Articles | Volume 18, issue 8
https://doi.org/10.5194/amt-18-1859-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-1859-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mitigation of satellite OCO-2 CO2 biases in the vicinity of clouds with 3D calculations using the Education and Research 3D Radiative Transfer Toolbox (EaR3T)
Department of Atmospheric and Oceanic Science, University of Colorado, Boulder, Boulder, CO, USA
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Boulder, CO, USA
K. Sebastian Schmidt
CORRESPONDING AUTHOR
Department of Atmospheric and Oceanic Science, University of Colorado, Boulder, Boulder, CO, USA
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Boulder, CO, USA
Hong Chen
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Boulder, CO, USA
Steven T. Massie
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Boulder, CO, USA
Susan S. Kulawik
Bay Area Environmental Research Institute, Earth Science Division, NASA Ames Research Center, Moffett Field, CA, USA
Hironobu Iwabuchi
Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
Related authors
Yu-Wen Chen, Yi-Chun Chen, Charles C.-K. Chou, Hui-Ming Hung, Shih-Yu Chang, Lisa Eirenschmalz, Michael Lichtenstern, Helmut Ziereis, Hans Schlager, Greta Stratmann, Katharina Kaiser, Johannes Schneider, Stephan Borrmann, Florian Obersteiner, Eric Förster, Andreas Zahn, Wei-Nai Chen, Po-Hsiung Lin, Shuenn-Chin Chang, Maria Dolores Andrés Hernández, Pao-Kuan Wang, and John P. Burrows
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-788, https://doi.org/10.5194/acp-2021-788, 2021
Preprint withdrawn
Short summary
Short summary
By presenting an approach using EMeRGe-Asia airborne field measurements and surface observations, this study shows that the fraction of OH reactivity due to SO2-OH reaction has a significant correlation with the sulfate concentration. Approximately 30 % of sulfate is produced by SO2-OH reaction. Our results underline the importance of SO2-OH gas-phase oxidation in sulfate formation, and demonstrate that the method can be applied to other regions and under different meteorological conditions.
Logan Thomas Mitchell, Connor J. Flynn, Kristina Pistone, Samuel E. LeBlanc, K. Sebastian Schmidt, and Jens Redemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-31, https://doi.org/10.5194/essd-2025-31, 2025
Preprint under review for ESSD
Short summary
Short summary
During 2016–2018, NASA conducted an airborne field campaign over the Southeast Atlantic Ocean to study biomass burning aerosols emitted from Southern African fires. These aerosols then interact with stratocumulus clouds over the Southeast Atlantic, which is difficult for climate models to account for. Our instrument, 4STAR, determines aerosol radiative properties. A dataset was already created for 2016, but additional quality control was required to address instrument issues for 2017 and 2018.
Meloë S. F. Kacenelenbogen, Ralph Kuehn, Nandana Amarasinghe, Kerry Meyer, Edward Nowottnick, Mark Vaughan, Hong Chen, Sebastian Schmidt, Richard Ferrare, John Hair, Robert Levy, Hongbin Yu, Paquita Zuidema, Robert Holz, and Willem Marais
EGUsphere, https://doi.org/10.5194/egusphere-2025-1403, https://doi.org/10.5194/egusphere-2025-1403, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosols perturb the radiation balance of the Earth-atmosphere system. To reduce the uncertainty in quantifying present-day climate change, we combine two satellite sensors and a model to assess the aerosol effects on radiation in all-sky conditions. Satellite-based and coincident aircraft measurements of aerosol radiative effects agree well over the Southeast Atlantic. This constitutes a crucial first evaluation before we apply our method to more years and regions of the world.
Kelley C. Wells, Dylan B. Millet, Jared F. Brewer, Vivienne H. Payne, Karen E. Cady-Pereira, Rick Pernak, Susan Kulawik, Corinne Vigouroux, Nicholas Jones, Emmanuel Mahieu, Maria Makarova, Tomoo Nagahama, Ivan Ortega, Mathias Palm, Kimberly Strong, Matthias Schneider, Dan Smale, Ralf Sussmann, and Minqiang Zhou
Atmos. Meas. Tech., 18, 695–716, https://doi.org/10.5194/amt-18-695-2025, https://doi.org/10.5194/amt-18-695-2025, 2025
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) affect both air quality and climate. Satellite measurements can help us to assess and predict their global impacts. We present new decadal (2012–2023) measurements of four key VOCs – methanol, ethene, ethyne, and hydrogen cyanide (HCN) – from the Cross-track Infrared Sounder. The measurements reflect emissions from major forests, wildfires, and industry and provide new information to advance understanding of these sources and their changes over time.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Jake J. Gristey, K. Sebastian Schmidt, Hong Chen, Daniel R. Feldman, Bruce C. Kindel, Joshua Mauss, Mathew van den Heever, Maria Z. Hakuba, and Peter Pilewskie
Atmos. Meas. Tech., 16, 3609–3630, https://doi.org/10.5194/amt-16-3609-2023, https://doi.org/10.5194/amt-16-3609-2023, 2023
Short summary
Short summary
The concept of a satellite-based camera is demonstrated for sampling the angular distribution of outgoing radiance from Earth needed to generate data products for new radiation budget spectral channels.
Emma L. Yates, Laura T. Iraci, Susan S. Kulawik, Ju-Mee Ryoo, Josette E. Marrero, Caroline L. Parworth, Jason M. St. Clair, Thomas F. Hanisco, Thao Paul V. Bui, Cecilia S. Chang, and Jonathan M. Dean-Day
Earth Syst. Sci. Data, 15, 2375–2389, https://doi.org/10.5194/essd-15-2375-2023, https://doi.org/10.5194/essd-15-2375-2023, 2023
Short summary
Short summary
The Alpha Jet Atmospheric eXperiment (AJAX) flew scientific flights between 2011 and 2018 providing measurements of carbon dioxide, methane, ozone, formaldehyde, water vapor and meteorological parameters over California and Nevada, USA. AJAX was a multi-year, multi-objective, multi-instrument program with a variety of sampling strategies resulting in an extensive dataset of interest to a wide variety of users. AJAX measurements have been published at https://asdc.larc.nasa.gov/project/AJAX.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023, https://doi.org/10.5194/amt-16-2145-2023, 2023
Short summary
Short summary
This paper provides insights into the effects of clouds on Orbiting Carbon Observatory (OCO-2) measurements of CO2. Calculations are carried out that indicate the extent to which this satellite experiment underestimates CO2, due to these cloud effects, as a function of the distance between the surface observation footprint and the nearest cloud. The paper discusses how to lessen the influence of these cloud effects.
Hong Chen, K. Sebastian Schmidt, Steven T. Massie, Vikas Nataraja, Matthew S. Norgren, Jake J. Gristey, Graham Feingold, Robert E. Holz, and Hironobu Iwabuchi
Atmos. Meas. Tech., 16, 1971–2000, https://doi.org/10.5194/amt-16-1971-2023, https://doi.org/10.5194/amt-16-1971-2023, 2023
Short summary
Short summary
We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR3T) and propose a radiance self-consistency approach for quantifying and mitigating 3D bias in legacy airborne and spaceborne imagery retrievals due to spatially inhomogeneous clouds and surfaces.
Steffen Mauceri, Steven Massie, and Sebastian Schmidt
Atmos. Meas. Tech., 16, 1461–1476, https://doi.org/10.5194/amt-16-1461-2023, https://doi.org/10.5194/amt-16-1461-2023, 2023
Short summary
Short summary
The Orbiting Carbon Observatory-2 makes space-based measurements of reflected sunlight. Using a retrieval algorithm these measurements are converted to CO2 concentrations in the atmosphere. However, the converted CO2 concentrations contain errors for observations close to clouds. Using a simple machine learning approach, we developed a model to correct these remaining errors. The model is able to reduce errors over land and ocean by 20 % and 40 %, respectively.
Madison J. Shogrin, Vivienne H. Payne, Susan S. Kulawik, Kazuyuki Miyazaki, and Emily V. Fischer
Atmos. Chem. Phys., 23, 2667–2682, https://doi.org/10.5194/acp-23-2667-2023, https://doi.org/10.5194/acp-23-2667-2023, 2023
Short summary
Short summary
We evaluate the spatiotemporal variability of peroxy acyl nitrates (PANs), important photochemical pollutants, over Mexico City using satellite observations. PANs exhibit a seasonal cycle that maximizes in spring. Wildfires contribute to observed interannual variability, and the satellite indicates several areas of frequent outflow. Recent changes in NOx emissions are not accompanied by changes in PANs. This work demonstrates analysis approaches that can be applied to other megacities.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Helen M. Worden, Gene L. Francis, Susan S. Kulawik, Kevin W. Bowman, Karen Cady-Pereira, Dejian Fu, Jennifer D. Hegarty, Valentin Kantchev, Ming Luo, Vivienne H. Payne, John R. Worden, Róisín Commane, and Kathryn McKain
Atmos. Meas. Tech., 15, 5383–5398, https://doi.org/10.5194/amt-15-5383-2022, https://doi.org/10.5194/amt-15-5383-2022, 2022
Short summary
Short summary
Satellite observations of global carbon monoxide (CO) are essential for understanding atmospheric chemistry and pollution sources. This paper describes a new data product using radiance measurements from the Cross-track Infrared Sounder (CrIS) instrument on the Suomi National Polar-orbiting Partnership (SNPP) satellite that provides vertical profiles of CO from single-field-of-view observations. We show how these satellite CO profiles compare to aircraft observations and evaluate their biases.
Vikas Nataraja, Sebastian Schmidt, Hong Chen, Takanobu Yamaguchi, Jan Kazil, Graham Feingold, Kevin Wolf, and Hironobu Iwabuchi
Atmos. Meas. Tech., 15, 5181–5205, https://doi.org/10.5194/amt-15-5181-2022, https://doi.org/10.5194/amt-15-5181-2022, 2022
Short summary
Short summary
A convolutional neural network (CNN) is introduced to retrieve cloud optical thickness (COT) from passive cloud imagery. The CNN, trained on large eddy simulations from the Sulu Sea, learns from spatial information at multiple scales to reduce cloud inhomogeneity effects. By considering the spatial context of a pixel, the CNN outperforms the traditional independent pixel approximation (IPA) across several cloud morphology metrics.
Dongwei Fu, Larry Di Girolamo, Robert M. Rauber, Greg M. McFarquhar, Stephen W. Nesbitt, Jesse Loveridge, Yulan Hong, Bastiaan van Diedenhoven, Brian Cairns, Mikhail D. Alexandrov, Paul Lawson, Sarah Woods, Simone Tanelli, Sebastian Schmidt, Chris Hostetler, and Amy Jo Scarino
Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022, https://doi.org/10.5194/acp-22-8259-2022, 2022
Short summary
Short summary
Satellite-retrieved cloud microphysics are widely used in climate research because of their central role in water and energy cycles. Here, we provide the first detailed investigation of retrieved cloud drop sizes from in situ and various satellite and airborne remote sensing techniques applied to real cumulus cloud fields. We conclude that the most widely used passive remote sensing method employed in climate research produces high biases of 6–8 µm (60 %–80 %) caused by 3-D radiative effects.
