenhouse gas. This paper describes a 1-month study conducted in 2017 to measure methane emissions from a pond using a variety of micrometeorological flux methods and demonstrates some advantages of these methods over flux chambers.
Christoph Häni, Marcel Bühler, Albrecht Neftel, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 14, 1733–1741, https://doi.org/10.5194/amt-14-1733-2021, https://doi.org/10.5194/amt-14-1733-2021, 2021
Seth Kutikoff, Xiaomao Lin, Steven R. Evett, Prasanna Gowda, David Brauer, Jerry Moorhead, Gary Marek, Paul Colaizzi, Robert Aiken, Liukang Xu, and Clenton Owensby
Atmos. Meas. Tech., 14, 1253–1266, https://doi.org/10.5194/amt-14-1253-2021, https://doi.org/10.5194/amt-14-1253-2021, 2021
Short summary
Short summary
Fast-response infrared gas sensors have been used over 3 decades for long-term monitoring of water vapor fluxes. As optically improved infrared gas sensors are newly employed, we evaluated the performance of water vapor density and water vapor flux from three generations of infrared gas sensors in Bushland, Texas, USA. From our experiments, fluxes from the old sensors were best representative of evapotranspiration based on a world-class lysimeter reference measurement.
Yuan You, Samar G. Moussa, Lucas Zhang, Long Fu, James Beck, and Ralf M. Staebler
Atmos. Meas. Tech., 14, 945–959, https://doi.org/10.5194/amt-14-945-2021, https://doi.org/10.5194/amt-14-945-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands represent an insufficiently characterized source of fugitive emissions of pollutants to the atmosphere. In this study, a novel approach of using a Fourier transform infrared spectrometer along with measurements of atmospheric turbulence is shown to present a practical, non-intrusive method of quantifying emission rates for ammonia, alkanes, and methane. Results from a 1-month field study are presented and discussed.
Ravi Sahu, Ayush Nagal, Kuldeep Kumar Dixit, Harshavardhan Unnibhavi, Srikanth Mantravadi, Srijith Nair, Yogesh Simmhan, Brijesh Mishra, Rajesh Zele, Ronak Sutaria, Vidyanand Motiram Motghare, Purushottam Kar, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 14, 37–52, https://doi.org/10.5194/amt-14-37-2021, https://doi.org/10.5194/amt-14-37-2021, 2021
Short summary
Short summary
A unique feature of our low-cost sensor deployment is a swap-out experiment wherein four of the six sensors were relocated to different sites in the two phases. The swap-out experiment is crucial in investigating the efficacy of calibration models when applied to weather and air quality conditions vastly different from those present during calibration. We developed a novel local calibration algorithm based on metric learning that offers stable and accurate calibration performance.
Michal Vojtisek-Lom, Alessandro A. Zardini, Martin Pechout, Lubos Dittrich, Fausto Forni, François Montigny, Massimo Carriero, Barouch Giechaskiel, and Giorgio Martini
Atmos. Meas. Tech., 13, 5827–5843, https://doi.org/10.5194/amt-13-5827-2020, https://doi.org/10.5194/amt-13-5827-2020, 2020
Short summary
Short summary
The feasibility of monitoring on-road emissions from small motorcycles with two highly compact portable emissions monitoring systems was evaluated on three motorcycles, with positive results. Mass emissions measured on the road were consistent among repeated runs, with differences between laboratory and on-road tests much larger than those between portable and laboratory systems, which were, on the average, within units of percent over standard test cycles.
Xiaoyu Sun, Minzheng Duan, Yang Gao, Rui Han, Denghui Ji, Wenxing Zhang, Nong Chen, Xiangao Xia, Hailei Liu, and Yanfeng Huo
Atmos. Meas. Tech., 13, 3595–3607, https://doi.org/10.5194/amt-13-3595-2020, https://doi.org/10.5194/amt-13-3595-2020, 2020
Short summary
Short summary
The accurate measurement of greenhouse gases and their vertical distribution in the atmosphere is significant to the study of climate change and satellite remote sensing. Carbon dioxide and methane between 0.6 and 7 km were measured by the aircraft King Air 350ER in Jiansanjiang, northeast China, on 7–11 August 2018. The profiles show strong variation with the altitude and time, so the vertical structure of gases should be taken into account in the current satellite retrieval algorithm.
