Articles | Volume 18, issue 13
https://doi.org/10.5194/amt-18-3135-2025
https://doi.org/10.5194/amt-18-3135-2025
Research article
 | 
15 Jul 2025
Research article |  | 15 Jul 2025

Retrieval of bulk hygroscopicity from PurpleAir PM2.5 sensor measurements

Jillian Psotka, Emily Tracey, and Robert J. Sica

Related authors

Solar background radiation temperature calibration of a pure rotational Raman lidar
Vasura Jayaweera, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 18, 1461–1469, https://doi.org/10.5194/amt-18-1461-2025,https://doi.org/10.5194/amt-18-1461-2025, 2025
Short summary
Classification of lidar measurements using supervised and unsupervised machine learning methods
Ghazal Farhani, Robert J. Sica, and Mark Joseph Daley
Atmos. Meas. Tech., 14, 391–402, https://doi.org/10.5194/amt-14-391-2021,https://doi.org/10.5194/amt-14-391-2021, 2021
Short summary
A Raman lidar tropospheric water vapour climatology and height-resolved trend analysis over Payerne, Switzerland
Shannon Hicks-Jalali, Robert J. Sica, Giovanni Martucci, Eliane Maillard Barras, Jordan Voirin, and Alexander Haefele
Atmos. Chem. Phys., 20, 9619–9640, https://doi.org/10.5194/acp-20-9619-2020,https://doi.org/10.5194/acp-20-9619-2020, 2020
Short summary
Retrieval of temperature from a multiple channel pure rotational Raman backscatter lidar using an optimal estimation method
Shayamila Mahagammulla Gamage, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 12, 5801–5816, https://doi.org/10.5194/amt-12-5801-2019,https://doi.org/10.5194/amt-12-5801-2019, 2019
Short summary
A practical information-centered technique to remove a priori information from lidar optimal-estimation-method retrievals
Ali Jalali, Shannon Hicks-Jalali, Robert J. Sica, Alexander Haefele, and Thomas von Clarmann
Atmos. Meas. Tech., 12, 3943–3961, https://doi.org/10.5194/amt-12-3943-2019,https://doi.org/10.5194/amt-12-3943-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Development and validation of a NOx+ ratio method for the quantitative separation of inorganic and organic nitrate aerosol using a unit-mass-resolution time-of-flight aerosol chemical speciation monitor equipped with a capture vaporizer (CV-UMR-ToF-ACSM)
Farhan R. Nursanto, Douglas A. Day, Roy Meinen, Rupert Holzinger, Harald Saathoff, Jinglan Fu, Jan Mulder, Ulrike Dusek, and Juliane L. Fry
Atmos. Meas. Tech., 18, 3051–3072, https://doi.org/10.5194/amt-18-3051-2025,https://doi.org/10.5194/amt-18-3051-2025, 2025
Short summary
Inversion algorithm of black carbon mixing state based on machine learning
Zeyuan Tian, Jiandong Wang, Jiaping Wang, Chao Liu, Jia Xing, Jinbo Wang, Zhouyang Zhang, Yuzhi Jin, Sunan Shen, Bin Wang, Wei Nie, Xin Huang, and Aijun Ding
Atmos. Meas. Tech., 18, 1149–1162, https://doi.org/10.5194/amt-18-1149-2025,https://doi.org/10.5194/amt-18-1149-2025, 2025
Short summary
Implementation of Real-Time Source Apportionment Approaches Using the ACSM-Xact-Aethalometer (AXA) Set-Up with SoFi RT: The Athens Case Study
Manousos Ioannis Manousakas, Olga Zografou, Francesco Canonaco, Evangelia Diapouli, Stefanos Papagiannis, Maria Gini, Vasiliki Vasilatou, Anna Tobler, Stergios Vratolis, Jay G. Slowik, Kaspar R. Daellenbach, André S. H. Prevot, and Konstantinos Eleftheriadis
EGUsphere, https://doi.org/10.5194/egusphere-2025-542,https://doi.org/10.5194/egusphere-2025-542, 2025
Short summary
Performance evaluation of Atmotube PRO sensors for air quality measurements in an urban location
Aishah I. Shittu, Kirsty J. Pringle, Stephen R. Arnold, Richard J. Pope, Ailish M. Graham, Carly Reddington, Richard Rigby, and James B. McQuaid
Atmos. Meas. Tech., 18, 817–828, https://doi.org/10.5194/amt-18-817-2025,https://doi.org/10.5194/amt-18-817-2025, 2025
Short summary
Spatial analysis of PM2.5 using a concentration similarity index applied to air quality sensor networks
Rósín Byrne, John C. Wenger, and Stig Hellebust
Atmos. Meas. Tech., 17, 5129–5146, https://doi.org/10.5194/amt-17-5129-2024,https://doi.org/10.5194/amt-17-5129-2024, 2024
Short summary

Cited articles

Akpootu, D. and Gana, N. N.: The Effect of Relative Humidity on the Hygroscopic Growth Factor and Bulk Hygroscopicity of water Soluble Aerosols, Int. J. Eng. Sci., 2, 48–57, 2013. a
Ardon-Dryer, K., Dryer, Y., Williams, J. N., and Moghimi, N.: Measurements of PM2.5 with PurpleAir under atmospheric conditions, Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020, 2020. a, b
Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor, Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021. a, b, c
Barkjohn, K. K., Holder, A. L., Frederick, S. G., and Clements, A. L.: Correction and Accuracy of PurpleAir PM2.5 Measurements for Extreme Wildfire Smoke, Sensors, 22, 9669, https://doi.org/10.3390/s22249669, 2022. a
Bell, M., Dominici, F., Ebisu, K., Zeger, S., and Samet, J.: Spatial and Temporal Variation in PM2.5 Chemical Composition in the United States for Health Effects Studies, Environmental Health Prospectives, 115, 989–995, 2007. a
Download
Short summary
PurpleAir sensors provide a low-cost way to monitor air quality, with over 30 000 sensors available worldwide. However, their measurements require calibration with trusted data for accuracy. Our new technique builds on previous calibration methods by also enabling the measurement of a quantity related to how pollutants grow with humidity. Mapping this new quantity will improve air quality forecasting.
Share