Vivienne H. Payne, Susan S. Kulawik, Emily V. Fischer, Jared F. Brewer, L. Gregory Huey, Kazuyuki Miyazaki, John R. Worden, Kevin W. Bowman, Eric J. Hintsa, Fred Moore, James W. Elkins, and Julieta Juncosa Calahorrano
Atmos. Meas. Tech., 15, 3497–3511, https://doi.org/10.5194/amt-15-3497-2022, https://doi.org/10.5194/amt-15-3497-2022, 2022
Short summary
Short summary
We compare new satellite measurements of peroxyacetyl nitrate (PAN) with reference aircraft measurements from two different instruments flown on the same platform. While there is a systematic difference between the two aircraft datasets, both show the same large-scale distribution of PAN and the discrepancy between aircraft datasets is small compared to the satellite uncertainties. The satellite measurements show skill in capturing large-scale variations in PAN.
Matthew S. Norgren, John Wood, K. Sebastian Schmidt, Bastiaan van Diedenhoven, Snorre A. Stamnes, Luke D. Ziemba, Ewan C. Crosbie, Michael A. Shook, A. Scott Kittelman, Samuel E. LeBlanc, Stephen Broccardo, Steffen Freitag, and Jeffrey S. Reid
Atmos. Meas. Tech., 15, 1373–1394, https://doi.org/10.5194/amt-15-1373-2022, https://doi.org/10.5194/amt-15-1373-2022, 2022
Short summary
Short summary
A new spectral instrument (SPN-S), with the ability to partition solar radiation into direct and diffuse components, is used in airborne settings to study the optical properties of aerosols and cirrus. It is a low-cost and mechanically simple system but has higher measurement uncertainty than existing standards. This challenge is overcome by utilizing the unique measurement capabilities to develop new retrieval techniques. Validation is done with data from two NASA airborne research campaigns.
Jennifer D. Hegarty, Karen E. Cady-Pereira, Vivienne H. Payne, Susan S. Kulawik, John R. Worden, Valentin Kantchev, Helen M. Worden, Kathryn McKain, Jasna V. Pittman, Róisín Commane, Bruce C. Daube Jr., and Eric A. Kort
Atmos. Meas. Tech., 15, 205–223, https://doi.org/10.5194/amt-15-205-2022, https://doi.org/10.5194/amt-15-205-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is produced by combustion of substances such as fossil fuels and plays an important role in atmospheric pollution and climate. We evaluated estimates of atmospheric CO derived from outgoing radiation measurements of the Atmospheric Infrared Sounder (AIRS) on a satellite orbiting the Earth against CO measurements from aircraft to show that these satellite measurements are reliable for continuous global monitoring of atmospheric CO concentrations.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Michal Segal Rozenhaimer, Meloë Kacenelenbogen, Yohei Shinozuka, Connor Flynn, Rich Ferrare, Sharon Burton, Chris Hostetler, Marc Mallet, and Paquita Zuidema
Atmos. Meas. Tech., 15, 61–77, https://doi.org/10.5194/amt-15-61-2022, https://doi.org/10.5194/amt-15-61-2022, 2022
Short summary
Short summary
This work presents heating rates derived from aircraft observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS). We separate the total heating rates into aerosol and gas (primarily water vapor) absorption and explore some of the co-variability of heating rate profiles and their primary drivers, leading to the development of a new concept: the heating rate efficiency (HRE; the heating rate per unit aerosol extinction).
Yu-Wen Chen, Yi-Chun Chen, Charles C.-K. Chou, Hui-Ming Hung, Shih-Yu Chang, Lisa Eirenschmalz, Michael Lichtenstern, Helmut Ziereis, Hans Schlager, Greta Stratmann, Katharina Kaiser, Johannes Schneider, Stephan Borrmann, Florian Obersteiner, Eric Förster, Andreas Zahn, Wei-Nai Chen, Po-Hsiung Lin, Shuenn-Chin Chang, Maria Dolores Andrés Hernández, Pao-Kuan Wang, and John P. Burrows
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-788, https://doi.org/10.5194/acp-2021-788, 2021
Preprint withdrawn
Short summary
Short summary
By presenting an approach using EMeRGe-Asia airborne field measurements and surface observations, this study shows that the fraction of OH reactivity due to SO2-OH reaction has a significant correlation with the sulfate concentration. Approximately 30 % of sulfate is produced by SO2-OH reaction. Our results underline the importance of SO2-OH gas-phase oxidation in sulfate formation, and demonstrate that the method can be applied to other regions and under different meteorological conditions.
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech., 14, 2673–2697, https://doi.org/10.5194/amt-14-2673-2021, https://doi.org/10.5194/amt-14-2673-2021, 2021
Short summary
Short summary
In this paper, we accessed the shortwave irradiance derived from MODIS cloud optical properties by using aircraft measurements. We developed a data aggregation technique to parameterize spectral surface albedo by snow fraction in the Arctic. We found that undetected clouds have the most significant impact on the imagery-derived irradiance. This study suggests that passive imagery cloud detection could be improved through a multi-pixel approach that would make it more dependable in the Arctic.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Christopher O'Dell, K. Sebastian Schmidt, Hong Chen, and David Baker
Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021, https://doi.org/10.5194/amt-14-1475-2021, 2021
Short summary
Short summary
The OCO-2 science team is working to retrieve CO2 measurements that can be used by the carbon cycle community to calculate regional sources and sinks of CO2. The retrieved data, however, are in need of improvements in accuracy. This paper discusses several ways in which 3D cloud metrics (such as the distance of a measurement to the nearest cloud) can be used to account for cloud effects in the OCO-2 CO2 data files.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Amie Dobracki, Paquita Zuidema, Steven Howell, Steffen Freitag, and Sarah Doherty
Atmos. Meas. Tech., 14, 567–593, https://doi.org/10.5194/amt-14-567-2021, https://doi.org/10.5194/amt-14-567-2021, 2021
Short summary
Short summary
Based on observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), this work establishes an observationally driven link from mid-visible aerosol optical depth (AOD) and other scene parameters to broadband shortwave irradiance (and by extension the direct aerosol radiative effect, DARE). The majority of the case-to-case DARE variability within the ORACLES dataset is attributable to the dependence on AOD and scene albedo.
Susan S. Kulawik, John R. Worden, Vivienne H. Payne, Dejian Fu, Steven C. Wofsy, Kathryn McKain, Colm Sweeney, Bruce C. Daube Jr., Alan Lipton, Igor Polonsky, Yuguang He, Karen E. Cady-Pereira, Edward J. Dlugokencky, Daniel J. Jacob, and Yi Yin
Atmos. Meas. Tech., 14, 335–354, https://doi.org/10.5194/amt-14-335-2021, https://doi.org/10.5194/amt-14-335-2021, 2021
Short summary
Short summary
This paper shows comparisons of a new single-footprint methane product from the AIRS satellite to aircraft-based observations. We show that this AIRS methane product provides useful information to study seasonal and global methane trends of this important greenhouse gas.
Yohei Shinozuka, Meloë S. Kacenelenbogen, Sharon P. Burton, Steven G. Howell, Paquita Zuidema, Richard A. Ferrare, Samuel E. LeBlanc, Kristina Pistone, Stephen Broccardo, Jens Redemann, K. Sebastian Schmidt, Sabrina P. Cochrane, Marta Fenn, Steffen Freitag, Amie Dobracki, Michal Segal-Rosenheimer, and Connor J. Flynn
Atmos. Chem. Phys., 20, 11275–11285, https://doi.org/10.5194/acp-20-11275-2020, https://doi.org/10.5194/acp-20-11275-2020, 2020
Short summary
Short summary
To help satellite retrieval of aerosols and studies of their radiative effects, we demonstrate that daytime aerosol optical depth over low-level clouds is similar to that in neighboring clear skies at the same heights. Based on recent airborne lidar and sun photometer observations above the southeast Atlantic, the mean AOD difference at 532 nm is between 0 and -0.01, when comparing the cloudy and clear sides of cloud edges, with each up to 20 km wide.
Robert L. Herman, John Worden, David Noone, Dean Henze, Kevin Bowman, Karen Cady-Pereira, Vivienne H. Payne, Susan S. Kulawik, and Dejian Fu
Atmos. Meas. Tech., 13, 1825–1834, https://doi.org/10.5194/amt-13-1825-2020, https://doi.org/10.5194/amt-13-1825-2020, 2020
Short summary
Short summary
This study is the first assessment and validation of AIRS HDO / H2O retrieved by optimal estimation. Initial comparisons with in situ measurements from NASA ORACLES are promising: the small bias and consistent rms of AIRS suggest that AIRS has well-characterized HDO / H2O. This analysis opens the possibility of a new 17-year long-term data record of global tropospheric HDO / H2O measured from space.
Bin Yao, Chao Liu, Yan Yin, Zhiquan Liu, Chunxiang Shi, Hironobu Iwabuchi, and Fuzhong Weng
Atmos. Meas. Tech., 13, 1033–1049, https://doi.org/10.5194/amt-13-1033-2020, https://doi.org/10.5194/amt-13-1033-2020, 2020
Short summary
Short summary
Due to the complex spatiotemporal and physical properties of clouds, their quantitative depictions in different atmospheric reanalysis datasets are still highly uncertain. A radiance-based evaluation approach is developed to evaluate the quality of cloud properties by directly comparing them with satellite radiance observations. ERA5 and CRA are found to have great capability in representing the cloudy atmosphere over East Asia, and MERRA-2 tends to slightly overestimate clouds over the region.