Paul A. Solomon, Dena Vallano, Melissa Lunden, Brian LaFranchi, Charles L. Blanchard, and Stephanie L. Shaw
Atmos. Meas. Tech., 13, 3277–3301, https://doi.org/10.5194/amt-13-3277-2020, https://doi.org/10.5194/amt-13-3277-2020, 2020
Short summary
Short summary
Analyzing street-level air pollutants (2016–2017), this assessment indicates that mobile measurement is precise and accurate (5 % to 25 % bias) relative to regulatory sites, with higher spatial resolution. Collocated sensor measurements in California showed differences less than 20 %, suggesting that greater differences represent spatial variability. Mobile data confirm regulatory-site spatial representation and that pollutant levels can also be 6 to 8 times higher just blocks apart.
Christian Juncher Jørgensen, Jacob Mønster, Karsten Fuglsang, and Jesper Riis Christiansen
Atmos. Meas. Tech., 13, 3319–3328, https://doi.org/10.5194/amt-13-3319-2020, https://doi.org/10.5194/amt-13-3319-2020, 2020
Short summary
Short summary
Recent discoveries have shown large emissions of methane (CH4) to the atmosphere from meltwater at the Greenland ice sheet (GrIS). Low-cost and low-power gas sensor technology offers great potential to supplement CH4 measurements using very expensive reference analyzers under harsh and remote conditions. In this paper we evaluate the in situ performance at the GrIS of a low-cost CH4 sensor to a state-of-the-art analyzer and find very excellent agreement between the two methods.
Lilian Joly, Olivier Coopmann, Vincent Guidard, Thomas Decarpenterie, Nicolas Dumelié, Julien Cousin, Jérémie Burgalat, Nicolas Chauvin, Grégory Albora, Rabih Maamary, Zineb Miftah El Khair, Diane Tzanos, Joël Barrié, Éric Moulin, Patrick Aressy, and Anne Belleudy
Atmos. Meas. Tech., 13, 3099–3118, https://doi.org/10.5194/amt-13-3099-2020, https://doi.org/10.5194/amt-13-3099-2020, 2020
Short summary
Short summary
This article presents an instrument weighing less than 3 kg for accurate and rapid measurement of greenhouse gases between 0 and 30 km altitude using a meteorological balloon. This article shows the interest of these measurements for the validation of simulations of infrared satellite observations.
Jonathan Elsey, Marc D. Coleman, Tom D. Gardiner, Kaah P. Menang, and Keith P. Shine
Atmos. Meas. Tech., 13, 2335–2361, https://doi.org/10.5194/amt-13-2335-2020, https://doi.org/10.5194/amt-13-2335-2020, 2020
Short summary
Short summary
Water vapour is an important component in trying to understand the flows of energy between the Sun and Earth, since it is opaque to radiation emitted by both the surface and the Sun. In this paper, we study how it absorbs sunlight by way of its
continuum, a property which is poorly understood and with few measurements. Our results indicate that this continuum absorption may be more significant than previously thought, potentially impacting satellite observations and climate studies.
Claudia Grossi, Scott D. Chambers, Olivier Llido, Felix R. Vogel, Victor Kazan, Alessandro Capuana, Sylvester Werczynski, Roger Curcoll, Marc Delmotte, Arturo Vargas, Josep-Anton Morguí, Ingeborg Levin, and Michel Ramonet
Atmos. Meas. Tech., 13, 2241–2255, https://doi.org/10.5194/amt-13-2241-2020, https://doi.org/10.5194/amt-13-2241-2020, 2020
Short summary
Short summary
The sustainable support of radon metrology at the environmental level offers new scientific possibilities for the quantification of greenhouse gas (GHG) emissions and the determination of their source terms as well as for the identification of radioactive sources for the assessment of radiation exposure. This study helps to harmonize the techniques commonly used for atmospheric radon and radon progeny activity concentration measurements.
