Articles | Volume 17, issue 16
https://doi.org/10.5194/amt-17-4825-2024
https://doi.org/10.5194/amt-17-4825-2024
Research article
 | 
23 Aug 2024
Research article |  | 23 Aug 2024

Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager

Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu

Related authors

Aerosol optical property measurement using the orbiting high-spectral-resolution lidar on board the DQ-1 satellite: retrieval and validation
Chenxing Zha, Lingbing Bu, Zhi Li, Qin Wang, Ahmad Mubarak, Pasindu Liyanage, Jiqiao Liu, and Weibiao Chen
Atmos. Meas. Tech., 17, 4425–4443, https://doi.org/10.5194/amt-17-4425-2024,https://doi.org/10.5194/amt-17-4425-2024, 2024
Short summary
Simulation and sensitivity analysis for cloud and precipitation measurements via spaceborne millimeter-wave radar
Leilei Kou, Zhengjian Lin, Haiyang Gao, Shujun Liao, and Piman Ding
Atmos. Meas. Tech., 16, 1723–1744, https://doi.org/10.5194/amt-16-1723-2023,https://doi.org/10.5194/amt-16-1723-2023, 2023
Short summary
VALIDATION OF AEROSOL PRODUCTS FROM ESA/AATSR OVER CHINA AND AOD FUSION BASED ON UNCERTAINTIES
Y. N. Wen, Y. H. Che, J. Guang, Y. Q. Xie, Z. Shi, Y. Zhang, and Z. Q. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 181–185, https://doi.org/10.5194/isprs-archives-XLII-3-W9-181-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W9-181-2019, 2019
Towards a comprehensive view of dust events from multiple satellite and ground measurements: exemplified by the May 2017 East Asian dust storm
Lu She, Yong Xue, Jie Guang, Yahui Che, Cheng Fan, Ying Li, and Yanqing Xie
Nat. Hazards Earth Syst. Sci., 18, 3187–3201, https://doi.org/10.5194/nhess-18-3187-2018,https://doi.org/10.5194/nhess-18-3187-2018, 2018
Short summary
Double-layer structure in polar mesospheric clouds observed from SOFIE/AIM
Haiyang Gao, Gordon G. Shepherd, Yuanhe Tang, Lingbing Bu, and Zhen Wang
Ann. Geophys., 35, 295–309, https://doi.org/10.5194/angeo-35-295-2017,https://doi.org/10.5194/angeo-35-295-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieving cloud-base height and geometric thickness using the oxygen A-band channel of GCOM-C/SGLI
Takashi M. Nagao, Kentaroh Suzuki, and Makoto Kuji
Atmos. Meas. Tech., 18, 773–792, https://doi.org/10.5194/amt-18-773-2025,https://doi.org/10.5194/amt-18-773-2025, 2025
Short summary
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025,https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary

Cited articles

Baumgarten, G., Fricke, K. H., and Cossart, G. V.: Investigation of the shape of noctilucent cloud particles by polarization lidar technique, Geophys. Res. Lett., 29, 8-1–8-4, https://doi.org/10.1029/2001GL013877, 2002. 
Bailey, S. M., Thomas, G. E., Hervig, M. E., Lumpe, J. D., Randall, C. E., Carstens, J. N., Thurairajah, B., Rusch, D. W., Russell, J. M., and Gordley, L. L.: Comparing nadir and limb observations of polar mesospheric clouds: The effect of the assumed particle size distribution, J. Atmos. Sol.-Terr. Phy., 127, 51–65, https://doi.org/10.1016/j.jastp.2015.02.007, 2015. 
Bardeen, C. G., Toon, O. B., Jensen, E. J., Hervig, M. E., Randall, C. E., Benze, S., Marsh, D. R., and Merkel, A.: Numerical simulations of the three-dimensional distribution of polar mesospheric clouds and comparisons with Cloud Imaging and Particle Size (CIPS) experiment and the Solar Occultation For Ice Experiment (SOFIE) observations, J. Geophys. Res.-Atmos., 115, D10204, https://doi.org/10.1029/2009JD012451, 2010. 
Benze, S., Randall, C. E., DeLand, M. T., Thomas, G. E., Rusch, D. W., Bailey, S. M., Russell, J. M., McClintock, W., Merkel, A. W., and Jeppesen, C.: Comparison of polar mesospheric cloud measurements from the Cloud Imaging and Particle Size experiment and the solar backscatter ultraviolet instrument in 2007, J. Atmos. Sol.-Terr. Phy., 71, 365–372, https://doi.org/10.1016/j.jastp.2008.07.014, 2009. 
Benze, S., Randall, C. E., DeLand, M. T., Thomas, G. E., Bailey, S. M., Russell, J. M., and Merkel, A. W.: Evaluation of AIM CIPS measurements of Polar Mesospheric Clouds by comparison with SBUV data, J. Atmos. Sol.-Terr. Phy., 73, 2065–2072, https://doi.org/10.1016/j.jastp.2011.02.003, 2011. 
Download
Short summary
Ultraviolet imaging technology has significantly advanced the research and development of polar mesospheric clouds (PMCs). In this study, we proposed the wide-field-of-view ultraviolet imager (WFUI) and built a forward model to evaluate the detection capability and efficiency. The results demonstrate that the WFUI performs well in PMC detection and has high detection efficiency. The relationship between ice water content and detection efficiency follows an exponential function distribution.
Share