Le Kuai, Kevin W. Bowman, Kazuyuki Miyazaki, Makoto Deushi, Laura Revell, Eugene Rozanov, Fabien Paulot, Sarah Strode, Andrew Conley, Jean-François Lamarque, Patrick Jöckel, David A. Plummer, Luke D. Oman, Helen Worden, Susan Kulawik, David Paynter, Andrea Stenke, and Markus Kunze
Atmos. Chem. Phys., 20, 281–301, https://doi.org/10.5194/acp-20-281-2020, https://doi.org/10.5194/acp-20-281-2020, 2020
Short summary
Short summary
The tropospheric ozone increase from pre-industrial to the present day leads to a radiative forcing. The top-of-atmosphere outgoing fluxes at the ozone band are controlled by ozone, water vapor, and temperature. We demonstrate a method to attribute the models’ flux biases to these key players using satellite-constrained instantaneous radiative kernels. The largest spread between models is found in the tropics, mainly driven by ozone and then water vapor.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Steven Platnick, Kerry Meyer, Rich Ferrare, Sharon Burton, Chris Hostetler, Steven Howell, Steffen Freitag, Amie Dobracki, and Sarah Doherty
Atmos. Meas. Tech., 12, 6505–6528, https://doi.org/10.5194/amt-12-6505-2019, https://doi.org/10.5194/amt-12-6505-2019, 2019
Short summary
Short summary
For two cases from the NASA ORACLES experiments, we retrieve aerosol and cloud properties and calculate a direct aerosol radiative effect (DARE). We investigate the relationship between DARE and the cloud albedo by specifying the albedo for which DARE transitions from a cooling to warming radiative effect. Our new aerosol retrieval algorithm is successful despite complexities associated with scenes that contain aerosols above clouds and decreases the uncertainty on retrieved aerosol parameters.
Pradeep Khatri, Hironobu Iwabuchi, Tadahiro Hayasaka, Hitoshi Irie, Tamio Takamura, Akihiro Yamazaki, Alessandro Damiani, Husi Letu, and Qin Kai
Atmos. Meas. Tech., 12, 6037–6047, https://doi.org/10.5194/amt-12-6037-2019, https://doi.org/10.5194/amt-12-6037-2019, 2019
Short summary
Short summary
In an attempt to make cloud retrievals from the surface more common and convenient, we developed a cloud retrieval algorithm applicable for sky radiometers. It is based on an optimum method by fitting measured transmittances with modeled values. Further, a cost-effective and easy-to-use calibration procedure is proposed and validated using data obtained from the standard method. A detailed error analysis and quality assessment are also performed.
Steffen Mauceri, Bruce Kindel, Steven Massie, and Peter Pilewskie
Atmos. Meas. Tech., 12, 6017–6036, https://doi.org/10.5194/amt-12-6017-2019, https://doi.org/10.5194/amt-12-6017-2019, 2019
Short summary
Short summary
Aerosols are fine particles that are suspended in Earth’s atmosphere. A better understanding of aerosols is important to lower uncertainties in climate predictions. We propose measuring aerosols from satellites and airplanes equipped with hyperspectral cameras using an artificial neural network, a form of machine learning. We applied our neural network to hyperspectral observations from a recent airplane flight over India and find general agreement with independent aerosol measurements.
Susan S. Kulawik, Sean Crowell, David Baker, Junjie Liu, Kathryn McKain, Colm Sweeney, Sebastien C. Biraud, Steve Wofsy, Christopher W. O'Dell, Paul O. Wennberg, Debra Wunch, Coleen M. Roehl, Nicholas M. Deutscher, Matthäus Kiel, David W. T. Griffith, Voltaire A. Velazco, Justus Notholt, Thorsten Warneke, Christof Petri, Martine De Mazière, Mahesh K. Sha, Ralf Sussmann, Markus Rettinger, Dave F. Pollard, Isamu Morino, Osamu Uchino, Frank Hase, Dietrich G. Feist, Sébastien Roche, Kimberly Strong, Rigel Kivi, Laura Iraci, Kei Shiomi, Manvendra K. Dubey, Eliezer Sepulveda, Omaira Elena Garcia Rodriguez, Yao Té, Pascal Jeseck, Pauli Heikkinen, Edward J. Dlugokencky, Michael R. Gunson, Annmarie Eldering, David Crisp, Brendan Fisher, and Gregory B. Osterman
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-257, https://doi.org/10.5194/amt-2019-257, 2019
Publication in AMT not foreseen
Short summary
Short summary
This paper provides a benchmark of OCO-2 v8 and ACOS-GOSAT v7.3 XCO2 and lowermost tropospheric (LMT) errors. The paper focuses on the systematic errors and subtracts out validation, co-location, and random errors, looks at the correlation scale-length (spatially and temporally) of systematic errors, finding that the scale lengths are similar to bias correction scale-lengths. The assimilates of the bias correction term is used to place an error on fluxes estimates.
Susan S. Kulawik, Chris O'Dell, Robert R. Nelson, and Thomas E. Taylor
Atmos. Meas. Tech., 12, 5317–5334, https://doi.org/10.5194/amt-12-5317-2019, https://doi.org/10.5194/amt-12-5317-2019, 2019
Short summary
Short summary
This work investigates errors in CO2 near-infrared estimates retrieved from simulated radiances. We find that interferent errors are underpredicted and that nonlinearity causes significant errors.
Kristina Pistone, Jens Redemann, Sarah Doherty, Paquita Zuidema, Sharon Burton, Brian Cairns, Sabrina Cochrane, Richard Ferrare, Connor Flynn, Steffen Freitag, Steven G. Howell, Meloë Kacenelenbogen, Samuel LeBlanc, Xu Liu, K. Sebastian Schmidt, Arthur J. Sedlacek III, Michal Segal-Rozenhaimer, Yohei Shinozuka, Snorre Stamnes, Bastiaan van Diedenhoven, Gerard Van Harten, and Feng Xu
Atmos. Chem. Phys., 19, 9181–9208, https://doi.org/10.5194/acp-19-9181-2019, https://doi.org/10.5194/acp-19-9181-2019, 2019
Short summary
Short summary
Understanding how smoke particles interact with sunlight is important in calculating their effects on climate, since some smoke is more scattering (cooling) and some is more absorbing (heating). Knowing this proportion is important for both satellite observations and climate models. We measured smoke properties in a recent aircraft-based field campaign off the west coast of Africa and present a comparison of these properties as measured using the six different, independent techniques available.
John R. Worden, Susan S. Kulawik, Dejian Fu, Vivienne H. Payne, Alan E. Lipton, Igor Polonsky, Yuguang He, Karen Cady-Pereira, Jean-Luc Moncet, Robert L. Herman, Fredrick W. Irion, and Kevin W. Bowman
Atmos. Meas. Tech., 12, 2331–2339, https://doi.org/10.5194/amt-12-2331-2019, https://doi.org/10.5194/amt-12-2331-2019, 2019
Short summary
Short summary
In this paper we take the first steps towards generating a multi-decadal record of the deuterium content of water vapor, useful for evaluating the moisture sources and processes affecting water vapor, by estimating the deuterium content from thermal IR radiances from the AIRS instrument. We find the AIRS-based measurements are sensitive to the deuterium content of water vapor in the middle and lower troposphere with a single measurement uncertainty of ~ 3 % and an accuracy of ~ 0.7 %.
Marc Mallet, Pierre Nabat, Paquita Zuidema, Jens Redemann, Andrew Mark Sayer, Martin Stengel, Sebastian Schmidt, Sabrina Cochrane, Sharon Burton, Richard Ferrare, Kerry Meyer, Pablo Saide, Hiren Jethva, Omar Torres, Robert Wood, David Saint Martin, Romain Roehrig, Christina Hsu, and Paola Formenti
Atmos. Chem. Phys., 19, 4963–4990, https://doi.org/10.5194/acp-19-4963-2019, https://doi.org/10.5194/acp-19-4963-2019, 2019
Short summary
Short summary
The model is able to represent LWP but not the LCF. AOD is consistent over the continent but also over ocean (ACAOD). Differences are observed in SSA due to the absence of internal mixing in ALADIN-Climate. A significant regional gradient of the forcing at TOA is observed. An intense positive forcing is simulated over Gabon. Results highlight the significant effect of enhanced moisture on BBA extinction. The surface dimming modifies the energy budget.
Dejian Fu, Susan S. Kulawik, Kazuyuki Miyazaki, Kevin W. Bowman, John R. Worden, Annmarie Eldering, Nathaniel J. Livesey, Joao Teixeira, Fredrick W. Irion, Robert L. Herman, Gregory B. Osterman, Xiong Liu, Pieternel F. Levelt, Anne M. Thompson, and Ming Luo
Atmos. Meas. Tech., 11, 5587–5605, https://doi.org/10.5194/amt-11-5587-2018, https://doi.org/10.5194/amt-11-5587-2018, 2018
Emily V. Fischer, Liye Zhu, Vivienne H. Payne, John R. Worden, Zhe Jiang, Susan S. Kulawik, Steven Brey, Arsineh Hecobian, Daniel Gombos, Karen Cady-Pereira, and Frank Flocke
Atmos. Chem. Phys., 18, 5639–5653, https://doi.org/10.5194/acp-18-5639-2018, https://doi.org/10.5194/acp-18-5639-2018, 2018
Short summary
Short summary
PAN is an atmospheric reservoir for nitrogen oxide radicals, and it plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES) PAN observations over North America during July 2006 to 2009. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS) smoke plumes. Depending on the year, 15–32 % of cases where elevated PAN is identified in TES observations overlap with smoke plumes.
Rintaro Okamura, Hironobu Iwabuchi, and K. Sebastian Schmidt
Atmos. Meas. Tech., 10, 4747–4759, https://doi.org/10.5194/amt-10-4747-2017, https://doi.org/10.5194/amt-10-4747-2017, 2017
Short summary
Short summary
Three-dimensional (3-D) radiative transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. Multi-pixel, multispectral approaches based on deep learning are proposed for retrieval of cloud optical thickness and droplet effective radius. A feasibility test shows that proposed retrieval methods are effective to obtain accurate cloud properties. Use of the convolutional neural network is effective to reduce 3-D radiative transfer effects.
Karen E. Cady-Pereira, Vivienne H. Payne, Jessica L. Neu, Kevin W. Bowman, Kazuyuki Miyazaki, Eloise A. Marais, Susan Kulawik, Zitely A. Tzompa-Sosa, and Jennifer D. Hegarty
Atmos. Chem. Phys., 17, 9379–9398, https://doi.org/10.5194/acp-17-9379-2017, https://doi.org/10.5194/acp-17-9379-2017, 2017
Short summary
Short summary
Air quality is a major issue for megacities. Our paper looks at satellite measurements over Mexico City and Lagos of several trace gases gases related to air quality to determine the temporal and spatial variability of these gases, and it relates this variability to local conditions, such as topography, winds and biomass burning events. We find that, while Mexico City is known for severe pollution events, the levels of of pollution in Lagos are much higher and more persistent.
John R. Worden, Gary Doran, Susan Kulawik, Annmarie Eldering, David Crisp, Christian Frankenberg, Chris O'Dell, and Kevin Bowman
Atmos. Meas. Tech., 10, 2759–2771, https://doi.org/10.5194/amt-10-2759-2017, https://doi.org/10.5194/amt-10-2759-2017, 2017
Short summary
Short summary
This paper evaluates the uncertainties of the total column carbon dioxide (XCO2) measurements from the NASA OCO-2 instrument by comparing observed variations in small geographical regions to the calculated uncertainties of the data within this region. In general we find that the reported XCO2 precision is related to that expected from the XCO2 radiance noise. However, the reported accuracy is at least smaller than the actual accuracy by a factor of 2–4.