Cheng-Hsien Lin, Richard H. Grant, Albert J. Heber, and Cliff T. Johnston
Atmos. Meas. Tech., 13, 2001–2013, https://doi.org/10.5194/amt-13-2001-2020, https://doi.org/10.5194/amt-13-2001-2020, 2020
Short summary
Short summary
Gas quantification using the open-path Fourier transform infrared spectrometer (OP-FTIR) is subject to interferences of environmental variables, leading to errors in gas concentration calculations. This study investigated the effects of ambient water vapour content, temperature, path lengths, and wind speed on the quantification of N2O and CO2 concentrations, which can help the OP-FTIR users to avoid these errors and improve the precision and accuracy of the atmospheric gas quantification.
Rachel Edie, Anna M. Robertson, Robert A. Field, Jeffrey Soltis, Dustin A. Snare, Daniel Zimmerle, Clay S. Bell, Timothy L. Vaughn, and Shane M. Murphy
Atmos. Meas. Tech., 13, 341–353, https://doi.org/10.5194/amt-13-341-2020, https://doi.org/10.5194/amt-13-341-2020, 2020
Short summary
Short summary
Ground-based measurements of emissions from oil and natural gas production are important for understanding emission distributions and improving emission inventories. Here, measurement technique Other Test Method 33A (OTM 33A) is validated through several test releases staged at the Methane Emissions Technology Evaluation Center. These tests suggest OTM 33A has no inherent bias and that a group of OTM measurements is within 5 % of the known mean emission rate.
Zheng Xu, Yuliang Liu, Wei Nie, Peng Sun, Xuguang Chi, and Aijun Ding
Atmos. Meas. Tech., 12, 6737–6748, https://doi.org/10.5194/amt-12-6737-2019, https://doi.org/10.5194/amt-12-6737-2019, 2019
Short summary
Short summary
We evaluated the performance of HONO measurement by a wet-denuder--ion0chromatography system (WD/IC, MARGA). We found significant artificial HONO formed from the reaction of NO2 oxidizing SO2 in the denuder solution. High ambient NH3 would elevate the pH of the denuder solution and promote the overestimation of HONO. A method was established to correct the HONO measurement by WD/IC instruments.
Cited articles
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy covariance: a practical guide to measurement and data analysis, Springer Science and Business Media, ISBN 978-94-007-2350-4, 2012.
Biraud, S. and Chen, J.: Eddy Covariance Measurements in Urban Environments, White paper, AmeriFlux Urban Fluxes ad hoc committee, https://ameriflux.lbl.gov/wp-content/uploads/2021/09/EC-in-Urban-Environment-2021-07-31-Final.pdf (last access: 3 May 2024), 2021.
Brock, F. V.: A nonlinear filter to remove impulse noise from meteorological data, J. Atmos. Ocean. Tech., 3, 51–58, https://doi.org/10.1175/1520-0426(1986)003<0051:ANFTRI>2.0.CO;2, 1986.
C-40: C40 Cities, C-40 Cities Leadership Group, https://www.c40.org/ (last access: 2 May 2024), 2022.
Cheng, X. L., Liu, X. M., Liu, Y. J., and Hu, F.: Characteristics of CO2 concentration and flux in the Beijing urban area, Geophys. Res. Atmos., 123, 1785–1801, https://doi.org/10.1002/2017JD027409, 2018.
Christen, A., Coops, N. C., Crawford, B. R., Kellett, R., Liss, K. N., Olchovski, I., Tooke, T. R., van der Laan, M., and Voogt, J. A.: Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements, Atmos. Environ, 45, 6057–6069, https://doi.org/10.1016/j.atmosenv.2011.07.040, 2011.
