Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-Cost Sensor Measurements into High-Resolution PM
2.5 Modeling at a Large Spatial Scale, Environ. Sci. Technol., 54, 2152–2162, 2020.
a,
b
Cerully, K. M., Bougiatioti, A., Hite Jr., J. R., Guo, H., Xu, L., Ng, N. L., Weber, R., and Nenes, A.: On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States, Atmos. Chem. Phys., 15, 8679–8694,
https://doi.org/10.5194/acp-15-8679-2015, 2015.
a,
b
Eriksson, P., Jiménez, C., and Buehler, S. A.: Qpack, a general tool for instrument simulation and retrieval work, J. Quant. Spectrosc. Ra., 91, 47–64, 2004. a
Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke, O.: ARTS, the atmospheric radiative transfer simulator, version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558,
https://doi.org/10.1016/j.jqsrt.2011.03.001, 2011 (code available at:
https://github.com/atmtools, last access: 27 February 2025).
a
Magi, B. I., Cupini, C., Francis, J., Green, M., and Hauser, C.: Evaluation of PM
2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor, Aerosol Sci. Technol., 54, 147–159, 2019. a
Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L., Presto, A. A., and Subramanian, R.: Fine particle mass monitoring with low-cost sensors: Corrections and longterm performance evaluation, Aerosol Sci. Technol., 24, 160–174, 2019.
a,
b,
c,
d,
e,
f,
g
Mathieu-Campbell, M. E., Guo, C., Grieshop, A. P., and Richmond-Bryant, J.: Calibration of PurpleAir low-cost particulate matter sensors: model development for air quality under high relative humidity conditions, Atmos. Meas. Tech., 17, 6735–6749,
https://doi.org/10.5194/amt-17-6735-2024, 2024.
a
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649,
https://doi.org/10.5194/acp-6-2593-2006, 2006.
a
MECP: Fine Particulate Matter,
http://www.airqualityontario.com/science/pollutants/particulates.php (last access: 27 February 2025), 2021. a
Nilson, B., Jackson, P. L., Schiller, C. L., and Parsons, M. T.: Development and evaluation of correction models for a low-cost fine particulate matter monitor, Atmos. Meas. Tech., 15, 3315–3328,
https://doi.org/10.5194/amt-15-3315-2022, 2022.
a
Ouimette, J. R., Malm, W. C., Schichtel, B. A., Sheridan, P. J., Andrews, E., Ogren, J. A., and Arnott, W. P.: Evaluating the PurpleAir monitor as an aerosol light scattering instrument, Atmos. Meas. Tech., 15, 655–676,
https://doi.org/10.5194/amt-15-655-2022, 2022.
a
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971,
https://doi.org/10.5194/acp-7-1961-2007, 2007.
a,
b
PurpleAir: PurpleAir Map, air quality Map,
https://map.purpleair.com (last access: 27 February 2025), 2016.
a,
b
PurpleAir: PurpleAir FAQ,
https://www2.purpleair.com/community/faq (last access: 27 February 2025), 2021. a
Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S. S., Wernli, H., Andreae, M. O., and Pöschl, U.: Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN), Atmos. Chem. Phys., 9, 7067–7080,
https://doi.org/10.5194/acp-9-7067-2009, 2009.
a
Rodgers, C.: Inverse Methods for Atmospheric Soundings, World Scientific Publishing Co. Pte. Ltd., Singapore,
https://doi.org/10.1142/3171, 2000.
a,
b
Su, H., Rose, D., Cheng, Y. F., Gunthe, S. S., Massling, A., Stock, M., Wiedensohler, A., Andreae, M. O., and Pöschl, U.: Hygroscopici
ty distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation, Atmos. Chem. Phys., 10, 7489–7503,
https://doi.org/10.5194/acp-10-7489-2010, 2010.
a
Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation, Chem. Rev., 116, 4205–4259,
https://doi.org/10.1021/acs.chemrev.5b00529, 2016.
a
Tryner, J., L'Orange, C., Mehaffy, J., Miller-Lionberg, D., Hofstetter, J. C., Wilson, A., and Volckens, J.: Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers Author links open overlay panel, Atmos. Environ., 220, 1352–2310, 2020. a