Vivienne H. Payne, Emily V. Fischer, John R. Worden, Zhe Jiang, Liye Zhu, Thomas P. Kurosu, and Susan S. Kulawik
Atmos. Chem. Phys., 17, 6341–6351, https://doi.org/10.5194/acp-17-6341-2017, https://doi.org/10.5194/acp-17-6341-2017, 2017
Short summary
Short summary
Peroxyacetyl nitrate (PAN) plays a key role in atmospheric chemistry and long-range transport of pollution. In this paper, we present measurements of PAN from the Tropospheric Emission Spectrometer, an instrument on board the NASA Aura satellite since 2004. We focus on measurements of PAN in tropical regions, where data from ground-based and aircraft campaigns are particularly sparse. We observe temporal changes in PAN associated with changes in fires, convection and emissions.
Susan S. Kulawik, Chris O'Dell, Vivienne H. Payne, Le Kuai, Helen M. Worden, Sebastien C. Biraud, Colm Sweeney, Britton Stephens, Laura T. Iraci, Emma L. Yates, and Tomoaki Tanaka
Atmos. Chem. Phys., 17, 5407–5438, https://doi.org/10.5194/acp-17-5407-2017, https://doi.org/10.5194/acp-17-5407-2017, 2017
Short summary
Short summary
We introduce new vertically resolved GOSAT products that better separate locally and remotely influenced CO2. Current GOSAT column results for CO2 (XCO2) are sensitive to fluxes on continental scales, whereas flux estimates from surface and tower measurements are affected by sampling bias and model transport uncertainty. These new GOSAT measurements of boundary layer CO2 are validated against aircraft and surface observations of CO2 and are compared to vertically resolved MOPITT CO.
Shi Song, K. Sebastian Schmidt, Peter Pilewskie, Michael D. King, Andrew K. Heidinger, Andi Walther, Hironobu Iwabuchi, Gala Wind, and Odele M. Coddington
Atmos. Chem. Phys., 16, 13791–13806, https://doi.org/10.5194/acp-16-13791-2016, https://doi.org/10.5194/acp-16-13791-2016, 2016
Short summary
Short summary
The radiative effects of spatially complex cloud fields are notoriously difficult to estimate and are afflicted with errors up to ±50 % of the incident solar radiation. We find that horizontal photon transport, the leading cause for these three-dimensional effects, manifests itself through a spectral fingerprint – a new observable that holds promise for reducing the errors associated with spatial complexity by moving the problem to the spectral dimension.
Hilke Oetjen, Vivienne H. Payne, Jessica L. Neu, Susan S. Kulawik, David P. Edwards, Annmarie Eldering, Helen M. Worden, and John R. Worden
Atmos. Chem. Phys., 16, 10229–10239, https://doi.org/10.5194/acp-16-10229-2016, https://doi.org/10.5194/acp-16-10229-2016, 2016
Short summary
Short summary
We developed and tested a strategy for combining TES and IASI free-tropospheric ozone data. A time series of the merged ozone data is presented for regional monthly means over the western US, Europe, and eastern Asia. We show that free-tropospheric ozone over Europe and the western US has remained relatively constant over the past decade but that, contrary to expectations, ozone over Asia in recent years does not continue the rapid rate of increase observed from 2004–2010.
Christian Frankenberg, Susan S. Kulawik, Steven C. Wofsy, Frédéric Chevallier, Bruce Daube, Eric A. Kort, Christopher O'Dell, Edward T. Olsen, and Gregory Osterman
Atmos. Chem. Phys., 16, 7867–7878, https://doi.org/10.5194/acp-16-7867-2016, https://doi.org/10.5194/acp-16-7867-2016, 2016
Short summary
Short summary
We use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009 through September 2011 to validate CO2 measurements from satellites (GOSAT, TES, AIRS) and atmospheric inversion models (CarbonTracker CT2013B, MACC v13r1).
Steven T. Massie, Julien Delanoë, Charles G. Bardeen, Jonathan H. Jiang, and Lei Huang
Atmos. Chem. Phys., 16, 6091–6105, https://doi.org/10.5194/acp-16-6091-2016, https://doi.org/10.5194/acp-16-6091-2016, 2016
Short summary
Short summary
Changes in cloud vertical structure (i.e. the shape of cloud ice water content (IWC) vertical structure) due to variations in aerosol, observed by three different satellite experiments (MODIS, OMI, and MLS) are calculated in the Tropics during 2007–2010. This topic is of interest because aerosol-cloud interactions are the largest source of uncertainty in climate models. Analysis of the effects of MODIS aerosol, OMI absorptive aerosol, and MLS CO (an absorptive aerosol proxy) upon deep convective
Susan Kulawik, Debra Wunch, Christopher O'Dell, Christian Frankenberg, Maximilian Reuter, Tomohiro Oda, Frederic Chevallier, Vanessa Sherlock, Michael Buchwitz, Greg Osterman, Charles E. Miller, Paul O. Wennberg, David Griffith, Isamu Morino, Manvendra K. Dubey, Nicholas M. Deutscher, Justus Notholt, Frank Hase, Thorsten Warneke, Ralf Sussmann, John Robinson, Kimberly Strong, Matthias Schneider, Martine De Mazière, Kei Shiomi, Dietrich G. Feist, Laura T. Iraci, and Joyce Wolf
Atmos. Meas. Tech., 9, 683–709, https://doi.org/10.5194/amt-9-683-2016, https://doi.org/10.5194/amt-9-683-2016, 2016
Short summary
Short summary
To accurately estimate source and sink locations of carbon dioxide, systematic errors in satellite measurements and models must be characterized. This paper examines two satellite data sets (GOSAT, launched 2009, and SCIAMACHY, launched 2002), and two models (CarbonTracker and MACC) vs. the TCCON CO2 validation data set. We assess biases and errors by season and latitude, satellite performance under averaging, and diurnal variability. Our findings are useful for assimilation of satellite data.
M. Saito and H. Iwabuchi
Atmos. Meas. Tech., 8, 4295–4311, https://doi.org/10.5194/amt-8-4295-2015, https://doi.org/10.5194/amt-8-4295-2015, 2015
Short summary
Short summary
A new algorithm for aerosol retrievals from twilight photographs taken by a digital single reflex-lens camera is developed. A radiative transfer model taking spherical-shell atmosphere, multiple scattering and refraction into account is used as a forward model, and the optimal estimation is used as an inversion calculation to infer the aerosol optical and radiative properties. The AOTs are inferred with small uncertainties and agree very well with that from the skyradiometer.
J. R. Worden, A. J. Turner, A. Bloom, S. S. Kulawik, J. Liu, M. Lee, R. Weidner, K. Bowman, C. Frankenberg, R. Parker, and V. H. Payne
Atmos. Meas. Tech., 8, 3433–3445, https://doi.org/10.5194/amt-8-3433-2015, https://doi.org/10.5194/amt-8-3433-2015, 2015
Short summary
Short summary
Here we demonstrate the potential for estimating lower tropospheric CH4 concentrations through the combination of free-tropospheric methane measurements from the Aura Tropospheric Emission Spectrometer (TES) and XCH4 (dry-mole air fraction of methane) from the Greenhouse Gases Observing Satellite - Thermal And Near-infrared for carbon Observation (GOSAT TANSO).
B. C. Kindel, P. Pilewskie, K. S. Schmidt, T. Thornberry, A. Rollins, and T. Bui
Atmos. Meas. Tech., 8, 1147–1156, https://doi.org/10.5194/amt-8-1147-2015, https://doi.org/10.5194/amt-8-1147-2015, 2015
Short summary
Short summary
Measurements of upper tropospheric-lower stratospheric water vapor amounts in the tropics were made using the 1400 and 1900nm water vapor bands present in airborne solar spectral irradiance data. These were validated with radiative transfer modeling using in situ profiles of water vapor, temperature, and pressure. An approach to extending these types of measurements from aircraft altitudes to the top of the atmosphere to infer stratospheric water vapor amount is outlined.
M. J. Alvarado, V. H. Payne, K. E. Cady-Pereira, J. D. Hegarty, S. S. Kulawik, K. J. Wecht, J. R. Worden, J. V. Pittman, and S. C. Wofsy
Atmos. Meas. Tech., 8, 965–985, https://doi.org/10.5194/amt-8-965-2015, https://doi.org/10.5194/amt-8-965-2015, 2015
H. Oetjen, V. H. Payne, S. S. Kulawik, A. Eldering, J. Worden, D. P. Edwards, G. L. Francis, H. M. Worden, C. Clerbaux, J. Hadji-Lazaro, and D. Hurtmans
Atmos. Meas. Tech., 7, 4223–4236, https://doi.org/10.5194/amt-7-4223-2014, https://doi.org/10.5194/amt-7-4223-2014, 2014
Short summary
Short summary
We apply the TES ozone retrieval algorithm to IASI radiances and characterise the uncertainties and information content of the retrieved ozone profiles. We find that our biases with respect to sondes and our degrees of freedom for signal for ozone are comparable to previously published results from other IASI ozone algorithms. We find that predicted and empirical errors are consistent. In general, the precision of the IASI ozone profiles is better than 20%.
V. H. Payne, M. J. Alvarado, K. E. Cady-Pereira, J. R. Worden, S. S. Kulawik, and E. V. Fischer
Atmos. Meas. Tech., 7, 3737–3749, https://doi.org/10.5194/amt-7-3737-2014, https://doi.org/10.5194/amt-7-3737-2014, 2014
Short summary
Short summary
Peroxyacetyl nitrate (PAN) plays an important role in the distribution of lower-atmospheric ozone. PAN can be transported far from the original pollution source, leading to ozone formation and degraded air quality in remote areas. Satellite observations from the Tropospheric Emission Spectrometer (TES) are sensitive to PAN at lower altitude than previous global data sets. We describe characteristics of the data and show elevated PAN associated with boreal fires and outflow of Asian pollution.