Drysdale, W. S., Vaughan, A. R., Squires, F. A., Cliff, S. J., Metzger, S., Durden, D., Pingintha-Durden, N., Helfter, C., Nemitz, E., Grimmond, C. S. B., Barlow, J., Beevers, S., Stewart, G., Dajnak, D., Purvis, R. M., and Lee, J. D.: Eddy covariance measurements highlight sources of nitrogen oxide emissions missing from inventories for central London, Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, 2022.
European Commission: EU Missions: 100 Climate-neutral and Smart Cities, Directorate-General for Research and Innovation, https://doi.org/10.2777/191876, 2022.
Finnigan, J. J., Clement, R., Malhi, Y., Leuning, R., and Cleugh, H. A.: A re-evaluation of long-term flux measurement techniques part I: averaging and coordinate rotation, Bound.-Lay. Meteorol., 107, 1–48, https://doi.org/10.1023/A:1021554900225, 2003.
Foken, T., Göockede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.: Post-Field Data Quality Control, in: Handbook of Micrometeorology, edited by: Lee, X., Massman, W., and Law, B., Atmospheric and Oceanographic Sciences Library, vol. 29, Springer, Dordrecht, https://doi.org/10.1007/1-4020-2265-4, 2004.
Foken, T., Leuning, R., Oncley, S. R., Mauder, M., and Aubinet, M.: Corrections and data quality control. Eddy covariance: a practical guide to measurement and data analysis, Springer Dordrecht, 85–131, ISBN 978-94-007-2350-4, 2012.
Fratini, G. and Mauder, M.: Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3, Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014, 2014.
Hartmann, J., Gehrmann, M., Kohnert, K., Metzger, S., and Sachs, T.: New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns, Atmos. Meas. Tech., 11, 4567–4581, https://doi.org/10.5194/amt-11-4567-2018, 2018.
Helfter, C., Tremper, A. H., Halios, C. H., Kotthaus, S., Bjorkegren, A., Grimmond, C. S. B., Barlow, J. F., and Nemitz, E.: Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK, Atmos. Chem. Phys., 16, 10543–10557, https://doi.org/10.5194/acp-16-10543-2016, 2016.
ICOS Cities: ICOS Cities data portal, ICOS Cities [data set], (https://citydata.icos-cp.eu/portal/, last access: 2 May 2024.
IPCC: Climate Change: Mitigation of Climate Change. Summary for policymakers. Contribution of Working Group III to the 6th Assessment Report of the Intergovernmental Panel on Climate Change, IPCC Working Group III, edited by: Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., Hasija, A., Malley, J., Fradera, R., Belkacemi, M., Lisboa, G., McCollum, D., Vyas, P., Pathak, M., van Diemen, R., Luz, S., and Some, S., IPCC, https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf (last access: 2 May 2024), 2022.
Järvi, L., Nordbo, A., Junninen, H., Riikonen, A., Moilanen, J., Nikinmaa, E., and Vesala, T.: Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010, Atmos. Chem. Phys., 12, 8475–8489, https://doi.org/10.5194/acp-12-8475-2012, 2012.
Jenkins, J. D., Mayfield, E. N., Larson, E. D., Pacala, S. W., and Greig, C.: Mission net-zero America: The nation-building path to a prosperous, net-zero emissions economy, Joule, 5, 2755–2761, 2021.
Lee, X., Massman, W., and Law, B. (Eds.): Handbook of micrometeorology: a guide for surface flux measurement and analysis, Vol. 29, Springer Science and Business Media, Dordrecht, ISBN 1-4020-2264-6, 2004.
LI-COR, Inc.: EddyPro® 7 Software, LI-COR, Inc. [code], https://www.licor.com/env/support/EddyPro/software.html, last access: 2 May 2024.