R. L. Herman, J. E. Cherry, J. Young, J. M. Welker, D. Noone, S. S. Kulawik, and J. Worden
Atmos. Meas. Tech., 7, 3127–3138, https://doi.org/10.5194/amt-7-3127-2014, https://doi.org/10.5194/amt-7-3127-2014, 2014
Y. Kanaya, H. Irie, H. Takashima, H. Iwabuchi, H. Akimoto, K. Sudo, M. Gu, J. Chong, Y. J. Kim, H. Lee, A. Li, F. Si, J. Xu, P.-H. Xie, W.-Q. Liu, A. Dzhola, O. Postylyakov, V. Ivanov, E. Grechko, S. Terpugova, and M. Panchenko
Atmos. Chem. Phys., 14, 7909–7927, https://doi.org/10.5194/acp-14-7909-2014, https://doi.org/10.5194/acp-14-7909-2014, 2014
E. Hache, J.-L. Attié, C. Tourneur, P. Ricaud, L. Coret, W. A. Lahoz, L. El Amraoui, B. Josse, P. Hamer, J. Warner, X. Liu, K. Chance, M. Höpfner, R. Spurr, V. Natraj, S. Kulawik, A. Eldering, and J. Orphal
Atmos. Meas. Tech., 7, 2185–2201, https://doi.org/10.5194/amt-7-2185-2014, https://doi.org/10.5194/amt-7-2185-2014, 2014
L. Kuai, J. Worden, S. S. Kulawik, S. A. Montzka, and J. Liu
Atmos. Meas. Tech., 7, 163–172, https://doi.org/10.5194/amt-7-163-2014, https://doi.org/10.5194/amt-7-163-2014, 2014
X. Jiang, M. C. Barth, C. Wiedinmyer, and S. T. Massie
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-21383-2013, https://doi.org/10.5194/acpd-13-21383-2013, 2013
Revised manuscript not accepted
H. M. Worden, D. P. Edwards, M. N. Deeter, D. Fu, S. S. Kulawik, J. R. Worden, and A. Arellano
Atmos. Meas. Tech., 6, 1633–1646, https://doi.org/10.5194/amt-6-1633-2013, https://doi.org/10.5194/amt-6-1633-2013, 2013
K. W. Bowman, D. T. Shindell, H. M. Worden, J.F. Lamarque, P. J. Young, D. S. Stevenson, Z. Qu, M. de la Torre, D. Bergmann, P. J. Cameron-Smith, W. J. Collins, R. Doherty, S. B. Dalsøren, G. Faluvegi, G. Folberth, L. W. Horowitz, B. M. Josse, Y. H. Lee, I. A. MacKenzie, G. Myhre, T. Nagashima, V. Naik, D. A. Plummer, S. T. Rumbold, R. B. Skeie, S. A. Strode, K. Sudo, S. Szopa, A. Voulgarakis, G. Zeng, S. S. Kulawik, A. M. Aghedo, and J. R. Worden
Atmos. Chem. Phys., 13, 4057–4072, https://doi.org/10.5194/acp-13-4057-2013, https://doi.org/10.5194/acp-13-4057-2013, 2013
J. Worden, K. Wecht, C. Frankenberg, M. Alvarado, K. Bowman, E. Kort, S. Kulawik, M. Lee, V. Payne, and H. Worden
Atmos. Chem. Phys., 13, 3679–3692, https://doi.org/10.5194/acp-13-3679-2013, https://doi.org/10.5194/acp-13-3679-2013, 2013
D. Fu, J. R. Worden, X. Liu, S. S. Kulawik, K. W. Bowman, and V. Natraj
Atmos. Chem. Phys., 13, 3445–3462, https://doi.org/10.5194/acp-13-3445-2013, https://doi.org/10.5194/acp-13-3445-2013, 2013
H. M. Worden, M. N. Deeter, C. Frankenberg, M. George, F. Nichitiu, J. Worden, I. Aben, K. W. Bowman, C. Clerbaux, P. F. Coheur, A. T. J. de Laat, R. Detweiler, J. R. Drummond, D. P. Edwards, J. C. Gille, D. Hurtmans, M. Luo, S. Martínez-Alonso, S. Massie, G. Pfister, and J. X. Warner
Atmos. Chem. Phys., 13, 837–850, https://doi.org/10.5194/acp-13-837-2013, https://doi.org/10.5194/acp-13-837-2013, 2013
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Wet-radome attenuation in ARM cloud radars and its utilization in radar calibration using disdrometer measurements
Tomographic reconstruction algorithms for retrieving two-dimensional ice cloud microphysical parameters using along-track (sub)millimeter-wave radiometer observations
Empirical model for backscattering polarimetric variables in rain at W-band: motivation and implications
JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: the CPR_CLP, AC_CLP, and ACM_CLP products
Peering into the heart of thunderstorm clouds: insights from cloud radar and spectral polarimetry
Retrieving cloud-base height and geometric thickness using the oxygen A-band channel of GCOM-C/SGLI
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Satellite-based detection of deep convective clouds: the sensitivity of infrared methods, and implications for cloud climatology
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Contrail altitude estimation using GOES-16 ABI data and deep learning
The Ice Cloud Imager: retrieval of frozen water column properties
Supercooled liquid water cloud classification using lidar backscatter peak properties
Marine cloud base height retrieval from MODIS cloud properties using machine learning
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Radiative Closure Assessment of Retrieved Cloud and Aerosol Properties for the EarthCARE Mission: The ACMB-DF Product
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Bayesian cloud-top phase determination for Meteosat Second Generation
Lidar–radar synergistic method to retrieve ice, supercooled water and mixed-phase cloud properties
Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network
A new approach to crystal habit retrieval from far-infrared spectral radiance measurements
Multiple-scattering effects on single-wavelength lidar sounding of multi-layered clouds
Algorithm for continual monitoring of fog life cycles based on geostationary satellite imagery as a basis for solar energy forecasting
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Infrared Radiometric Image Classification and Segmentation of Cloud Structure Using Deep-learning Framework for Ground-based Infrared Thermal Camera Observations
Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar
Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
The EarthCARE mission: science data processing chain overview
Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products
Cloud top heights and aerosol columnar properties from combined EarthCARE lidar and imager observations: the AM-CTH and AM-ACD products
Raman lidar-derived optical and microphysical properties of ice crystals within thin Arctic clouds during PARCS campaign
Evaluation of four ground-based retrievals of cloud droplet number concentration in marine stratocumulus with aircraft in situ measurements
Deep convective cloud system size and structure across the global tropics and subtropics
A neural-network-based method for generating synthetic 1.6 µm near-infrared satellite images
Numerical model generation of test frames for pre-launch studies of EarthCARE's retrieval algorithms and data management system
Segmentation of polarimetric radar imagery using statistical texture
Retrieval of surface solar irradiance from satellite imagery using machine learning: pitfalls and perspectives
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025, https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Short summary
A relative calibration technique is developed for the cloud radar by monitoring the intercept of the wet-radome attenuation log-linear behavior as a function of rainfall rates in light and moderate rain conditions. This resulting reflectivity offset during the recent field campaign is compared favorably with the traditional disdrometer comparison near the rain onset, while it also demonstrates similar trends with respect to collocated and independently calibrated reference radars.
Yuli Liu and Ian Stuart Adams
Atmos. Meas. Tech., 18, 1659–1674, https://doi.org/10.5194/amt-18-1659-2025, https://doi.org/10.5194/amt-18-1659-2025, 2025
Short summary
Short summary
This paper presents our latest development in tomographic reconstruction algorithms that use multi-angle (sub)millimeter-wave brightness temperature to reconstruct the spatial distribution of ice clouds. Compared to nadir-only retrievals, the tomography technique provides a detailed reconstruction of ice clouds’ inner structure with high spatial resolution and significantly improves retrieval accuracy. Also, the technique effectively increases detection sensitivity for small ice cloud particles.
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech., 18, 1621–1640, https://doi.org/10.5194/amt-18-1621-2025, https://doi.org/10.5194/amt-18-1621-2025, 2025
Short summary
Short summary
The study examines the use of the spheroidal shape approximation for calculating cloud radar observables in rain and identifies some limitations. To address these, it introduces the empirical scattering model (ESM) based on high-quality Doppler spectra from a 94 GHz radar. The ESM offers improved accuracy and directly incorporates natural rain's microphysical effects. This new model can enhance retrieval and calibration methods, benefiting cloud radar polarimetry experts and scattering modelers.
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025, https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Short summary
This study introduces the JAXA EarthCARE Level 2 (L2) cloud product using satellite observations and simulated EarthCARE data. The outputs from the product feature a 3D global view of the dominant ice habit categories and corresponding microphysics. Habit and size distribution transitions from cloud to precipitation are quantified by the L2 cloud algorithms. With Doppler data, the products can be beneficial for further understanding of the coupling of cloud microphysics, radiation, and dynamics.
Ho Yi Lydia Mak and Christine Unal
Atmos. Meas. Tech., 18, 1209–1242, https://doi.org/10.5194/amt-18-1209-2025, https://doi.org/10.5194/amt-18-1209-2025, 2025
Short summary
Short summary
The dynamics of thunderclouds are studied using cloud radar. Supercooled liquid water and conical graupel are likely present, while chain-like ice crystals may occur at cloud top. Ice crystals are vertically aligned seconds before lightning and resume their usual horizontal alignment afterwards in some cases. Updrafts and downdrafts are found near cloud core and edges respectively. Turbulence is strong. Radar measurement modes that are more suited for investigating thunderstorms are recommended.
Takashi M. Nagao, Kentaroh Suzuki, and Makoto Kuji
Atmos. Meas. Tech., 18, 773–792, https://doi.org/10.5194/amt-18-773-2025, https://doi.org/10.5194/amt-18-773-2025, 2025
Short summary
Short summary
In satellite remote sensing, estimating cloud-base height (CBH) is more challenging than estimating cloud-top height because the cloud base is obscured by the cloud itself. We developed an algorithm using the specific channel (known as the oxygen A-band channel) of the SGLI on JAXA’s GCOM-C satellite to estimate CBHs together with other cloud properties. This algorithm can provide global distributions of CBH across various cloud types, including liquid, ice, and mixed-phase clouds.
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025, https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over 2 years at the BCO is presented.
Andrzej Zbigniew Kotarba and Izabela Wojciechowska
EGUsphere, https://doi.org/10.5194/egusphere-2024-3693, https://doi.org/10.5194/egusphere-2024-3693, 2025
Short summary
Short summary
The research investigates methods for detecting deep convective clouds (DCCs) using satellite infrared data, essential for understanding long-term climate trends. By validating three popular detection methods against lidar-radar data, it found moderate accuracy (below 75 %), emphasizing the importance of fine-tuning thresholds regionally. The study discovers how small threshold changes significantly affect climatology of severe storms.
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025, https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Short summary
Our study investigates the impact of cloud shadows on satellite-based aerosol index measurements over Europe by TROPOMI. Using a cloud shadow detection algorithm and simulations, we found that the overall effect on the aerosol index is minimal. Interestingly, we found that cloud shadows are significantly bluer than their shadow-free surroundings, but the traditional algorithm already (partly) automatically corrects for this increased blueness.
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024, https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
Short summary
This study introduces a cloud property retrieval method which integrates traditional radiative transfer simulations with a machine learning method. Retrievals from a machine learning algorithm are used to provide a priori states, and a radiative transfer model is used to create lookup tables for later iteration processes. The new method combines the advantages of traditional and machine learning algorithms, and it is applicable to both daytime and nighttime conditions.
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024, https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Short summary
Measuring the shape of clouds helps scientists understand how the Earth will continue to respond to climate change. Satellites measure clouds in different ways. One way is to take pictures of clouds from multiple angles and to use the differences between the pictures to measure cloud structure. However, doing this accurately can be challenging. We propose a way to use machine learning to recover the shape of clouds from multi-angle satellite data.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024, https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Short summary
This article presents a novel technique to estimate liquid water content (LWC) profiles in shallow warm clouds using a pair of collocated Ka-band (35 GHz) and G-band (239 GHz) radars. We demonstrate that the use of a G-band radar allows retrieving the LWC with 3 times better accuracy than previous works reported in the literature, providing improved ability to understand the vertical profile of LWC and characterize microphysical and dynamical processes more precisely in shallow clouds.
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024, https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Short summary
We introduce an innovative method to retrieve the cloud fraction and optical thickness of liquid water clouds over the ocean based on polarimetry. This is well suited for satellite observations providing multi-angle polarization measurements. Cloud fraction and cloud optical thickness can be derived from measurements at two viewing angles: one within the cloudbow and one in the sun glint region.
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024, https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Short summary
This study demonstrates the potential of enhancing severe-hail detection through the application of convolutional neural networks (CNNs) to dual-polarization radar data. It is shown that current methods can be calibrated to significantly enhance their performance for severe-hail detection. This study establishes the foundation for the solution of a more complex problem: the estimation of the maximum size of hailstones on the ground using deep learning applied to radar data.
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024, https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary
Short summary
This study presents a method for estimating cloud cover from FY-4A AGRI observations using random forest (RF) and multilayer perceptron (MLP) algorithms. The results demonstrate excellent performance in distinguishing clear-sky scenes and reducing errors in cloud cover estimation. It shows significant improvements compared to existing methods.
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024, https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
Short summary
In this study, we present a toolkit of two Python algorithms to extract information from Doppler spectra measured by ground-based cloud radars. In these Doppler spectra, several peaks can be formed due to populations of droplets/ice particles with different fall velocities coexisting in the same measurement time and height. The two algorithms can detect peaks and assign them to certain particle types, such as small cloud droplets or fast-falling ice particles like graupel.
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024, https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Short summary
This paper describes a new treatment of the spatial misregistration of cloud properties for Sentinel-5 Precursor, when the footprints of different spectral bands are not perfectly aligned. The methodology exploits synergies between spectrometers and imagers, like TROPOMI and VIIRS. The largest improvements have been identified for heterogeneous scenes at cloud edges. This approach is generic and can also be applied to future Sentinel-4 and Sentinel-5 instruments.
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024, https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
Short summary
Aviation's climate impact is partly due to contrails: the clouds that form behind aircraft and which can linger for hours under certain atmospheric conditions. Accurately forecasting these conditions could allow aircraft to avoid forming these contrails and thus reduce their environmental footprint. Our research uses deep learning to identify three-dimensional contrail locations in two-dimensional satellite imagery, which can be used to assess and improve these forecasts.
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024, https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Short summary
The upcoming Ice Cloud Imager (ICI) mission is set to improve measurements of atmospheric ice through passive microwave and sub-millimetre wave observations. In this study, we perform detailed simulations of ICI observations. Machine learning is used to characterise the atmospheric ice present for a given simulated observation. This study acts as a final pre-launch assessment of ICI's capability to measure atmospheric ice, providing valuable information to climate and weather applications.
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024, https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Short summary
Supercooled liquid water cloud is important to represent in weather and climate models, particularly in the Southern Hemisphere. Previous work has developed a new machine learning method for measuring supercooled liquid water in Antarctic clouds using simple lidar observations. We evaluate this technique using a lidar dataset from Christchurch, New Zealand, and develop an updated algorithm for accurate supercooled liquid water detection at mid-latitudes.
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024, https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
Short summary
Clouds play a key role in the regulation of the Earth's climate. Aspects like the height of their base are of essential interest to quantify their radiative effects but remain difficult to derive from satellite data. In this study, we combine observations from the surface and satellite retrievals of cloud properties to build a robust and accurate method to retrieve the cloud base height, based on a computer vision model and ordinal regression.
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024, https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
Short summary
This study uses radiative transfer calculations to characterize the relation of two satellite channel combinations (namely infrared window brightness temperature differences – BTDs – of SEVIRI) to the thermodynamic cloud phase. A sensitivity analysis reveals the complex interplay of cloud parameters and their contribution to the observed phase dependence of BTDs. This knowledge helps to design optimal cloud-phase retrievals and to understand their potential and limitations.
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1651, https://doi.org/10.5194/egusphere-2024-1651, 2024
Short summary
Short summary
Measurements made by three instruments aboard EarthCARE are used to retrieve estimates of cloud and aerosol properties. A radiative closure assessment of these retrievals is performed by the ACMB-DF processor. Radiative transfer models acting on retrieved information produce broadband radiances commensurate with measurements made by EarthCARE’s broadband radiometer. Measured and modelled radiances for small domains are compared and the likelihood of them differing by 10 W/m2 defines the closure.
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024, https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Short summary
ampycloud is a new algorithm developed at MeteoSwiss to characterize the height and sky coverage fraction of cloud layers above aerodromes via ceilometer data. This algorithm was devised as part of a larger effort to fully automate the creation of meteorological aerodrome reports (METARs) at Swiss civil airports. The ampycloud algorithm is implemented as a Python package that is made publicly available to the community under the 3-Clause BSD license.
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024, https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
Short summary
Ultraviolet imaging technology has significantly advanced the research and development of polar mesospheric clouds (PMCs). In this study, we proposed the wide-field-of-view ultraviolet imager (WFUI) and built a forward model to evaluate the detection capability and efficiency. The results demonstrate that the WFUI performs well in PMC detection and has high detection efficiency. The relationship between ice water content and detection efficiency follows an exponential function distribution.
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024, https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
Short summary
The representation of clouds in numerical weather and climate models remains a major challenge that is difficult to address because of the limitations of currently available data records of cloud properties. In this work, we address this issue by using machine learning to extract novel information on ice clouds from a long record of satellite observations. Through extensive validation, we show that this novel approach provides surprisingly accurate estimates of clouds and their properties.
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024, https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Short summary
This study proposes an inversion method for atmospheric-aerosol or cloud microphysical parameters based on dual-wavelength lidar data. It is suitable for the inversion of uniformly mixed and single-property aerosol layers or small cloud droplets. For aerosol particles, the inversion range that this algorithm can achieve is 0.3–1.7 μm. For cloud droplets, it is 1.0–10 μm. This algorithm can quickly obtain the microphysical parameters of atmospheric particles and has better robustness.
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024, https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Short summary
ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) is a method to detect clouds and their thermodynamic phase with a geostationary satellite, distinguishing between clear sky and ice, mixed-phase, supercooled and warm liquid clouds. It uses a Bayesian approach based on the lidar–radar product DARDAR. The method allows studying cloud phases, especially mixed-phase and supercooled clouds, rarely observed from geostationary satellites. This can be used for comparison with climate models.
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024, https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Short summary
Radar–lidar synergy is used to retrieve ice, supercooled water and mixed-phase cloud properties, making the most of the radar sensitivity to ice crystals and the lidar sensitivity to supercooled droplets. A first analysis of the output of the algorithm run on the satellite data is compared with in situ data during an airborne Arctic field campaign, giving a mean percent error of 49 % for liquid water content and 75 % for ice water content.
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024, https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
Short summary
The number of cloud droplets per unit volume, Nd, in a cloud is important for understanding aerosol–cloud interaction. In this study, we develop techniques to derive cloud droplet number concentration from lidar measurements combined with other remote sensing measurements such as cloud radar and microwave radiometers. We show that deriving Nd is very uncertain, although a synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024, https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Short summary
This paper describes a method to improve the detection of liquid clouds that are easily missed by the CloudSat satellite radar. To address this, we use machine learning techniques to estimate cloud properties (optical depth and droplet size) based on other satellite measurements. The results are compared with data from the MODIS instrument on the Aqua satellite, showing good correlations.
Sunny Sun-Mack, Patrick Minnis, Yan Chen, Gang Hong, and William L. Smith Jr.
Atmos. Meas. Tech., 17, 3323–3346, https://doi.org/10.5194/amt-17-3323-2024, https://doi.org/10.5194/amt-17-3323-2024, 2024
Short summary
Short summary
Multilayer clouds (MCs) affect the radiation budget differently than single-layer clouds (SCs) and need to be identified in satellite images. A neural network was trained to identify MCs by matching imagery with lidar/radar data. This method correctly identifies ~87 % SCs and MCs with a net accuracy gain of 7.5 % over snow-free surfaces. It is more accurate than most available methods and constitutes a first step in providing a reasonable 3-D characterization of the cloudy atmosphere.
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024, https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Short summary
This work aims to define a new approach to retrieve the distribution of the main ice crystal shapes occurring inside ice and cirrus clouds from infrared spectral measurements. The capability of retrieving these shapes of the ice crystals from satellites will allow us to extend the currently available climatologies to be used as physical constraints in general circulation models. This could could allow us to improve their accuracy and prediction performance.
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024, https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary
Short summary
We performed Monte Carlo simulations of single-wavelength lidar signals from multi-layered clouds with special attention focused on the multiple-scattering (MS) effect in regions of the cloud-free molecular atmosphere. The MS effect on lidar signals always decreases with the increasing distance from the cloud far edge. The decrease is the direct consequence of the fact that the forward peak of particle phase functions is much larger than the receiver field of view.
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
EGUsphere, https://doi.org/10.5194/egusphere-2023-2885, https://doi.org/10.5194/egusphere-2023-2885, 2024
Short summary
Short summary
Fog and low stratus (FLS) are both persistent clouds close to the Earth’s surface. In the context of photovoltaic power production, FLS is particularly important, as FLS, impact large regions simultaneously, making regional power grid balancing hard. This study introduces a new machine leanring based algorithm developed for the MSG geostationary satellites that can provide a coherent and detailed view of FLS development over large areas over the 24 H day cycle.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Kélian Sommer, Wassim Kabalan, and Romain Brunet
EGUsphere, https://doi.org/10.5194/egusphere-2024-101, https://doi.org/10.5194/egusphere-2024-101, 2024
Short summary
Short summary
Our research introduces a novel deep-learning approach for classifying and segmenting ground-based infrared thermal images, a crucial step in cloud monitoring. Tests on self-captured data showcase its excellent accuracy in distinguishing image types and in structure segmentation. With potential applications in astronomical observations, our work pioneers a robust solution for ground-based sky quality assessment, promising advancements in the photometric observations experiments.