Lin, J. C., Mitchell, L., Crosman, E., Mendoza, D. L., Buchert, M., Bares, R., Fasoli, B., Bowling, D. R., Pataki, D., Catharine, D., Strong, C., Gurney, K. R., Ratarasuk, R., Baasandorj, M., Jacques, A., Hoch, S., Horel, J., and Ehleringer, J.: CO2 and carbon emissions from cities: Linkages to air quality, socioeconomic activity, and stakeholders in the Salt Lake City urban area, B. Am. Meteorol. Soc., 99, 2325–2339, https://doi.org/10.1175/BAMS-D-17-0037.1, 2018.
Liu, Z., He, C., Zhou, Y., and Wu, J.: How much of the world's land has been urbanized, really? A hierarchical framework for avoiding confusion, Landsc. Ecol., 29, 763–771, https://doi.org/10.1007/s10980-014-0034-y, 2014.
Liu, Z., Deng, Z., He, G., Wang, H., Zhang, X., Lin, J., Qi, Y., and Liang, X.: Challenges and opportunities for carbon neutrality in China, Nat. Rev. Earth. Environ., 3, 141–155, https://doi.org/10.1038/s43017-021-00244-x, 2022.
Mammarella, I., Peltola, O., Nordbo, A., Järvi, L., and Rannik, Ü.: Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems, Atmos. Meas. Tech., 9, 4915–4933, https://doi.org/10.5194/amt-9-4915-2016, 2016.
Matthews, B. and Schume, H.: Tall tower eddy covariance measurements of CO2 fluxes in Vienna, Austria, Atmos. Environ., 274, 118941, https://doi.org/10.1016/j.atmosenv.2022.118941, 2022.
Mauder, M. and Foken, T.: Documentation and instruction manual of the eddy-covariance software package TK3, Arbeitsergebnisse, Nr. 46, Universität Bayreuth, Abt. Mikrometeorologie, Bayreuth, 2004.
Mauder, M. and Foken, T.: Impact of post-field data processing on eddy covariance flux estimates and energy balance closure, Meteorol. Z., 15, 597–610, https://doi.org/10.1127/0941-2948/2006/0167, 2006.
Mauder, M. and Foken, T.: Eddy-Covariance Software TK3, in: Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (update) (p. 67), University of Bayreuth, Zenodo [code], https://doi.org/10.5281/zenodo.20349, 2015.
Mauder, M., Oncley, S. P., Vogt, R., Weidinger, T., Ribeiro, L., Bernhofer, C., Foken, T., Kohsiek, W., De Bruin, H. A., and Liu, H.: The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods, Bound-Lay. Meteorol., 123, 29–54, https://doi.org/10.1007/s10546-006-9139-4, 2007.
Mauder, M., Foken, T., Clement, R., Elbers, J. A., Eugster, W., Grünwald, T., Heusinkveld, B., and Kolle, O.: Quality control of CarboEurope flux data – Part 2: Inter-comparison of eddy-covariance software, Biogeosciences, 5, 451–462, https://doi.org/10.5194/bg-5-451-2008, 2008.
Mauder, M., Cuntz, M., Drüe C., Graf A., Rebmann C., Schmid, H. P., Schmidt, M., and Steinbrecher, R.: A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements, Agr. Forest. Meteorol. 169, 122–135, https://doi.org/10.1016/j.agrformet.2012.09.006, 2013.
Menzer, O. and McFadden, J. P.: Statistical partitioning of a three-year time series of direct urban net CO2 flux measurements into biogenic and anthropogenic components, Atmos. Environ., 170, 319–333, https://doi.org/10.1016/j.atmosenv.2017.09.049, 2017.
Metzger, S.: Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ observations, Agr. Forest Meteorol., 255, 68–80, https://doi.org/10.1016/j.agrformet.2017.08.037, 2018.
Metzger, S., Junkermann, W., Mauder, M., Beyrich, F., Butterbach-Bahl, K., Schmid, H. P., and Foken, T.: Eddy-covariance flux measurements with a weight-shift microlight aircraft, Atmos. Meas. Tech., 5, 1699–1717, https://doi.org/10.5194/amt-5-1699-2012, 2012.
Metzger, S., Junkermann, W., Mauder, M., Butterbach-Bahl, K., Trancón y Widemann, B., Neidl, F., Schäfer, K., Wieneke, S., Zheng, X. H., Schmid, H. P., and Foken, T.: Spatially explicit regionalization of airborne flux measurements using environmental response functions, Biogeosciences, 10, 2193–2217, https://doi.org/10.5194/bg-10-2193-2013, 2013.
Metzger, S., Durden, D., Sturtevant, C., Luo, H., Pingintha-Durden, N., Sachs, T., Serafimovich, A., Hartmann, J., Li, J., Xu, K., and Desai, A. R.: eddy4R 0.2.0: a DevOps model for community-extensible processing and analysis of eddy-covariance data based on R, Git, Docker, and HDF5, Geosci. Model Dev., 10, 3189–3206, https://doi.org/10.5194/gmd-10-3189-2017, 2017 (code available at: https://github.com/NEONScience/eddy4R, last access: 3 May 2024).
Moncrieff, J. B., Massheder, J. M., De Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Seogaard, H., and Verhoef, A.: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide, J. Hydrol. Hydromech., 188, 589–611, https://doi.org/10.1016/S0022-1694(96)03194-0, 1997.
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging, detrending, and filtering of eddy covariance time series, in: Handbook of micrometeorology, edited by: Lee, X., Massman, W., and Law, B., Kluwer, Dordrecht, 7–31, ISBN 1-4020-2264-6, 2004.
Moore, C. J.: Frequency response corrections for eddy correlation systems, Bound-Lay. Meteorol., 37, 17–35, https://doi.org/10.1007/BF00122754, 1986.
Nicolini, G., Antoniella, G., Carotenuto, F., Christen, A., Ciais, P., Feigenwinter, C., Gioli, B., Stagakis, S., Velasco, E., Vogt, R., Ward, H., Barlow, J., Chrysoulakis, N., Duce, P., Graus, M., Helfter, C., Heusinkveld, B., Jarvi, L., Karl, T., Marras, S., and Papale, D.: Direct observations of CO2 emission reductions due to COVID-19 lockdown across European urban districts, Sci. Total. Environ., 830, 154662, https://doi.org/10.1016/j.scitotenv.2022.154662, 2022.
Nordbo, A. and Katul, G.: A wavelet-based correction method for eddy-covariance high-frequency losses in scalar concentration measurements, Bound-Lay. Meteorol., 146, 81–102, https://doi.org/10.1007/s10546-012-9759-9, 2013..
Rannik, Ü. and Vesala, T.: Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method, Bound-Lay. Meteorol., 91, 259–280, https://doi.org/10.1023/A:1001840416858, 1999.
Sabbatini, S., Mammarella, I., Arriga, N., Fratini, G., Graf, A., Hoertriagl, L., Ibrom, A., Longdoz, B., Mauder, M., Merbold, L., Metzger, S., Montagnani, L., Pitacco, A., Rebmann, C., Sedlak, P., Sigut, L., Citale, D., and Papale, D.: Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations, Int. Agrophys., 32, 495–515, https://doi.org/10.1515/intag-2017-0043, 2018.
Schotanus, P., Nieuwstadt, F., and De Bruin, H. A. R.: Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes, Bound-Lay. Meteorol., 26, 81–93, https://doi.org/10.1007/BF00164332, 1983.
Serafimovich, A., Metzger, S., Hartmann, J., Kohnert, K., Zona, D., and Sachs, T.: Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions, Atmos. Chem. Phys., 18, 10007–10023, https://doi.org/10.5194/acp-18-10007-2018, 2018.