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024, https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Short summary
In this paper, a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. The cloud optical depth, effective column lidar ratio and linear cloud depolarisation ratio have been calculated by a new approach to the two-way transmittance method, which is valid for both ground-based and spaceborne lidar systems. Their associated errors are also provided.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024, https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
Short summary
We apply the Res-UNet to derive a comprehensive 3D cloud tomography from 2D satellite data over heterogeneous landscapes. We combine observational data from passive and active remote sensing sensors by an automated matching algorithm. These data are fed into a neural network to predict cloud reflectivities on the whole satellite domain between 2.4 and 24 km height. With an average RMSE of 2.99 dBZ, we contribute to closing data gaps in the representation of clouds in observational data.
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024, https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary
Short summary
The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) is an ESA–JAXA satellite mission to be launched in 2024. We presented an overview of the EarthCARE processors' development, with processors developed by teams in Europe, Japan, and Canada. EarthCARE will allow scientists to evaluate the representation of cloud, aerosol, precipitation, and radiative flux in weather forecast and climate models, with the objective to better understand cloud processes and improve weather and climate models.
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024, https://doi.org/10.5194/amt-17-261-2024, 2024
Short summary
Short summary
The ESA cloud, aerosol and radiation mission EarthCARE will provide active profiling and passive imaging measurements from a single satellite platform. The passive multi-spectral imager (MSI) will add information in the across-track direction. We present the cloud optical and physical properties algorithm, which combines the visible to infrared MSI channels to determine the cloud top pressure, optical thickness, particle size and water path.
Moritz Haarig, Anja Hünerbein, Ulla Wandinger, Nicole Docter, Sebastian Bley, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5953–5975, https://doi.org/10.5194/amt-16-5953-2023, https://doi.org/10.5194/amt-16-5953-2023, 2023
Short summary
Short summary
The atmospheric lidar (ATLID) and Multi-Spectral Imager (MSI) will be carried by the EarthCARE satellite. The synergistic ATLID–MSI Column Products (AM-COL) algorithm described in the paper combines the strengths of ATLID in vertically resolved profiles of aerosol and clouds (e.g., cloud top height) with the strengths of MSI in observing the complete scene beside the satellite track and in extending the lidar information to the swath. The algorithm is validated against simulated test scenes.
Patrick Chazette and Jean-Christophe Raut
Atmos. Meas. Tech., 16, 5847–5861, https://doi.org/10.5194/amt-16-5847-2023, https://doi.org/10.5194/amt-16-5847-2023, 2023
Short summary
Short summary
The vertical profiles of the effective radii of ice crystals and ice water content in Arctic semi-transparent stratiform clouds were assessed using quantitative ground-based lidar measurements. The field campaign was part of the Pollution in the ARCtic System (PARCS) project which took place from 13 to 26 May 2016 in Hammerfest (70° 39′ 48″ N, 23° 41′ 00″ E). We show that under certain cloud conditions, lidar measurement combined with a dedicated algorithmic approach is an efficient tool.
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023, https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Short summary
Cloud droplet number concentration can be retrieved from remote sensing measurements. Aircraft measurements are used to validate four ground-based retrievals of cloud droplet number concentration. We demonstrate that retrieved cloud droplet number concentrations align well with aircraft measurements for overcast clouds, but they may substantially differ for broken clouds. The ensemble of various retrievals can help quantify retrieval uncertainties and identify reliable retrieval scenarios.
Eric M. Wilcox, Tianle Yuan, and Hua Song
Atmos. Meas. Tech., 16, 5387–5401, https://doi.org/10.5194/amt-16-5387-2023, https://doi.org/10.5194/amt-16-5387-2023, 2023
Short summary
Short summary
A new database is constructed from over 20 years of satellite records that comprises millions of deep convective clouds and spans the global tropics and subtropics. The database is a collection of clouds ranging from isolated cells to giant cloud systems. The cloud database provides a means of empirically studying the factors that determine the spatial structure and coverage of convective cloud systems, which are strongly related to the overall radiative forcing by cloud systems.
Florian Baur, Leonhard Scheck, Christina Stumpf, Christina Köpken-Watts, and Roland Potthast
Atmos. Meas. Tech., 16, 5305–5326, https://doi.org/10.5194/amt-16-5305-2023, https://doi.org/10.5194/amt-16-5305-2023, 2023
Short summary
Short summary
Near-infrared satellite images have information on clouds that is complementary to what is available from the visible and infrared parts of the spectrum. Using this information for data assimilation and model evaluation requires a fast, accurate forward operator to compute synthetic images from numerical weather prediction model output. We discuss a novel, neural-network-based approach for the 1.6 µm near-infrared channel that is suitable for this purpose and also works for other solar channels.
Zhipeng Qu, David P. Donovan, Howard W. Barker, Jason N. S. Cole, Mark W. Shephard, and Vincent Huijnen
Atmos. Meas. Tech., 16, 4927–4946, https://doi.org/10.5194/amt-16-4927-2023, https://doi.org/10.5194/amt-16-4927-2023, 2023
Short summary
Short summary
The EarthCARE satellite mission Level 2 algorithm development requires realistic 3D cloud and aerosol scenes along the satellite orbits. One of the best ways to produce these scenes is to use a high-resolution numerical weather prediction model to simulate atmospheric conditions at 250 m horizontal resolution. This paper describes the production and validation of three EarthCARE test scenes.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
Atmos. Meas. Tech., 16, 4571–4588, https://doi.org/10.5194/amt-16-4571-2023, https://doi.org/10.5194/amt-16-4571-2023, 2023
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Hadrien Verbois, Yves-Marie Saint-Drenan, Vadim Becquet, Benoit Gschwind, and Philippe Blanc
Atmos. Meas. Tech., 16, 4165–4181, https://doi.org/10.5194/amt-16-4165-2023, https://doi.org/10.5194/amt-16-4165-2023, 2023
Short summary
Short summary
Solar surface irradiance (SSI) estimations inferred from satellite images are essential to gain a comprehensive understanding of the solar resource, which is crucial in many fields. This study examines the recent data-driven methods for inferring SSI from satellite images and explores their strengths and weaknesses. The results suggest that while these methods show great promise, they sometimes dramatically underperform and should probably be used in conjunction with physical approaches.
Cited articles
Bosilovich, M. G., Lucchesi, R., and Suarez, M.: MERRA-2: File specification, No. GSFC-E-DAA-TN27096, https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf (last access: 9 April 2025) 2015.
Chen, H., Schmidt, K. S., Massie, S. T., Nataraja, V., Norgren, M. S., Gristey, J. J., Feingold, G., Holz, R. E., and Iwabuchi, H.: The Education and Research 3D Radiative Transfer Toolbox (EaR3T) – towards the mitigation of 3D bias in airborne and spaceborne passive imagery cloud retrievals, Atmos. Meas. Tech., 16, 1971–2000, https://doi.org/10.5194/amt-16-1971-2023, 2023a.
Chen, H., Schmidt, S., and Nataraja, V.: hong-chen/er3t: er3t-v0.1.1 (v0.1.1), Zenodo [code], https://doi.org/10.5281/zenodo.7734965, 2023b.
Chen, Y.-W.: ywchen-tw/OCO2: v0.1.0 (v0.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.15086808, 2025.
Cansot, E., Pistre, L., Castelnau, M., Landiech, P., Georges, L., Gaeremynck, Y., and Bernard P.: MicroCarb instrument, overview and first results, Proc. SPIE 12777, International Conference on Space Optics – ICSO 2022, 12 July 2023, 1277734, https://doi.org/10.1117/12.269033, 2023.
Connor, B., Bösch, H., McDuffie, J., Taylor, T., Fu, D., Frankenberg, C., O'Dell, C., Payne, V. H., Gunson, M., Pollock, R., Hobbs, J., Oyafuso, F., and Jiang, Y.: Quantification of uncertainties in OCO-2 measurements of XCO2: simulations and linear error analysis, Atmos. Meas. Tech., 9, 5227–5238, https://doi.org/10.5194/amt-9-5227-2016, 2016.
Crisp, D.: Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2), Proc. SPIE 9607, Earth Observing Systems XX, 960702, https://doi.org/10.1117/12.2187291, 2015.
Crowell, S. M. R., Randolph Kawa, S., Browell, E. V., Hammerling, D. M., Moore, B., Schaefer, K., and Doney, S. C.: On the ability of space-based passive and active remote sensing observations of CO2 to detect flux perturbations to the carbon cycle, J. Geophys. Res.-Atmos., 123, 1460–1477, 2018.
Deng, F., Jones, D. B. A., O'Dell, C. W., Nassar, R., and Parazoo, N. C.: Combining GOSAT XCO2 observations over land and ocean to improve regional CO2 flux estimates, J. Geophys. Res.-Atmos., 121, 1896–1913, 2016.
Doicu, A., Efremenko, D. S., and Trautmann, T.: A Spectral Acceleration Approach for the Spherical Harmonics Discrete Ordinate Method, Remote Sens., 12, 3703, https://doi.org/10.3390/rs12223703, 2020.
Eldering, A., Taylor, T. E., O'Dell, C. W., and Pavlick, R.: The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data, Atmos. Meas. Tech., 12, 2341–2370, https://doi.org/10.5194/amt-12-2341-2019, 2019.
Emde, C., Buras, R., and Mayer, B.: ALIS: An efficient method to compute high spectral resolution polarized solar radiances using the Monte Carlo approach, J. Quant. Spectrosc. Ra., 112, 1622–1631, https://doi.org/10.1016/j.jqsrt.2011.03.018, 2011.
Frankenberg, C., Bar-On, Y. M., Yin, Y., Wenberg, P. O., Jacob, D. J., and Michalak, A. M.: Data Drought in the Humid Tropics: How to Overcome the Cloud Barrier in Greenhouse Gas Remote Sensing, ESS Open Archive, https://doi.org/10.22541/essoar.170923255.57545328/v1, 2024.
Frey, R. A., Ackerman, S. A., Holz, R. E., Dutcher, S. and Griffith, Z.: The Continuity MODIS-VIIRS Cloud Mask, Remote Sens., 12, 3334, https://doi.org/10.3390/rs12203334, 2020.
Imasu, R., Matsunaga, T., Nakajima, M., Yoshida, Y., Shiomi, K., Morino, I., Saitoh, N., Niwa, Y., Someya, Y., Oishi, Y. and Hashimoto, M.: Greenhouse gases Observing SATellite 2 (GOSAT-2): mission overview, Prog. Earth Planet Sci., 10, 33, https://doi.org/10.1186/s40645-023-00562-2, 2023.
Iwabuchi, H.: Efficient Monte Carlo Methods for Radiative Transfer Modeling, J. Atmos. Sci., 63, 2324–2339, https://doi.org/10.1175/JAS3755.1, 2006.
Iwabuchi, H. and Okamura, R.: Multispectral Monte Carlo radiative transfer simulation by the maximum cross-section method, J. Quant. Spectrosc. Ra., 193, 40–46, https://doi.org/10.1016/j.jqsrt.2017.01.025, 2017.
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., and Hubanks, P. A.: Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites, IEEE T. Geosci. Remote, 51, 3826–3852, https://doi.org/10.1109/TGRS.2012.2227333, 2013.
Kylling, A., Emde, C., Yu, H., van Roozendael, M., Stebel, K., Veihelmann, B., and Mayer, B.: Impact of 3D cloud structures on the atmospheric trace gas products from UV–Vis sounders – Part 3: Bias estimate using synthetic and observational data, Atmos. Meas. Tech., 15, 3481–3495, https://doi.org/10.5194/amt-15-3481-2022, 2022.
Kuhlmann, G., Brunner, D., Broquet, G., and Meijer, Y.: Quantifying CO2 emissions of a city with the Copernicus Anthropogenic CO2 Monitoring satellite mission, Atmos. Meas. Tech., 13, 6733–6754, https://doi.org/10.5194/amt-13-6733-2020, 2020.
Li, S. and Yang, J.: Retrieving global single-layer liquid cloud thickness from OCO-2 hyperspectral oxygen A-band, Remote Sens. Envrion., 311, 113272, https://doi.org/10.1016/j.rse.2024.114272, 2024.
Levy, R. and Hsu, C.: MODIS Atmosphere L2 Aerosol Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MYD04_L2.061, 2015.
Mauceri, S., Massie, S., and Schmidt, S.: Correcting 3D cloud effects in X retrievals from the Orbiting Carbon Observatory-2 (OCO-2), Atmos. Meas. Tech., 16, 1461–1476, https://doi.org/10.5194/amt-16-1461-2023, 2023.
Massie, S. T., Schmidt, K. S., Eldering, A., and Crisp, D.: Observational evidence of 3-D cloud effects in OCO-2 CO2 retrievals, J. Geophys. Res.-Atmos., 122, 7064–7085, https://doi.org/10.1002/2016JD026111, 2017.
Massie, S. T., Cronk, H., Merrelli, A., O'Dell, C., Schmidt, K. S., Chen, H., and Baker, D.: Analysis of 3D cloud effects in OCO-2 XCO2 retrievals, Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021, 2021.
Massie, S. T., Cronk, H., Merrelli, A., Schmidt, S., and Mauceri, S.: Insights into 3D cloud radiative transfer effects for the Orbiting Carbon Observatory, Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023, 2023.
Miller, C. E., Crisp, D., DeCola, P. L., Olsen, S. C., Randerson, J. T., Michalak, A. M., Alkhaled, A., Rayner, P., Jacob, D. J., Suntharalingam, P., Jones, D. B. A., Denning, A. S., Nicholls, M. E., Doney, S. C., Pawson, S., Boesch, H., Connor, B. J., Fung, I. Y., O'Brien, D., Salawitch, R. J., Sander, S. P., Sen, B., Tans, P., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Yung, Y. L., and Law, R. M.: Precision requirements for space-based X data, J. Geophys. Res.-Atmos., 112, D10314, https://doi.org/10.1029/2006JD007659, 2007.
Minomura, M., Kuze, H. and Takeuchi, N.: Adjacency effect in the atmospheric correction of satellite remote sensing data: Evaluation of the influence of aerosol extinction profiles, Opt. Rev., 8, 133–141, https://doi.org/10.1007/s10043-001-0133-2, 2001.
MODIS Characterization Support Team (MCST): MODIS 1km Calibrated Radiances Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center [data set], USA, https://doi.org/10.5067/MODIS/MYD021KM.061, 2017a.
MODIS Characterization Support Team (MCST): MODIS 250m Calibrated Radiances Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MYD02QKM.061, 2017b.
MODIS Characterization Support Team (MCST): MODIS 500m Calibrated Radiance Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MYD02HKM.061, 2017c.
MODIS Characterization Support Team (MCST): MODIS Geolocation Fields Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MYD03.061, 2017d.
Nakajima, M., Kuze, A., Kawakami, S., Shiomi, K., and Suto, H.: Monitoring of the greenhouse gases from space by GOSAT, Int. Arch. Photogramm., 38, 94–99, 2010.
Nelson, R. R., J. McDuffie, S. S. Kulawik, and C. O'Dell: Water and Temperature SVD Estimates to Improve OCO-2 XCO2 Errors, AGU Fall Meeting Abstracts, Chicago, USA, 12–16 December 2022, A15L-1402, https://ui.adsabs.harvard.edu/abs/2022AGUFM.A15L1402N (last access: 9 April 2025), 2022.
OCO-2 L1B ATBD: Orbiting Carbon Observatory-2 & 3 (OCO-2 & OCO-3) Level 1B Algorithm Theoretical Basis, Version 2.0 Rev 0, January 15, JPL, California Institute of Technology, Pasadena, California, USA, https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO_L1B_ATBD.pdf (last access: 9 April 2025), 2021.
OCO-2 L2 ATBD: Orbiting Carbon Observatory-2 & 3 (OCO-2 & OCO-3) Level 2 Full Physics Retrieval Algorithm Theoretical Basis, Version 2.0 Rev 3 January 2, JPL, California Institute of Technology, Pasadena, California, USA, 2020.
OCO-2 Science Team/Gunson, M., and Eldering, A.: OCO-2 Level 1B calibrated, geolocated science spectra, Retrospective Processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/6O3GEUK7U2JG, 2019a.
OCO-2 Science Team/Gunson, M., and Eldering, A.: OCO-2 Level 2 CO2 prior based on CO2 monthly flask record, global meteorology, and age of air, Retrospective Processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/46J4Z696YA09, 2019b.
OCO-2 Science Team/Gunson, M., and Eldering, A.: OCO-2 Level 2 spatially ordered geolocated retrievals screened using the IMAP-DOAS Preprocessor (IDP), Retrospective Processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/FQ25VEK3DLRR, 2019c.
OCO-2 Science Team/Gunson, M., and Eldering, A.: OCO-2 Level 2 meteorological parameters interpolated from global assimilation model for each sounding, Retrospective Processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/OJZZW0LIGSDH, 2019d.
OCO-2 Science Team/Gunson, M., and Eldering, A.: OCO-2 Level 2 geolocated XCO2 retrievals results, physical model, Retrospective Processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/6SBROTA57TFH, 2020a.
OCO-2 Science Team/Gunson, M., and Eldering, A.: OCO-2 Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files, Retrospective processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/E4E140XDMPO2, 2020b.
O'Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Frankenberg, C., Kiel, M., Lindqvist, H., Mandrake, L., Merrelli, A., Natraj, V., Nelson, R. R., Osterman, G. B., Payne, V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso, F., Chang, A., McDuffie, J., Smyth, M., Baker, D. F., Basu, S., Chevallier, F., Crowell, S. M. R., Feng, L., Palmer, P. I., Dubey, M., García, O. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Roehl, C. M., Sha, M. K., Strong, K., Sussmann, R., Te, Y., Uchino, O., and Velazco, V. A.: Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, 2018.
Partain, P. T., Heidinger, A. K., and Stephens, G. L.: High spectral resolution atmospheric radiative transfer: Application of the equivalence theorem, J. Geophys. Res., 105, 21632177, https://doi.org/10.1029/1999JD900328, 2000.
Payne, V. H., Drouin, B. J., Oyafuso, F., Kuai, L., Fisher, B. M., Sung, K., Nemchick, D., Crawford, T. J., Smyth, M., Crisp, D., Adkins, E., Hodges, J. T., Long, D. A., Mlawer, E. J., Merrelli, A., Lunny, E., and O'Dell, C. W.: Absorption coefficient (ABSCO) tables for the Orbiting Carbon Observatories: Version 5.1, J. Quant. Spectrosc. Ra., 255, 107217, https://doi.org/10.1016/j.jqsrt.2020.107217, 2020.
Platnick, S., Ackerman, S., King, M., Meyer, K., Menzel, W. P., Holz, R. E., Baum, B. A., and Yang, P.: MODIS Atmosphere L2 Cloud Product (06_L2), NASA MODIS Adaptive Processing System, Goddard Space Flight Center [data set], USA, https://doi.org/10.5067/MODIS/MOD06_L2.061, 2015.
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and practice (Vol. 2), World Scientific, https://doi.org/10.1142/3171, 2000.
Schaaf, C. and Wang, Z.: MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global – 500m V061, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MCD43A3.061, 2021.
Schmidt, K. S., Massie, S., and Feingold, G.: Impact of Broken Clouds on Trace Gas Spectroscopy From Low Earth Orbit. In Hyperspectral Imaging and Sounding of the Environment (Optica Publishing Group, 2019), paper HW5C-2, https://opg.optica.org/abstract.cfm?uri=HISE-2019-HW5C.2 (last access: 9 April 2025), 2019.
University of Colorado Boulder Research Computing: Alpine, University of Colorado Boulder, https://doi.org/10.25811/k3w6-pk81, 2023.
Worden, J. R., Doran, G., Kulawik, S., Eldering, A., Crisp, D., Frankenberg, C., O'Dell, C., and Bowman, K.: Evaluation and attribution of OCO-2 XCO2 uncertainties, Atmos. Meas. Tech., 10, 2759–2771, https://doi.org/10.5194/amt-10-2759-2017, 2017.
Wylie, D., Jackson, D. L., Menzel, W. P., and Bates, J. J.: Trends in Global Cloud Cover in Two Decades of HIRS Observations, J. Climate, 18, 3021–3031, https://doi.org/10.1175/JCLI3461.1, 2005.
Zinner, T., Schwarz, U., Kölling, T., Ewald, F., Jäkel, E., Mayer, B., and Wendisch, M.: Cloud geometry from oxygen-A-band observations through an aircraft side window, Atmos. Meas. Tech., 12, 1167–1181, https://doi.org/10.5194/amt-12-1167-2019, 2019.
Short summary
CO2 column-averaged dry-air mole fractions can be retrieved from space using spectrometers like OCO-2. However, nearby clouds induce spectral distortions that bias these retrievals beyond the accuracy needed for global CO2 source and sink assessments. This study employs a physics-based linearization approach to represent 3D cloud effects and introduces radiance-level mitigation techniques for actual OCO-2 data, enabling the operational implementation of these corrections.
CO2 column-averaged dry-air mole fractions can be retrieved from space using spectrometers like...