Stagakis, S., Chrysoulakis, N., Spyridakis, N., Feigenwinter, C., and Vogt, R.: Eddy Covariance measurements and source partitioning of CO2 emissions in an urban environment: Application for Heraklion, Greece, Atmos. Environ., 201, 278–292, https://doi.org/10.1016/j.atmosenv.2019.01.009, 2019.
Starkenburg, D., Metzger, S., Fochesatto, G. J., Alfieri, J. G., Gens, R., Prakash, A., and Cristóbal, J.: Assessment of despiking methods for turbulence data in micrometeorology, J. Atmos. Ocean. Tech., 33(9), 2001–2013, https://doi.org/10.1175/JTECH-D-15-0154.1, 2016.
Ueyama, M. and Ando, T.: Diurnal, weekly, seasonal, and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan, Atmos. Chem. Phys., 16, 14727–14740, https://doi.org/10.5194/acp-16-14727-2016, 2016.
UN: World Urbanization Prospects: The 2018 Revision, United Nations Department of Economic and Social Affairs, https://doi.org/10.18356/b9e995fe-en, 2019.
Vaughan, A. R., Lee, J. D., Metzger, S., Durden, D., Lewis, A. C., Shaw, M. D., Drysdale, W. S., Purvis, R. M., Davison, B., and Hewitt, C. N.: Spatially and temporally resolved measurements of NOx fluxes by airborne eddy covariance over Greater London, Atmos. Chem. Phys., 21, 15283–15298, https://doi.org/10.5194/acp-21-15283-2021, 2021.
Vickers, D. and Mahrt, L.: The cospectral gap and turbulent flux calculations, J. Atmos. Ocean. Tech., 20, 660–672, https://doi.org/10.1175/1520-0426(2003)20<660:TCGATF>2.0.CO;2, 2003.
Vogt, R., Christen, A., Rotach, M. W., Roth, M., and Satyanarayana, A. N. V.: Temporal dynamics of CO 2 fluxes and profiles over a Central European city, Theor. Appl. Climatol., 84, 117–126, https://doi.org/10.1007/s00704-005-0149-9, 2006.
Ward, H. C., Rotach, M. W., Gohm, A., Graus, M., Karl, T., Haid, M., Umek, L., and Muschinski, T.: Energy and mass exchange at an urban site in mountainous terrain – the Alpine city of Innsbruck, Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022, 2022.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water vapour transfer, Q. J. Roy. Meteor. Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
Wiesner, S., Desai, A. R., Duff, A. J., Metzger, S., and Stoy, P. C.: Quantifying the natural climate solution potential of agricultural systems by combining eddy covariance and remote sensing, J. Geophys. Res.-Biogeo., 127, e2022JG006895, https://doi.org/10.1029/2022JG006895, 2022.
Xu, K., Metzger, S., and Desai, A. R.: Upscaling tower-observed turbulent exchange at fine spatio-temporal resolution using environmental response functions, Agr. Forest Meterol., 232, 10–22, https://doi.org/10.1016/j.agrformet.2016.07.019, 2017.
Xu, K., Metzger, S., and Desai, A. R.: Surface-atmosphere exchange in a box: Space-time resolved storage and net vertical fluxes from tower-based eddy covariance, Agr. Forest Meterol., 255, 81–91, https://doi.org/10.1016/j.agrformet.2017.10.011, 2018.
Xu, K., Sühring, M., Metzger, S., Durden, D., and Desai, A. R.: Can data mining help eddy covariance see the landscape? A large-eddy simulation study, Bound-Lay. Meteorol., 176, 85–103, https://doi.org/10.1007/s10546-020-00513-0, 2020.
Short summary
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of discrepancies in flux estimations from different software packages. One crucial finding is the impact of low-frequency spectral loss corrections on tall-tower flux estimations. Our findings emphasize the significance of a standardized measurement setup and consistent postprocessing configurations in minimizing the systematic flux uncertainty resulting from the usage of different software packages.
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of...